JPH03111591A - Surface treatment of aluminum alloy - Google Patents

Surface treatment of aluminum alloy

Info

Publication number
JPH03111591A
JPH03111591A JP24860989A JP24860989A JPH03111591A JP H03111591 A JPH03111591 A JP H03111591A JP 24860989 A JP24860989 A JP 24860989A JP 24860989 A JP24860989 A JP 24860989A JP H03111591 A JPH03111591 A JP H03111591A
Authority
JP
Japan
Prior art keywords
aluminum alloy
treatment
silicate
rust resistance
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24860989A
Other languages
Japanese (ja)
Inventor
Hideo Fujimoto
日出男 藤本
Hideyoshi Usui
碓井 栄喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24860989A priority Critical patent/JPH03111591A/en
Publication of JPH03111591A publication Critical patent/JPH03111591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To improve the filiform corrosion resistance of an Al alloy and the adhesion of a coating film by subjecting the Al alloy to anodic oxidation, etc., in an electrolytic soln. contg. a surfactant and a silicate-based alkaline builder at a prescribed concn. CONSTITUTION:An electrolytic soln. contg. a silicate-based alkaline builder at 0.5-5wt.% concn. and a surfactant is prepd. An Al alloy is subjected to anodic electrolysis or cathodic electrolysis and anodic electrolysis in the electrolytic soln.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金の表面処理法に関し、特に塗
装下地処理として使用した場合、優れた塗膜密着性と耐
糸錆性が得られ、自動車パネル材等の用途に供されるア
ルミニウム合金の表面処理法として適している6 (従来の技術及び解決しようとする課題)アルミニウム
合金は、軽量化を目的として自動車の部品に採用されつ
つあるが、パネル材のように耐糸錆性が要求される用途
に対しては、クロム酸クロメート等の塗装下地処理が必
要であるとされていた。 一方、通常の自動車塗装ライ−ンは、プレス成形→脱脂
→リン酸亜鉛処理→カチオン電着→塗装の工程からなる
鋼板用のラインであり、下地処理にはリン酸亜鉛処理が
施されているが、このラインにおいてリン酸亜鉛処理を
アルミニウム合金の下地処理に適用した場合、カチオン
電着後の塗装密着力(塗装密着性)が不充分となり、耐
糸錆性の点で充分な性能が得られていないのが現状であ
り。 この塗装ラインを使用して耐糸錆性の優れた下地処理が
できる技術の開発が望まれている。 この点、自動車塗装ラインの下地処理として、リン酸亜
鉛処理に代えて、クロム酸クロメート処理を採用するこ
とも考えらるが、前述の如く耐糸錆性は向上できるもの
の、クロム酸クロメート処理には 洗浄→水洗→水洗→クロム酸りロメート→水洗(拳)→
水洗→乾燥 という工程が必要であって、そのための専用の処理設備
が必要となり、且つ前記水洗(童)段階でクローズドシ
ステムによる排水処理が必要であるため、排水処理等を
含めた処理コストが高くなるという問題があり、下地処
理としてクロム酸クロメート処理を採用するには難があ
る。 本発明は、か\る要請に応えるべくなされたものであっ
て、下地処理としてリン酸亜鉛処理を施す場合であって
も、塗膜密着性、耐糸錆性に優れたアルミニウム合金材
料が得られ、且つ低コストである表面処理法を提供する
ことを目的とするものである。 (課題を解決するための手段) 本発明者らは、下地処理としてリン酸亜鉛処理を採用し
た場合に特に耐糸錆性が劣化する原因を究明すると共に
新規な前処理法(表面処理法)について鋭意研究を重ね
た。その結果、特定条件の陽極酸化処理を施すことによ
り、耐糸錆性の著しい改善効果が得られることを見い出
し、ここに本発明をなしたものである。 すなわち、本発明は、けい酸塩系アルカリ性ビルダーと
界面活性剤を含む電解液中で、アルミニウム合金をアノ
ード電解することを特徴とするアルミニウム合金の表面
処理法を要旨とするものである。 また、他の本発明は、けい酸塩系アルカリ性ビルダーと
界面活性剤を含む電解液中で、アルミニウム合金をカソ
ード電解し、引き続き同一組成の電解液中でアノード電
解することを特徴とするアルミニウム合金の表面処理法
を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) 本発明者らは、種々の表面処理法について検討した中で
、アルミニウム合金の表面洗浄に一般的に使用されてい
るけい酸塩系アルカリ性ビルダーと界面活性剤の浴中で
、洗浄に引き続き陽極酸化処理を施したところ、耐糸錆
性の著しい改善効果が得られることを見い出したもので
ある。 けい酸塩系アルカリ性ビルダーと界面活性剤を含む電解
液を用い、前処理の脱脂洗浄と、陽極酸化皮膜の生成を
同一組成の浴中で行うと、電解液に浸漬直後から表面の
脱脂、洗浄が開始され、次いでアノード電解開始により
、アルミニウム合金表面に耐食性、塗膜密着性、耐糸錆
性に優れる陽極酸化皮膜が形成される。また、この表面
処理法によれば、アルミニウム合金の表面洗浄と、表面
での陽極酸化皮膜の生成が共に可能であるので、処理工
程の簡素化と現有の生産設備の改造で対応できるため、
コストダウン効果も大きい。 電解浴中のアルカリ性ビルダーは、洗浄の助剤と陽極酸
化の電解液として作用し、その種類としては、アルミニ
ウム合金表面に陽極酸化皮膜が形成され、洗浄剤のアル
カリ性ビルダーとしての効果も大きいけい酸塩系が好ま
しい。例えば、オルソけい酸ナトリウム などを挙げることができる。けい酸塩系ビルダーを用い
ることにより、薄いが緻密な皮膜が得られ、自動車パネ
ル材のように、プレス加工が施される用途においても良
好な加工性が得られる。 界面活性剤は脱脂のために添加されるが、その種類は特
に制限されない。 処理温度等の条件については、電解液の脱脂効果と電解
液の陽極酸化皮膜の生成効果、電解電圧等によって最適
温度が得られるが、40〜80℃の範囲で電解電圧15
〜60Vであれば、装置としての危険性も少なく、充分
な耐糸錆性が得られる。 このように、望ましい電解条件は。 電解液:0.5〜5%jt%のけい酸塩系アルカリ性ビ
ルダーと界面活性剤の混合浴 電解液温度:40〜80℃ 電解液電圧:15〜60V[アノード電解)であるが、
この範囲を外れると、生産性、安全性等の実用上、良好
な陽極酸化皮膜が得られ難くなる。 このようにして得られる陽極酸化皮膜は、アルカリ性電
解液中で生成されたものであり、耐アルカリ性が大きい
ため、特に、その後のプレス加工→脱脂→リン酸亜鉛処
理→カチオン電着の工程を経て塗装されたアルミニウム
合金材料の場合、耐糸錆性を著しく向上できる。 なお、この陽極酸化処理の前処理としては、前述の如く
、通常は、素材を電解液中に浸漬するだけでよ(、表面
洗浄できる。しかし、更に表面の脱脂、洗浄時間を短縮
し、更に洗浄効果を上げるためには、アノード電解の前
に同一洛中で或いは同一組成を有する別の浴中でカソー
ド電解すればよい、同一洛中でカソード電解する場合は
、引き続き極性を切り換えてアノード電解を行うため、
被処理材の取り出しや、水洗は全く不用である。 また、コイルフオームで処理する場合には、給電方式を
液−液給電とし、対極の配置のみで連続処理が可能とな
る。連続処理する場合には、電解液の供給はスプレー法
が好ましい、この場合には。 片面処理や液−液給電が容易に行われ、設備的に効果が
大きい。しかし、電解液中に浸漬し電解しても充分な性
能は得られる。 かくして表面処理されたアルミニウム合金材料は、特に
自動車のパネル用として使用した場合、処理後加工され
、リン酸亜鉛処理、カチオン電着が施されるが、その場
合には著しい効果が期待でき、耐糸錆性向上に関するユ
ーザーニーズに充分対応できる。 勿論、その他の用途、例えば、キャン材の塗装下地処理
、カラーアルミの下地処理等に応用できることは云うま
でもない。また、皮膜を厚くすることにより、単独で耐
食性を有するアルミニウム合金の表面処理法としても適
用できる。 なお、処理素材であるアルミニウム合金としては、耐糸
錆性が要求される種々の成分系、成分組成のもが可能で
あることは云うまでもない。 (実施例) 次に本発明の実施例を示す。 笑ム奥1 素材として、JIS5182−0材の圧延板(1mmX
 75n+mX 150mm)を準備し、これに第1表
に示す種々の条件で表面処理を施した。 得られた表面処理材について、JIS2731に準する
塩水噴霧試験で、連続100時間により孔食発生状況を
調べ、耐食性を評価した。その結果を第2表に示す。 失庶濃1 実施例1で得られた表面処理材に自動車用カチオン電着
塗装(膜厚25μm)を施した後、塗膜にスクラッチ傷
を付け、塩水噴霧24時間→湿潤(50℃X85%RH
)144時間を1サイクルとする耐糸錆性の評価を行っ
た。5サイクル後の耐糸錆性の評価結果を第2表に示す
。 叉111 実施例1で得られた表面処理材に自動車用パネル材と同
様の脱脂及び下地処理(けい酸塩系脱脂洗浄→リン酸亜
鉛処理)を行った後、カチオン電着塗装(膜厚25μ=
1)を施し、実施例2と同様の要領で耐糸錆性の評価を
行った。5サイクル後の耐糸錆性の評価結果を第2表に
示す。 夫崖且土 実施例1で得られた表面処理材にウレタン系塗料を塗装
(15μ膳)シ、実施例2と同様の要領で塗膜密着性の
評価を行った。5サイクル後の塗膜密着性の評価結果を
第2表に示す。 第2表より明らかなように、本発明例はいずれも優れた
耐糸錆性、塗膜密着性を示し、また良好な耐食性を示し
ている。 一方、従来例のうち、クロム酸クロメート又はリン酸ク
ロメートを施したものは、前述のように排水処理等の問
題があって実用的でなく、他の従来例では耐糸錆性が劣
っている。 また、比較例は、耐食性又は耐糸錆性に難がある。
(Industrial Application Field) The present invention relates to a surface treatment method for aluminum alloys, and in particular, when used as a base treatment for painting, excellent paint film adhesion and thread rust resistance can be obtained, and the present invention can be used for applications such as automobile panel materials. 6 (Prior art and problems to be solved) Aluminum alloys are being used in automobile parts for the purpose of weight reduction, but they are suitable for surface treatment of aluminum alloys such as panel materials. For applications requiring rust resistance, it was considered necessary to apply a coating base treatment such as chromate chromate. On the other hand, a normal automobile painting line is a line for steel sheets that consists of the steps of press forming → degreasing → zinc phosphate treatment → cationic electrodeposition → painting, and the base treatment is zinc phosphate treatment. However, if zinc phosphate treatment is applied to the base treatment of aluminum alloys in this line, the adhesion of the paint after cationic electrodeposition (paint adhesion) will be insufficient, and sufficient performance in terms of thread rust resistance will not be obtained. The current situation is that this is not the case. It is desired to develop a technology that can use this coating line to perform surface treatment with excellent thread rust resistance. In this regard, it may be possible to adopt chromate chromate treatment instead of zinc phosphate treatment as a base treatment for automobile painting lines, but as mentioned above, although thread rust resistance can be improved, chromate chromate treatment with chromate Wash → Wash with water → Wash with water → Chromium acid romate → Wash with water (fist) →
The process of rinsing → drying is necessary, and special treatment equipment is required for that purpose.In addition, wastewater treatment using a closed system is required at the washing (drying) stage, so the treatment cost including wastewater treatment is high. Therefore, it is difficult to adopt chromic acid chromate treatment as a surface treatment. The present invention was made in response to such a request, and it is possible to obtain an aluminum alloy material with excellent paint film adhesion and thread rust resistance even when zinc phosphate treatment is applied as a base treatment. The object of the present invention is to provide a surface treatment method that is both effective and low-cost. (Means for Solving the Problems) The present inventors have investigated the cause of deterioration in thread rust resistance especially when zinc phosphate treatment is adopted as a base treatment, and have developed a new pretreatment method (surface treatment method). I have conducted extensive research on the subject. As a result, it was discovered that by performing anodization treatment under specific conditions, a remarkable improvement in thread rust resistance can be obtained, and the present invention has been made based on this finding. That is, the gist of the present invention is a method for surface treatment of an aluminum alloy, which is characterized by subjecting the aluminum alloy to anodic electrolysis in an electrolytic solution containing a silicate-based alkaline builder and a surfactant. Another aspect of the present invention is an aluminum alloy characterized in that the aluminum alloy is cathodically electrolyzed in an electrolytic solution containing a silicate-based alkaline builder and a surfactant, and then anodically electrolyzed in an electrolytic solution having the same composition. This paper focuses on surface treatment methods. The present invention will be explained in more detail below. (Function) While investigating various surface treatment methods, the present inventors found that cleaning was performed in a bath of silicate-based alkaline builder and surfactant, which are commonly used for cleaning the surface of aluminum alloys. It has been discovered that when anodic oxidation treatment is subsequently performed, a significant improvement in thread rust resistance can be obtained. If an electrolytic solution containing a silicate-based alkaline builder and a surfactant is used, and the pretreatment degreasing and cleaning and the formation of an anodized film are performed in a bath with the same composition, the surface will be degreased and cleaned immediately after immersion in the electrolytic solution. is started, and then anodic electrolysis is started to form an anodic oxide film having excellent corrosion resistance, coating adhesion, and thread rust resistance on the aluminum alloy surface. Furthermore, according to this surface treatment method, it is possible to both clean the surface of the aluminum alloy and generate an anodic oxide film on the surface, so it can be handled by simplifying the treatment process and modifying the existing production equipment.
The cost reduction effect is also significant. The alkaline builder in the electrolytic bath acts as a cleaning aid and an anodizing electrolyte, and its types include silicic acid, which forms an anodic oxide film on the aluminum alloy surface and is highly effective as an alkaline builder for cleaning agents. Salt-based ones are preferred. For example, sodium orthosilicate can be mentioned. By using a silicate-based builder, a thin but dense film can be obtained, and good workability can be obtained even in applications where press processing is performed, such as automobile panel materials. A surfactant is added for degreasing, but its type is not particularly limited. Regarding conditions such as treatment temperature, the optimum temperature can be obtained depending on the degreasing effect of the electrolytic solution, the effect of forming an anodic oxide film on the electrolytic solution, the electrolytic voltage, etc.
If it is 60 V, there is little danger as a device and sufficient thread rust resistance can be obtained. Thus, the desirable electrolytic conditions are: Electrolyte: Mixed bath of 0.5-5% jt% silicate-based alkaline builder and surfactant Electrolyte temperature: 40-80°C Electrolyte voltage: 15-60V [anodic electrolysis]
Outside this range, it becomes difficult to obtain a good anodic oxide film in terms of productivity, safety, and other practical aspects. The anodic oxide film obtained in this way is produced in an alkaline electrolyte and has high alkali resistance, so it is especially difficult to use after the subsequent steps of pressing → degreasing → zinc phosphate treatment → cationic electrodeposition. In the case of painted aluminum alloy materials, thread rust resistance can be significantly improved. As mentioned above, the pretreatment for this anodizing treatment is usually just immersing the material in an electrolytic solution (the surface can be cleaned. However, it is necessary to further degrease the surface, shorten the cleaning time, and In order to increase the cleaning effect, cathodic electrolysis should be performed in the same bath or in a separate bath with the same composition before anode electrolysis. If cathodic electrolysis is performed in the same bath, the polarity should be switched and anode electrolysis should be performed subsequently. For,
There is no need to take out the material to be treated or wash it with water. Furthermore, in the case of processing using a coil form, the power supply method is liquid-liquid power supply, and continuous processing is possible by simply arranging the counter electrode. In the case of continuous processing, a spray method is preferable for supplying the electrolytic solution, in this case. Single-sided processing and liquid-liquid power supply are easily performed, and the equipment is highly effective. However, sufficient performance can be obtained by immersing it in an electrolytic solution and electrolyzing it. When the aluminum alloy material thus surface-treated is used for automobile panels in particular, it is processed after treatment and subjected to zinc phosphate treatment and cationic electrodeposition, in which case remarkable effects can be expected and durability is improved. It can fully meet user needs regarding improvement in thread rust resistance. Of course, it goes without saying that the present invention can be applied to other uses, such as coating base treatment for can materials, base treatment for colored aluminum, etc. Furthermore, by increasing the thickness of the film, it can also be applied as a surface treatment method for aluminum alloys that alone have corrosion resistance. It goes without saying that the aluminum alloy used as the treated material can have various component systems and compositions that require thread rust resistance. (Example) Next, an example of the present invention will be shown. Smile back 1 As a material, rolled plate of JIS5182-0 material (1mm
75n+m×150mm) was prepared and subjected to surface treatment under various conditions shown in Table 1. The resulting surface-treated material was subjected to a salt spray test according to JIS 2731 for 100 continuous hours to examine the occurrence of pitting corrosion and evaluate its corrosion resistance. The results are shown in Table 2. After applying cationic electrodeposition coating for automobiles (film thickness 25 μm) to the surface treated material obtained in Example 1, the coating film was scratched and salt water sprayed for 24 hours → wet (50°C x 85%). R.H.
) Thread rust resistance was evaluated using one cycle of 144 hours. Table 2 shows the evaluation results of thread rust resistance after 5 cycles. 111 The surface-treated material obtained in Example 1 was subjected to degreasing and base treatment similar to those for automobile panel materials (silicate-based degreasing cleaning → zinc phosphate treatment), and then cationic electrodeposition coating (film thickness 25 μm). =
1), and thread rust resistance was evaluated in the same manner as in Example 2. Table 2 shows the evaluation results of thread rust resistance after 5 cycles. The surface-treated material obtained in Example 1 was coated with a urethane paint (15 μl), and the adhesion of the paint film was evaluated in the same manner as in Example 2. Table 2 shows the evaluation results of coating film adhesion after 5 cycles. As is clear from Table 2, all of the examples of the present invention exhibit excellent thread rust resistance and coating adhesion, and also exhibit good corrosion resistance. On the other hand, among the conventional examples, those treated with chromate chromate or chromate phosphate are not practical due to problems such as wastewater treatment as mentioned above, and other conventional examples have poor thread rust resistance. . Moreover, the comparative example has difficulty in corrosion resistance or string rust resistance.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、特定条件で陽極
酸化処理を行うので、耐糸錆性、塗層密着性、耐食性に
優れるアルミニウム合金材料が得られ、種々の下地処理
として或いは耐食性向上の表面処理として適用でき、特
に塗膜下地処理として適用した場合、優れた耐糸錆性が
得られる。 また、脱脂洗浄と陽極酸化皮膜の形成が同−浴或いは同
一組成を有する浴中で行うことができるので、処理コス
トが大幅に低減でき、且つ既存の洗浄装置の改修で適用
できるため、その効果は著しく大きい。特に自動車用パ
ネル材にアルミニウム合金を使用する場合には、従来か
ら最大の問題点であった耐糸錆性の問題が解決できるの
で、既存のラインを使用できる等、その効果は著しい。
(Effects of the Invention) As detailed above, according to the present invention, since anodization treatment is performed under specific conditions, an aluminum alloy material with excellent thread rust resistance, coating adhesion, and corrosion resistance can be obtained, and can be used in various types. It can be applied as a base treatment or as a surface treatment to improve corrosion resistance, and particularly when applied as a paint film base treatment, excellent thread rust resistance can be obtained. In addition, since degreasing and anodic oxide film formation can be performed in the same bath or a bath with the same composition, processing costs can be significantly reduced, and the process can be applied by modifying existing cleaning equipment, resulting in improved effectiveness. is significantly large. Particularly when aluminum alloys are used for automobile panel materials, the problem of thread rust resistance, which has been the biggest problem in the past, can be solved, and the effects are significant, such as allowing the use of existing lines.

Claims (6)

【特許請求の範囲】[Claims] (1)けい酸塩系アルカリ性ビルダーと界面活性剤を含
む電解液中で、アルミニウム合金をアノード電解するこ
とを特徴とするアルミニウム合金の表面処理法。
(1) A method for surface treatment of an aluminum alloy, which comprises subjecting the aluminum alloy to anodic electrolysis in an electrolytic solution containing a silicate-based alkaline builder and a surfactant.
(2)けい酸塩系アルカリ性ビルダーと界面活性剤を含
む電解液中で、アルミニウム合金をカソード電解し、引
き続き同一組成の電解液中でアノード電解することを特
徴とするアルミニウム合金の表面処理法。
(2) A method for surface treatment of an aluminum alloy, which comprises cathodically electrolyzing an aluminum alloy in an electrolytic solution containing a silicate-based alkaline builder and a surfactant, and then anodically electrolyzing the aluminum alloy in an electrolytic solution having the same composition.
(3)けい酸塩系アルカリ性ビルダーの濃度が0.5〜
5wt%である請求項1又は2に記載の方法。
(3) Concentration of silicate alkaline builder is 0.5~
3. The method according to claim 1 or 2, wherein the amount is 5 wt%.
(4)電解液温度が40〜80℃である請求項1又は2
に記載の方法。
(4) Claim 1 or 2, wherein the electrolyte temperature is 40 to 80°C.
The method described in.
(5)電解電圧が15〜60Vである請求項1、2、3
又は4に記載の方法。
(5) Claims 1, 2, and 3, wherein the electrolytic voltage is 15 to 60V.
Or the method described in 4.
(6)電解液をスプレーノズルから供給する請求項1、
2、3、4又は5に記載の方法。(7)アルミニウム合
金が耐糸錆性を要求される自動車パネル用に使用される
ものである請求項1、2、3、4、5又は6に記載の方
法。
(6) Claim 1, wherein the electrolyte is supplied from a spray nozzle.
2. The method described in 2, 3, 4 or 5. (7) The method according to claim 1, 2, 3, 4, 5, or 6, wherein the aluminum alloy is used for automobile panels that require thread rust resistance.
JP24860989A 1989-09-25 1989-09-25 Surface treatment of aluminum alloy Pending JPH03111591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24860989A JPH03111591A (en) 1989-09-25 1989-09-25 Surface treatment of aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24860989A JPH03111591A (en) 1989-09-25 1989-09-25 Surface treatment of aluminum alloy

Publications (1)

Publication Number Publication Date
JPH03111591A true JPH03111591A (en) 1991-05-13

Family

ID=17180660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24860989A Pending JPH03111591A (en) 1989-09-25 1989-09-25 Surface treatment of aluminum alloy

Country Status (1)

Country Link
JP (1) JPH03111591A (en)

Similar Documents

Publication Publication Date Title
CN101048277B (en) Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to organic or inorganic coating
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
KR20090007081A (en) Conductivity anodizing method
US20020157961A1 (en) Anodizing process, with low environmental impact, for a woodpiece of aluminum or aluminum alloys
US5707505A (en) Method for the electrophoretic dip coating of chromatizable metal surfaces
US3594288A (en) Process for electroplating nickel onto metal surfaces
WO2017070780A1 (en) Electrolytic process and apparatus for the surface treatment of non-ferrous metals
DE10025643B4 (en) A method of coating aluminum and magnesium die castings with a cataphoretic electrocoating layer and aluminum and magnesium die castings produced by this method
JPS60116800A (en) Degreasing and activating method by high speed current inversion electrolysis
JP3176470B2 (en) Multilayer coating method
JPH03111591A (en) Surface treatment of aluminum alloy
JPH03111590A (en) Surface treatment of aluminum alloy
JPH03111593A (en) Surface treatment of aluminum alloy
JPH03111592A (en) Surface treatment of aluminum alloy
JPH0348275B2 (en)
JP2002220697A (en) Film forming method on magnesium alloy and electrolytic solution therefor
JPS6144200A (en) Production of steel sheet galvanized on one side
WO1992022686A1 (en) Method of pretreating the surfaces of non-ferrous metals prior to galvanic deposition of a coat of metal
Groshart Pickling and acid dipping
JPS6237714B2 (en)
JPH0310095A (en) Production of zn or zn alloy plated stainless steel sheet
JPH0413894A (en) Aluminum alloy material to be coated for automobile and its production
JPH09184093A (en) Aluminum material and its production
JPH09241897A (en) Pretreatment for surface of magnesium or alloy thereof
JPS63258674A (en) Surface treatment of aluminum sheet