JPH03111538A - Hyper-eutectic al-si series-alloy composite and its manufacture - Google Patents

Hyper-eutectic al-si series-alloy composite and its manufacture

Info

Publication number
JPH03111538A
JPH03111538A JP24986689A JP24986689A JPH03111538A JP H03111538 A JPH03111538 A JP H03111538A JP 24986689 A JP24986689 A JP 24986689A JP 24986689 A JP24986689 A JP 24986689A JP H03111538 A JPH03111538 A JP H03111538A
Authority
JP
Japan
Prior art keywords
alloy
eutectic
hyper
series
sic grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24986689A
Other languages
Japanese (ja)
Other versions
JP2864391B2 (en
Inventor
Satoru Ishizuka
哲 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP24986689A priority Critical patent/JP2864391B2/en
Publication of JPH03111538A publication Critical patent/JPH03111538A/en
Application granted granted Critical
Publication of JP2864391B2 publication Critical patent/JP2864391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the hyper-eutectic Al-Si series-alloy composite having increased adhesion strength by transforming a hyper-eutectic Al-Si series alloy into a completely molten state, adding SiC grains having specified grain size thereto, transforming the molten metal into a partially solidified state at a specified temp., stirring the above, bringing the SiC grains into reaction with the alloy and executing pouring. CONSTITUTION:An Al-15 to 25wt.% Si series alloy is melted into a completely molten state, to which SiC grains having 0.1 to 20mu average grain size are added. Next, temp. is regulated to 570 to 690 deg.C, and the mixture is transformed into a partially solidified state and is stirred to bring the SiC grains into reaction with the alloy, by which the SiC grains are compounded into the hyper- eutectic Al-Si series alloy as a matrix. After the reaction is sufficiently executed, the above reation product is again made into a completely molten state, is poured into a mold and is subjected to rapid solidification. In this way, the hyper-eutectic Al-Si series alloy composite having increased adhesion strength between the matrix alloy and the SiC grains can be obtd.

Description

【発明の詳細な説明】 a、 産業上の利用分野 本発明は過共晶A 1−Si系合金をマトリックスに、
SiC粒子を複合材として添加してなる金属基複合材料
と、その製造方法に関する。
[Detailed description of the invention] a. Industrial application field The present invention uses a hypereutectic A 1-Si alloy as a matrix,
The present invention relates to a metal matrix composite material in which SiC particles are added as a composite material, and a method for producing the same.

b、 従来の技術 マトリックスとする合金材料を粉末化し、これと非金属
粒子や繊維を混合し、加圧と押し出しにより合金粉末を
接合し、複合材料を製造する方法がある(粉末冶金法)
b. Conventional technology There is a method of manufacturing a composite material by pulverizing an alloy material used as a matrix, mixing it with non-metallic particles or fibers, and joining the alloy powder by pressure and extrusion (powder metallurgy method).
.

またマトリックスとする合金材料を粉末化し、これと非
金属粒子とを混合し、これらを機械式に練り合わせて、
粉末中に前記粒子を練り入れ複合材料を製造する方法が
ある(メカニカルアロイング法)。
In addition, the alloy material used as the matrix is powdered, mixed with non-metal particles, and mechanically kneaded together.
There is a method of manufacturing a composite material by kneading the particles into powder (mechanical alloying method).

さらにマトリックスとする合金材料を加熱して半溶融状
態とし、これに非金属粒子や繊維を添加して、機械式の
撹拌を与えることで複合材料を製造する方法がある(コ
ンポキャスト法)。
Furthermore, there is a method of manufacturing a composite material by heating an alloy material used as a matrix to a semi-molten state, adding non-metallic particles or fibers to this, and applying mechanical stirring (compocasting method).

C8発明が解決しようとする課題 前記従来技術のうち、合金粉末を使用する場合において
、この合金粉末の製造には大がかりな製造装置が必要で
あり、従ってコストも高くなる。
C8 Problems to be Solved by the Invention Among the above-mentioned conventional techniques, when alloy powder is used, a large-scale manufacturing apparatus is required to manufacture the alloy powder, and therefore the cost becomes high.

また合金粉末を製造素材として使用する場合、工程が多
くなり好ましくない。
Moreover, when alloy powder is used as a manufacturing material, the number of steps increases, which is not preferable.

さらにマトリックスとする合金粉末は固相であるため、
添加される材料、たとえばSiC粒子などの間の反応は
殆どなく、したがって両者の密着強度は弱い。
Furthermore, since the alloy powder used as the matrix is in a solid phase,
There is almost no reaction between the added materials, such as SiC particles, and therefore the adhesion strength between the two is weak.

本発明は前記事情に鑑み、特に複合材とマトリックス合
金との間の密着強度を高めた複合材料とその製造方法を
提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a composite material in which the adhesion strength between the composite material and the matrix alloy is particularly increased, and a method for manufacturing the same.

d、 課題を解決するための手段 前記目的に添い、本発明はA 1−5i系合金を全溶融
状態に溶融し、これに平均粒子径0.1〜20μ蔭のS
iC粒子を添加したあと、温度570〜690’Cの部
分凝固状態で撹拌を与えて反応させ、鋳込んでなる過共
晶A e−5i系合金複合材料と、その製造方法とする
ことによって前記課題を解決した。
d. Means for Solving the Problems In accordance with the above objects, the present invention involves melting an A1-5i alloy to a completely molten state, and adding S to this with an average particle diameter of 0.1 to 20 μm.
After adding iC particles, stirring is applied in a partially solidified state at a temperature of 570 to 690'C to cause a reaction, and the hypereutectic A e-5i alloy composite material and its manufacturing method are obtained by casting. Solved the problem.

以下、本発明の実施例について図面を参照しながら詳細
に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第2図はA j!−Si系合金の状態図で、Siの含有
量が11.7wt%、温度560°Cに共晶点が存在す
る。
Figure 2 shows A j! - In the phase diagram of the Si-based alloy, the eutectic point exists at a Si content of 11.7 wt% and a temperature of 560°C.

すなわち、Slの含有量が1.1.7wt%を超えると
過共晶合金となり、溶融状態から冷却してゆくと、初晶
としてSi結晶が晶出する。
That is, when the content of Sl exceeds 1.1.7 wt%, it becomes a hypereutectic alloy, and when it is cooled from a molten state, Si crystals are crystallized as primary crystals.

本発明では、溶融状態にある、この過共晶Aj!−si
系合金を用いて、そのaf −15〜25−1%Si系
合金をマトリックスとし、これに平均粒径が0.1〜2
0μ盾のSiC粒子を添加し、・撹拌によって複合化し
たあと、冷却してSiC粒子をA j!−5i系合金中
に分散せしめてなる複合材料である。
In the present invention, this hypereutectic Aj! is in a molten state. -si
The af -15~25-1% Si type alloy is used as a matrix, and the average grain size is 0.1~2.
0 μ shield SiC particles are added and mixed by stirring, then cooled and the SiC particles are A j! It is a composite material made by dispersing it in a -5i alloy.

まず具体的にはAf  20wt%Si合金を、第1図
に示すように溶融炉内に設置したルツボ1内で加熱熔融
する。この合金を800℃の全溶融状態(温度690’
C以上)としたあと、この溶湯に平均粒子径3μmのS
iC粒子を、15−t%の割合で添加し、撹拌棒2によ
って低速回転(10〜100r、p、m)による撹拌を
加える。
First, specifically, an Af 20wt%Si alloy is heated and melted in a crucible 1 placed in a melting furnace as shown in FIG. This alloy was heated to a fully molten state at 800°C (temperature 690'
C or higher), then S with an average particle size of 3 μm is added to this molten metal.
iC particles are added at a rate of 15-t% and stirred by a stirring bar 2 with low speed rotation (10-100 r, p, m).

SiC粒子が溶湯によって充分に加熱されたあと、撹拌
速度を300〜10.00Or、p、s+まで高める。
After the SiC particles are sufficiently heated by the molten metal, the stirring speed is increased to 300 to 10.00 Or, p, s+.

この撹拌操作は固相(Si結晶)を晶出させて複合化の
効率をよくするために、−旦、溶湯を冷却して部分凝固
状態(温度570〜690°C)とするためのもので、
鋳込み時まで継続して撹拌する。
This stirring operation is to first cool the molten metal to a partially solidified state (temperature 570 to 690°C) in order to crystallize the solid phase (Si crystals) and improve the efficiency of composite formation. ,
Continue stirring until pouring.

過共晶A ff1−5i系合金は、通常、初晶SiとA
f−Siの共晶からなる組織を呈する。そして溶湯から
晶出してくる初晶Stは、添加したSIC粒子が有する
遊離Cとその表面層で反応してSiCを形成し、初晶内
部にSiC粒子を容易に取り込む、またSiC粒子が前
記のように微粒子である場合は、溶融状態のANとも表
面層で反応してAn!ncs(一部A2□C4も含む)
を形成し、Al中へも容易に取り込まれる。
Hypereutectic A ff1-5i alloys usually consist of primary Si and A
It exhibits a structure consisting of f-Si eutectic. The primary St crystals crystallized from the molten metal react with the free C possessed by the added SIC particles on its surface layer to form SiC, and the SiC particles are easily incorporated into the primary crystals. In the case of fine particles like this, they react with molten AN in the surface layer and An! ncs (including some A2□C4)
It forms and is easily incorporated into Al.

このように過共晶A f−5i系合金をマトリックスと
して、これに微細なSIC粒子を添加して複合化する場
合、互に相性がよ(、CuやNi等の金属でSiC粒子
をコーティングしなくとも簡単に濡れて良好な分散を示
し、マトリックス合金と粒子との密着強度の強い複合材
料が得られる。
In this way, when a hypereutectic A f-5i alloy is used as a matrix and fine SIC particles are added to form a composite, they are compatible with each other (coating the SiC particles with metals such as Cu and Ni). At the very least, it is possible to obtain a composite material that is easily wetted, exhibits good dispersion, and has strong adhesion strength between the matrix alloy and the particles.

前記反応が充分おこなわれたあと、鋳込みを容易にする
ため、再び全溶融状1!(温度690°C以上)に加熱
し、前記ルツボ1内のストッパー3を引きあげて、下方
の湯口4から、鋳型5内に溶湯を鋳込み、急冷凝固させ
る。
After the above reaction has been sufficiently carried out, in order to facilitate casting, the entire molten state 1! The crucible 1 is heated to a temperature of 690° C. or higher, and the stopper 3 in the crucible 1 is pulled up, and the molten metal is poured into the mold 5 through the lower sprue 4 and rapidly solidified.

なお、前記A 1.−Si系合金でSi含有量が25w
t%を越えると、合金自体が脆くなる。また15wt%
未満では所期の効果かえられない。
In addition, the above A1. -Si-based alloy with Si content of 25w
If it exceeds t%, the alloy itself becomes brittle. Also 15wt%
If the amount is less than that, the desired effect cannot be achieved.

さらに前記SiC粒子の粒子径が20μ■を越えるもの
を添加して複合化すると・、製造した複合材料の強度や
靭性が低下するので好ましくない。また粒子径が0.1
未満の粒子を用いた場合には、撹拌法による複合化が難
しく、コストも高くなる。
Furthermore, it is not preferable to add SiC particles having a particle size exceeding 20 .mu.m to form a composite, since the strength and toughness of the manufactured composite material will decrease. Also, the particle size is 0.1
If less than 100 particles are used, it will be difficult to form a composite using a stirring method, and the cost will be high.

また、SiC粒子の添加量は、複合材料として要求され
る物性とその程度によって適宜、選定する。
Further, the amount of SiC particles to be added is appropriately selected depending on the physical properties required for the composite material and their degree.

e、 発明の効果 本発明によれば、マトリックス成分の90%を越えるA
2とStとの両方と、SiC粒子が反応するため、複合
化後の密着強度の高い複合材料かえられる。
e. Effect of the invention According to the present invention, more than 90% of the matrix components are A.
Since the SiC particles react with both 2 and St, a composite material with high adhesion strength after compositing can be obtained.

また、SiC粒子自体の硬度もHV2000〜3000
と非常に高いのでマトリックス合金の硬度を高め、耐摩
耗性を改善した複合材料となる。
In addition, the hardness of the SiC particles themselves is HV2000-3000.
The hardness of the matrix alloy is increased, resulting in a composite material with improved wear resistance.

さらに5〜6μm以下の粒径のSiC粒子を添加した場
合、強度をより高めた合金とすることができる。
Furthermore, when SiC particles having a particle size of 5 to 6 μm or less are added, an alloy with even higher strength can be obtained.

また、本発明の方法は過共晶A 1−St系合金の特性
を利用し、 比較的簡単な操作によって、 高性 能の複合材料かえられる。
Furthermore, the method of the present invention utilizes the properties of hypereutectic A1-St alloys, and can produce high-performance composite materials through relatively simple operations.

4、4,

【図面の簡単な説明】[Brief explanation of drawings]

第 図は本発明に係る複合材料を製造する装置の説明図、 第2図はAl i 系合金の状態図であ る。 1・・・ルツボ、 ・・・撹拌棒。 特 許 出 願 人 鈴木自動車工業株式会社 (ほか2名) 派 手 続 主甫 正 (I: (自発) 1゜ 事件の表示 平成 1 年特許願第249866号 3゜ 補正をする者 名称 (20B)鈴木自動車工業株式会社 明細書の [発明の詳細な説明] の欄。 補正の内容 1) 明細書第6頁第10行〜第11行に [90%を越える] とあるのを削除する。 No. The figure is an explanatory diagram of an apparatus for manufacturing a composite material according to the present invention, Figure 2 shows Al i This is a phase diagram of the alloy Ru. 1...crucible, ... Stirring rod. Special permission Out wish Man Suzuki Automobile Industry Co., Ltd. (2 others) sect hand Continued Lord Fu Positive (I: (spontaneous) 1゜ Display of incidents 1999 Patent Application No. 249866 3゜ person who makes corrections name (20B) Suzuki Automobile Industry Co., Ltd. statement of statement [Detailed description of the invention] column. Contents of correction 1) On page 6 of the specification, lines 10 to 11 [Over 90%] Delete that.

Claims (1)

【特許請求の範囲】 1)Al−15〜25wt%Si系合金をマトリックス
とし、これに平均粒径0.1〜20μmのSiC粒子を
添加してなる遇共晶Al−Si系合金複合材料。 2)Al−15〜25wt%Si系合金を全溶融状態に
溶融し、これに平均粒子径0.1〜20μmのSiC粒
子を添加したあと、温度570〜690℃の部分凝固状
態で撹拌を与えて反応させ、鋳込むことを特徴とする過
共晶Al−Si系合金複合材料の製造方法。
[Scope of Claims] 1) A eutectic Al-Si alloy composite material comprising an Al-15 to 25 wt% Si alloy as a matrix and SiC particles having an average particle size of 0.1 to 20 μm added thereto. 2) Al-15 to 25 wt% Si-based alloy is melted to a fully molten state, SiC particles with an average particle size of 0.1 to 20 μm are added thereto, and then stirred in a partially solidified state at a temperature of 570 to 690°C. 1. A method for producing a hypereutectic Al-Si alloy composite material, which comprises reacting and casting.
JP24986689A 1989-09-26 1989-09-26 Hypereutectic Al-Si alloy composite material and method for producing the same Expired - Lifetime JP2864391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24986689A JP2864391B2 (en) 1989-09-26 1989-09-26 Hypereutectic Al-Si alloy composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24986689A JP2864391B2 (en) 1989-09-26 1989-09-26 Hypereutectic Al-Si alloy composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03111538A true JPH03111538A (en) 1991-05-13
JP2864391B2 JP2864391B2 (en) 1999-03-03

Family

ID=17199357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24986689A Expired - Lifetime JP2864391B2 (en) 1989-09-26 1989-09-26 Hypereutectic Al-Si alloy composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2864391B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160702A (en) * 2013-03-19 2013-06-19 山东大学 Method for preparing silicon carbide particle reinforced aluminum matrix composite material
CN109943755A (en) * 2019-04-19 2019-06-28 中国兵器科学研究院宁波分院 A kind of preparation method of aluminum matrix composite used for electronic packaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160702A (en) * 2013-03-19 2013-06-19 山东大学 Method for preparing silicon carbide particle reinforced aluminum matrix composite material
CN109943755A (en) * 2019-04-19 2019-06-28 中国兵器科学研究院宁波分院 A kind of preparation method of aluminum matrix composite used for electronic packaging

Also Published As

Publication number Publication date
JP2864391B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
TW493010B (en) Beryllium-containing alloys of aluminum and semi-solid processing of such alloys
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US4836982A (en) Rapid solidification of metal-second phase composites
CN102869799B (en) Aluminium die casting alloy
US3194656A (en) Method of making composite articles
JPS63317653A (en) Aluminum alloy composite material
CN109182802B (en) Preparation method of carbon material reinforced copper/aluminum-based composite material
CN114959348B (en) High-dispersity Al-xMB 2 Preparation method and application method of refiner
US5045278A (en) Dual processing of aluminum base metal matrix composites
JPS59116352A (en) Structural aluminum base alloy
JPH0625774A (en) Production of tib2-dispersed tial-base composite material
JP2001342528A (en) Grain refiner for magnesium alloy, production process for the same and grain refining process using the same
JPS63312901A (en) Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder
JPH10219312A (en) Titanium carbide dispersion-strengthened aluminum-base powder, its production and titanium carbide dispersion-strengthened aluminum-base composite material
JPH03111538A (en) Hyper-eutectic al-si series-alloy composite and its manufacture
JPH04502784A (en) Phase redistribution process
JPH0841564A (en) Magnesium-base composite material and its production
US3189444A (en) Metallic composition and method of making
JPH0681068A (en) Method for casting heat resistant mg alloy
KR19990069044A (en) SIC / (2XXX AL + SI) composite material for reaction solidification and its manufacturing method
RU2177047C1 (en) Method of preparing aluminum-based alloy
JPH0586425A (en) Composition and preparation of metal matrix composite material
JPH05214477A (en) Composite material and its manufacture
JPH0711045B2 (en) Method for producing SiC dispersed casting composite material
JPH0987778A (en) Production of magnesium base composite material