JPH03111162A - Method and device for generating work face of grinding tool - Google Patents

Method and device for generating work face of grinding tool

Info

Publication number
JPH03111162A
JPH03111162A JP24833889A JP24833889A JPH03111162A JP H03111162 A JPH03111162 A JP H03111162A JP 24833889 A JP24833889 A JP 24833889A JP 24833889 A JP24833889 A JP 24833889A JP H03111162 A JPH03111162 A JP H03111162A
Authority
JP
Japan
Prior art keywords
conductive
tool
grinding tool
machining
conductive grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24833889A
Other languages
Japanese (ja)
Inventor
Akiyoshi Matsuzawa
松沢 昭美
Noriaki Takahashi
高橋 紀昭
Kiyoshi Oshiro
清志 大城
Hajime Tamura
始 田村
Hisayuki Takei
久幸 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP24833889A priority Critical patent/JPH03111162A/en
Publication of JPH03111162A publication Critical patent/JPH03111162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To avoid the fouling of a work environment by performing a series of works and stages from the shape generation of the grindstone face of a grinding tool for an optical lens, etc., to the so-called setting which makes it in a sharp state, in the same device. CONSTITUTION:A conductive grinding tool 1 and conductive reference tool 11 for generating the work face of this conductive grinding tool 1 are rotated and opposed, also the specific shape of the conductive reference tool 11 is generated with its transfer on the work face of the conductive grinding tool 1 by executing an electric discharging in an electric discharge machining liquid 28 while impressing an anode to the conductive grinding tool 1 and a cathode to the conductive reference tool 11 respectively. Then, the distance between the relative faces of the conductive grinding tool 1 and conductive reference tool 11 is held constant and the setting of the work face of the conductive grinding tool 1 is performed by using a DC current while feeding an electrolyte or a weak coolant 30 between this relative face.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガラス、セラミック等の硬脆材料を研削する研
削工具の加工面形状の初期創成を研削工具の目立て(ド
レッシング)と併用して行う研削工具の加工面創成方法
と装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention performs initial creation of the machined surface shape of a grinding tool for grinding hard and brittle materials such as glass and ceramics in combination with dressing of the grinding tool. This article relates to a method and device for creating a machined surface for a grinding tool.

[従来の技術] 一般に、被加工物、例えば光学素材(ガラス等)を球面
形状に研削、研磨加工する際には砥石等の研削、研磨工
具を用いて加工するのが通例である。
[Prior Art] Generally, when grinding and polishing a workpiece, for example, an optical material (such as glass) into a spherical shape, it is customary to use a grinding or polishing tool such as a grindstone.

しかして、以下にはこの種従来の加工技術として、光学
用レンズ加工の球面創成と研削および研磨工具に例をと
って、第6図乃至第9図とともに説明する。
In the following, conventional processing techniques of this type will be explained using FIGS. 6 to 9, taking as an example spherical surface creation and grinding and polishing tools for optical lens processing.

第6図は光学レンズの研削、研磨加工を砥石を用いて加
工する加工装置を示す要部の構成図である。
FIG. 6 is a block diagram of the main parts of a processing device for grinding and polishing an optical lens using a grindstone.

同図において、砥石2はバレット型工具により構成され
るもので、工具器3に複数の砥石2を接着剤4により貼
り付けることにより構成されている。
In the figure, a grindstone 2 is constructed of a bullet-type tool, and is constructed by pasting a plurality of grindstones 2 to a tool 3 using an adhesive 4.

しかして、砥石2、工具器3および接着剤4.の構成を
総称して研削工具]と称呼する。
Thus, a grindstone 2, a tool 3 and an adhesive 4. The configuration is collectively called a grinding tool.

また、前記構成の研削工具1は第7図に示される如く、
所定の加工球面Rを備える砥石2と工具器3が一体に形
成されたものも存在する。尚、砥石2はダイヤモンド粉
末等の砥粒と、Cu、Sn、笠の金属粉末を特殊配合混
合し、熱処理した焼結合金にて形成されている。
Further, the grinding tool 1 having the above configuration has the following features as shown in FIG.
There is also one in which a grindstone 2 having a predetermined machining spherical surface R and a tool 3 are integrally formed. The grindstone 2 is made of a sintered alloy which is a special mixture of abrasive grains such as diamond powder and metal powders such as Cu, Sn, and Kasa, and is heat-treated.

さて、前記研削工具1は工具器3に備えるネジ部3aを
回転軸10のネジ部10aに螺着することにより、回転
軸10に回転自在に保持されるとともに被研削、研磨部
材である光学レンズ5は保持皿6を介して研削工具I上
に載置され、かつ、不図示の揺動、押圧機構に連結する
棒体くカンザシ)7によって押圧保持されている。
Now, the grinding tool 1 is rotatably held on the rotating shaft 10 by screwing the threaded part 3a provided on the tool 3 to the threaded part 10a of the rotating shaft 10, and the optical lens which is the member to be ground and polished. 5 is placed on the grinding tool I via a holding plate 6, and is pressed and held by a rod 7 connected to a swinging and pressing mechanism (not shown).

囚って、不図示の駆動手段にて回転軸10を回転して研
削工具1を回転するとともに棒体7を押圧、揺動機構を
介して光学レンズ5を押圧、揺動し、不図示の供給部に
連結されるバイブ8より研削冷却液(クーラント)9を
研削加工面に吐出しつつ光学レンズ5の加工面を所定の
加工球面Rに研削、研磨する。
Then, the rotating shaft 10 is rotated by a drive means (not shown) to rotate the grinding tool 1, and the rod 7 is pressed, and the optical lens 5 is pressed and swung through the swinging mechanism. The processing surface of the optical lens 5 is ground and polished into a predetermined processing spherical surface R while discharging a grinding coolant 9 onto the grinding surface from a vibrator 8 connected to the supply section.

さて、前記光学レンズ5の研削、研磨加工に使用される
研削工具lは初期製造後、所定の加工球面Rの創成と砥
石2の目立て(ドレッシング)が行われ、しかる後に光
学レンズ5の研削、研磨加工に使用されるものである。
Now, after the initial manufacturing of the grinding tool l used for grinding and polishing the optical lens 5, creation of a predetermined processing spherical surface R and dressing of the grinding wheel 2 are performed, and then the grinding tool l used for grinding and polishing the optical lens 5, It is used for polishing.

そして、第8図および第9図が初期装造後の研削工具1
における砥石(ベレット)2の加工球面Rの創成並びに
目立て(ドレッシング)加工方法を示す説明図である。
Figures 8 and 9 show the grinding tool 1 after initial installation.
FIG. 3 is an explanatory diagram showing a method of creating a processed spherical surface R of a grindstone (buret) 2 and dressing (dressing) processing method in FIG.

砥石(ベレット)2は、第8図に示す如く、加工法面R
にするためには、斜線図Bを削り取ることが要求される
とともにその表面Aにおいては、第8図に示す如く、凹
凸が存在するため、加工球面Rに対応する加工後におけ
る近似の加工球面に加工された砥石2でも、これを工具
器3に貼り(=jけた後に、第9図に示す如く、ランプ
用工具ff1llを矢印方向Cに揺動加圧するとともに
遊離砥粒12を供給しながらラッピングを行うことによ
り第8図に示す斜線部分Bおよび表面Aの凹凸の除去を
行い研削工具1の砥石2の面創成を目立て(初期ドレッ
シング)を行うものである。
As shown in Fig. 8, the grindstone (berlet) 2 has a machining slope R.
In order to achieve this, it is necessary to shave off the diagonal diagram B, and since there are irregularities on the surface A as shown in Figure 8, the approximate processed spherical surface after processing corresponding to the processed spherical surface R is After applying the processed whetstone 2 to the tool tool 3, as shown in FIG. By doing this, the unevenness of the shaded area B and the surface A shown in FIG. 8 is removed, and the surface of the grindstone 2 of the grinding tool 1 is sharpened (initial dressing).

前記加工に使用される遊離砥粒12は、粒径の大きいも
のから徐々に小さいものへと数回、取り替えつつランピ
ング加工が行われるとともに加工球面Rについての補正
、第9図示の軸心イあるいは口の位置にラップ用工具1
1の中心を持っていき、さらに矢印Cの揺動幅を変化さ
せる等の作業を主に手作業にて行うものである。
The free abrasive grains 12 used in the machining are changed several times from one with a large grain size to one with a gradually smaller grain size, and the ramping process is performed. At the same time, the machining spherical surface R is corrected, and the axis center I or the axis shown in FIG. Wrap tool 1 at the mouth position
The work of moving the center of arrow C and changing the swing width of arrow C is mainly performed manually.

〔発明が解決しようとする課題] しかるに、前記研削工具の加工面の創成並びに目立て加
工においては以下のような問題点を有する。
[Problems to be Solved by the Invention] However, there are the following problems in creating and sharpening the machined surface of the grinding tool.

すなわち、膨大なラッピングによる研削工具の砥石面創
成時間と、目立て時間が必要となる。
That is, an enormous amount of time is required to create the grinding wheel surface of the grinding tool by lapping, and time for sharpening is required.

また、遊離砥粒を介してのラッピングによるランプ用工
具皿での研削工具の砥石面創成は、ラップ用工具皿での
研削工具の砥石面創成は、ラップ用工具皿形状(第9図
のR)に変化を来し、その都度ラップ用工具皿の形状(
第9図のR)の修正が必要となる。すなわち、手ハイド
や、固形砥石によりラップ用工具皿を一部削って、第9
図のRを小さくしたり、大きくしたりする作業が必要と
なる。
In addition, the creation of the grinding wheel surface of a grinding tool on a ramp tool pan by lapping through free abrasive grains, ) changes, and the shape of the lapping tool plate (
It is necessary to correct R) in Fig. 9. In other words, a part of the lapping tool plate is ground with hand-hyde or a solid whetstone, and the 9th
It is necessary to reduce or increase R in the figure.

さらに、遊離砥粒を介してのラッピングからの目立て(
ドレッシング)では、研削工具の砥石面のダイヤ砥粒の
脱落がかなりあり、それにより研削能力の劣る工具とな
り、光学レンズ研削作業の研削効率が悪くなり、かつ、
ドレッシングの頻度も多くなる。
Furthermore, sharpening from lapping via free abrasive grains (
(dressing), there is a considerable amount of diamond abrasive grains falling off the grinding wheel surface of the grinding tool, resulting in a tool with poor grinding ability and poor grinding efficiency in optical lens grinding work.
Dressing frequency also increases.

しかもこのような遊離砥粒を使用する作業に於は、作業
環境面の汚損等をきたすなどで支障がある。
Moreover, work using such free abrasive grains poses problems such as contamination of the working environment.

本発明は、以上の問題点を解決すべく開発されたもので
研削工具の加工創成と目立て作業を短時間にて、精度良
く、作業環境の汚損なしに加工し得る方法および装置の
提供を目的とするものである。
The present invention was developed to solve the above-mentioned problems, and aims to provide a method and device that can perform processing creation and sharpening of grinding tools in a short time, with high precision, and without contaminating the working environment. That is.

〔課題を解決するための手段および作用〕第1図および
第2図は本発明の概念図である。
[Means and effects for solving the problem] FIGS. 1 and 2 are conceptual diagrams of the present invention.

工具器3に複数のベレット状の砥石2を接着剤4にて貼
り付けて構成される導電性研削工具1と導電性基準工具
11を回転かつ相対移動自在に保持する保持装置は、対
向して配設される上下ハウジング20.21に回転自在
に装着される回転軸22.23とこの回転軸22.23
の先端部に設けられた、前記導電性研削工具1のネジ部
3aおよび導電性基準工具11のネジ部11aをそれぞ
れ螺着するネジ部22a、23aとによって構成される
ととももに前記画工具1および11の回転かつ相対移動
する駆動装置が、前記回転軸22.23に連結された回
転軸駆動モーター24.25と前記上ハウジング20を
第1図矢印方向に移動する駆動部(不図示)とによって
構成されている。
A holding device for rotatably and relatively movably holding the conductive grinding tool 1 and the conductive reference tool 11, which are constructed by pasting a plurality of pellet-shaped grindstones 2 on a tool tool 3 with an adhesive 4, is opposed to each other. A rotating shaft 22.23 rotatably attached to the upper and lower housings 20.21 and this rotating shaft 22.23.
The drawing tool is constituted by threaded parts 22a and 23a, which are provided at the tip of the conductive grinding tool 1 and threaded into the threaded part 11a of the conductive reference tool 11, respectively. A driving unit (not shown) in which rotating and relatively moving driving devices 1 and 11 move the rotating shaft drive motor 24.25 connected to the rotating shaft 22.23 and the upper housing 20 in the direction of the arrow in FIG. It is composed of.

また、前記駆動装置には不図示の制御部が装備され、加
工作業に要求される上ハウジング20の矢印(第1図)
方向への上下移動並びに回転軸2223の回転、停止す
るモーター24.25の制御が遂行される。
Further, the drive device is equipped with a control section (not shown), and the arrows on the upper housing 20 required for machining work (see FIG. 1)
The motors 24 and 25 are controlled to move up and down in the directions, rotate the rotating shaft 2223, and stop the motors 24 and 25.

さらに、前記導電性研削工具1と導電性基準工具11の
放電加工または目立て加工用の加工槽26は前記上下ハ
ウジング20.21間に配設されるとともに加工槽26
の底部には前記回転軸23の挿通部27が水蜜的に設け
られている。
Further, a machining tank 26 for electrical discharge machining or sharpening of the conductive grinding tool 1 and the conductive reference tool 11 is disposed between the upper and lower housings 20.21, and the machining tank 26
An insertion portion 27 for the rotating shaft 23 is provided at the bottom of the rotary shaft 23 in a transparent manner.

そして、前記加工槽26には、同槽内に放電加工液28
を供給する供給部29および電解液または弱電性クーラ
ント30を供給する供給部31が配備されている。
The machining tank 26 has an electrical discharge machining fluid 28 in it.
A supply section 29 for supplying a liquid and a supply section 31 for supplying an electrolytic solution or a weakly electric coolant 30 are provided.

供給部29の放電加工液28は、供給部29に備えるポ
ンプP、にて加工槽26内に供給パイプ34を介して供
給されるとともに加工槽26に備えるバルブ32に接続
される排出パイプ35を介して供給部29内に回収し得
るように構成され、かつ供給部31の電解液または弱電
性クーラント30は供給部29に備えるポンプP2にて
加工槽26内に供給パイプ36を介して供給されるとと
もに加工槽2Gに備えるバルブ33に接続される排出パ
イプ37を介して供給部31内に回収し得るように構成
されている。
The electrical discharge machining fluid 28 in the supply unit 29 is supplied into the machining tank 26 via a supply pipe 34 by a pump P provided in the supply unit 29, and is also supplied through a discharge pipe 35 connected to a valve 32 provided in the machining tank 26. The electrolytic solution or weakly electric coolant 30 in the supply section 31 is supplied into the processing tank 26 via the supply pipe 36 by a pump P2 provided in the supply section 29. It is configured such that it can be collected into the supply section 31 via a discharge pipe 37 connected to a valve 33 provided in the processing tank 2G.

また、前記導電性研削工具1と導電性基準工具11に電
極を印加する直流電源と交流電源の電源部40が設けら
れ、同電源部40からの陽極が回転軸23に電気的に接
続される給電ブラシ41を介してS電性研削工具1に印
加されるとともに陰極が回転軸22に電気的に接続され
る給電ブラシ42を介して導電性基準工具11に印加さ
れるべく構成されている。
Further, a power supply section 40 of a DC power supply and an AC power supply that applies electrodes to the conductive grinding tool 1 and the conductive reference tool 11 is provided, and an anode from the power supply section 40 is electrically connected to the rotating shaft 23. The power is applied to the electrically conductive grinding tool 1 through a power supply brush 41 and to the conductive reference tool 11 through a power supply brush 42 whose cathode is electrically connected to the rotating shaft 22 .

さて、前記回転軸22に保持される導電性基準工具11
の加工面はNC旋盤等の加工機により加工曲率球面に精
密加工されており、前記回転軸23に保持される導電性
研削工具1の加工面間に放電加工条件に要求される間隙
L を在して配置上ッl−L得るように、上ハウジング
20に備える移動装置に0 より精密移動しつつ調整セットされる。
Now, the conductive reference tool 11 held on the rotating shaft 22
The machined surface is precisely machined into a spherical surface with a machined curvature by a processing machine such as an NC lathe, and there is a gap L required for the electrical discharge machining conditions between the machined surfaces of the conductive grinding tool 1 held on the rotating shaft 23. Adjustment and setting are performed by moving the upper housing 20 more precisely using a moving device provided in the upper housing 20 so that the upper housing 20 can be placed in the desired position.

かかる七ノド作業に関連して、供給部29のポンプP、
を作動して放電加工液28を加工槽26内に放電加工液
28中に両工具1および11が埋没するまで油送する。
In connection with this seven-throat operation, the pump P of the supply section 29,
is operated to feed the electrical discharge machining fluid 28 into the machining tank 26 until both tools 1 and 11 are buried in the electrical discharge machining fluid 28.

しかる後、モーター24 、25を作動して回転軸22
.23を回転するとともに電源部40より導電性研削工
具1に陽極が給電ブラシ41を介して印加され、陰極か
り給電ブラシ42を介して導電性基準工具11に印加さ
れることにより、放電加工によって、導電性研削工具1
に相対する導電性基準工具11の球面が導電性研削工具
1の各砥石2に転写創成される。
After that, the motors 24 and 25 are operated to rotate the rotating shaft 22.
.. 23 is rotated, and an anode is applied from the power supply unit 40 to the conductive grinding tool 1 via the power supply brush 41, and a cathode is applied to the conductive reference tool 11 via the power supply brush 42, thereby performing electrical discharge machining. Conductive grinding tool 1
The spherical surface of the conductive reference tool 11 facing the is transferred onto each grindstone 2 of the conductive grinding tool 1 .

また、前記放電加工終了に関連して、加工層26内の放
電加工液28を、バルブ32を開弁して排出パイプ35
を介して、供給部29に回収する。
Further, in connection with the end of the electric discharge machining, the electric discharge machining liquid 28 in the machining layer 26 is drained from the discharge pipe 35 by opening the valve 32.
The water is recovered to the supply section 29 via the.

そして、前記上ハウジング20の相対移動装置を介して
、今度は、前記導電性研削工具1と導電性基準工具11
の両面間に電解ドレッシングの条件に必要な間隙12を
在して配設セットすべく、導電性研削工具1に対して導
電性基準工具11を相対移動しつつ調整セントシた後、
回転軸22.23をモーター24 、25の作動により
回転するとともに供給パイプ36を介して供給部31よ
り電解液または弱電性クーラント30を導電性研削工具
1と導電性基準コニ具11間に供給し、かつ電源部40
より両工具1.11に直流電源の陽極、陰極をそれぞれ
給電ブラシ4142を介して印加することにより、導電
性研削工具1の各砥石2面を電解によりドレッシングす
ることができる。
Then, the conductive grinding tool 1 and the conductive reference tool 11 are moved through the relative movement device of the upper housing 20.
After adjusting the conductive reference tool 11 while moving it relative to the conductive grinding tool 1 in order to set it with a gap 12 required for the electrolytic dressing conditions between both surfaces of the tool,
The rotating shafts 22 and 23 are rotated by the operation of the motors 24 and 25, and an electrolytic solution or weakly conductive coolant 30 is supplied between the conductive grinding tool 1 and the conductive reference tool 11 from the supply section 31 via the supply pipe 36. , and power supply section 40
By applying the anode and cathode of a DC power source to both tools 1.11 through the power supply brush 4142, each grinding wheel 2 surface of the conductive grinding tool 1 can be electrolytically dressed.

前記電解トレッシングは、電解液または弱電性クーラン
ト30を供給バイブ36を介して、両工具111間に供
給しつつ遂行したのであるが埋没するまで満たした状態
にて実施することも可能である。
The electrolytic trestling was performed while supplying the electrolytic solution or the weakly electric coolant 30 between the two tools 111 via the supply vibrator 36, but it is also possible to perform the electrolytic trestling with the tool 111 filled until it is completely buried.

また、放電加工並びに電解ドレッシングは両工具1.1
1を互いに回転した状態に加えて、いずれか一方を停止
あるいは両者を停止した状態下に実施することも可能で
ある。
In addition, both tools 1.1 are used for electrical discharge machining and electrolytic dressing.
In addition to the state in which the parts 1 and 1 are rotated relative to each other, it is also possible to carry out the work with either one or both stopped.

前記電解ドレッシング中または終了後の電解液または弱
電性クーラント30は加工槽26のバルブ33の開弁に
より排出バイブ37を介して供給部31内に回収される
The electrolytic solution or weakly electrolytic coolant 30 during or after the electrolytic dressing is recovered into the supply section 31 via the discharge vibrator 37 when the valve 33 of the processing tank 26 is opened.

〔実施例〕〔Example〕

以下本発明の実施例を図面とともに具体的に説明する。 Embodiments of the present invention will be specifically described below with reference to the drawings.

(第1実施例) 第3図乃至第6図は本発明方法および装置の第1実施例
を示すもので、第3図は装置の全体構成を示す説明図、
第4図および第5図は電解ドレッシングを示す説明図で
ある。
(First Embodiment) FIGS. 3 to 6 show the first embodiment of the method and apparatus of the present invention, and FIG. 3 is an explanatory diagram showing the overall configuration of the apparatus;
FIG. 4 and FIG. 5 are explanatory diagrams showing electrolytic dressing.

しかして、第3図乃至第5図の構成中筒1図と同一の構
成部分については同一番号を付して、その各構成説明を
省略する。
3 to 5, the same components as those in FIG. 1 of the cylinder are designated by the same reference numerals, and description of each component will be omitted.

上下ハウジング20.21にはそれぞれの回転軸222
3を回転自在に受ける軸受は用のヘアリング4344.
45.46を備えるとともに回転軸22.23連結プー
リ47,48およびモーター24.25の駆動ブーIJ
49゜50と各プーリ47,48,49.50間に張設
された張帯5152介してモーター24.25に連結さ
れている。
The upper and lower housings 20 and 21 each have a rotating shaft 222.
The bearing that rotatably receives the hair ring 4344.
45, 46, and a rotating shaft 22, 23, connecting pulleys 47, 48, and a drive boob IJ of the motor 24, 25.
49.50 and the motor 24.25 via a tension band 5152 stretched between each pulley 47, 48, 49.50.

また、電源部はAC電源部53およびDC電源部3 54により構成されるとともに両電源部53.5dの各
電極は給電ブラシ41.42を介して導電性研削工具1
と導電性基準工具11に電気的に接続されている。
Further, the power supply unit is constituted by an AC power supply unit 53 and a DC power supply unit 354, and each electrode of both power supply units 53.5d is connected to the conductive grinding tool 1 through a power supply brush 41.42.
and electrically connected to the conductive reference tool 11.

さらに両電源部53.51には、それぞれ電源部555
6、ボルトメーター57 、58を設けるとともにAC
電源部53にはON、OFF切換用スイッチ59を設け
、かつDC電源部54には可変抵抗器60をそれぞれ設
けである。
Further, each of the power supply units 53 and 51 includes a power supply unit 555.
6. Install voltmeters 57 and 58 and install AC
The power supply section 53 is provided with an ON/OFF switch 59, and the DC power supply section 54 is provided with a variable resistor 60, respectively.

さて、以上の構成から成る研削工具の加工用放電、電解
加工装置により、導電性研削工具1の各砥石2を放電お
よび電解加工する方法について以下に説明する。まず、
前記回転軸22に保持される導電性基準工具11の加工
面はNC旋盤等の加工機により予め加工曲率球面に精密
加工されており、前記回転軸23に保持される導電性研
削工具1の加工面間に放電加工条件に要求される間隙E
、を在して配置セソ1ullるように、上ハウジング2
0に備える移動装置により精密移動しつつ調整セントさ
れる。
Now, a method for electrical discharge and electrolytic machining of each grindstone 2 of the conductive grinding tool 1 using the electrical discharge and electrolytic machining apparatus for machining a grinding tool having the above configuration will be described below. first,
The machining surface of the conductive reference tool 11 held on the rotary shaft 22 has been precisely machined into a spherical surface with a machining curvature in advance by a processing machine such as an NC lathe, and the conductive grinding tool 1 held on the rotary shaft 23 is machined with precision. Gap E between surfaces required for electrical discharge machining conditions
, and place the top housing 2 so that it is fully aligned.
Adjustments are made while precisely moving by a moving device prepared for zero.

かかる七ノド作業に関連して、供給部29のポン4 プP1を作動して放電加工液28を加工槽26内に放電
加工液28中に両工具1および11が埋没するまで油送
する。尚、この放電加工液28の供給時には、加工槽2
6のバルブ32.33は閉じられている。
In connection with this seven-way operation, the pump P1 of the supply section 29 is operated to feed the electrical discharge machining fluid 28 into the machining tank 26 until both tools 1 and 11 are submerged in the electrical discharge machining fluid 28. Note that when supplying this electrical discharge machining fluid 28, the machining tank 2
6 valves 32,33 are closed.

しかる後、モーター24.25を作動して回転軸22.
23を回転するとともにAC電源部53の切換用スイッ
チ59をONにして導電性研削工具1に陽極が給電ブラ
シ41を介してパルス状に印加し、陰極を給電ブラシ4
2を介して導電性基準工具11にパルス状に印加するこ
とにより、放電加工によって、導電性基準工具工に相対
する導電性基準工具11の加工曲率球面(第2図示のR
)が導電性研削工具1の各砥石2に転写創成される。尚
、前記AC電源部53よりの各工具1.11への電極の
印加は図示されない制御部を介して前記放電加工条件の
最適条件に対応した電流計55、ボルトメーター57の
制御が行われて実施される。
Thereafter, the motors 24.25 are operated to rotate the rotating shaft 22.25.
23, the changeover switch 59 of the AC power supply unit 53 is turned on, and the anode is applied in pulses to the conductive grinding tool 1 via the power supply brush 41, and the cathode is applied to the conductive grinding tool 1 via the power supply brush 4.
By applying pulses to the conductive reference tool 11 via the conductive reference tool 2, the machining curvature spherical surface (R shown in the second figure) of the conductive reference tool 11 facing the conductive reference tool is created by electrical discharge machining.
) is transferred and created on each grindstone 2 of the conductive grinding tool 1. The application of electrodes from the AC power source 53 to each tool 1.11 is controlled by an ammeter 55 and a voltmeter 57 corresponding to the optimum electrical discharge machining conditions via a control section (not shown). Implemented.

また、前記放電加工終了に関連して、加工層26内の放
電加工液28を、バルブ32を開弁じて排出パイプ35
を介して、供給部29に回収する。加工槽261 ζ 内の放電加工液28が全部回収されるのを待って、前記
バルブ32は閉じられる。
Further, in connection with the end of the electric discharge machining, the electric discharge machining fluid 28 in the machining layer 26 is drained from the discharge pipe 35 by opening the valve 32.
The water is recovered to the supply section 29 via the. The valve 32 is closed until all of the electrical discharge machining fluid 28 in the machining tank 261ζ is recovered.

そして、前記上ハウジング20の相対移動装置を介して
、今度は、前記導電性研削工具1と導電性基準工具11
の両面間に電解ドレッシングの条件に必要な間隙12を
在して配役セットすべく、導電性研削工具1に対して導
電性基準工具11を相対移動しつつ調整セットした後、
回転軸22.23をモーター24.25の作動により回
転するとともに第5図に示す如く供給パイプ36を介し
て供給部31より電解液または弱電性クーラント30を
導電性研削工具1と導電性基準工具11間に供給し、か
つDC電源部54より両工具1,11にDC電源の陽極
、陰極をそれぞれ給電ブラシ41.42を介して印加す
ることにより、導電性研削工具1の各砥石2面を電解に
よりドレッシングすることができる。
Then, the conductive grinding tool 1 and the conductive reference tool 11 are moved through the relative movement device of the upper housing 20.
After adjusting and setting the conductive reference tool 11 while relatively moving it with respect to the conductive grinding tool 1 in order to set the cast with a gap 12 required for the electrolytic dressing conditions between both surfaces of the
The rotating shafts 22 and 23 are rotated by the operation of the motors 24 and 25, and as shown in FIG. 11, and by applying the anode and cathode of DC power to both tools 1 and 11 from the DC power supply section 54 via the power supply brushes 41 and 42, respectively, the two surfaces of each grinding wheel of the conductive grinding tool 1 are Dressing can be done by electrolysis.

この電解ドレッシングによって、導電性研削工具1の各
砥石2の加工面は加工性の良い状態(所謂、切れる状態
)に目立てすることができる。
By this electrolytic dressing, the machined surface of each grindstone 2 of the conductive grinding tool 1 can be sharpened to a state with good workability (so-called cutting state).

尚、前記放電加工液28の回収完了による加工槽26の
バルブ32が閉しられるのに関連してバルブ33が開か
れ、供給パイプ36より両工具1,11の間隙で2に介
在され後の電解液または弱電性クーラン]・30は第5
図に示す如く排出パイプ37を介して供給部31に回収
される。また、こうして回収された各供給部29.31
各液28.30は再利用し得るように適切な処理(例え
ばフィルタ処理等)が施された後、再度加工槽26に供
給される。
Incidentally, when the valve 32 of the machining tank 26 is closed due to the completion of recovery of the electrical discharge machining fluid 28, the valve 33 is opened, and the supply pipe 36 interposes the tool 2 in the gap between the two tools 1 and 11. Electrolyte solution or weakly electric coolant]・30 is the fifth
As shown in the figure, it is collected into the supply section 31 via the discharge pipe 37. In addition, each supply section 29.31 recovered in this way
Each liquid 28, 30 is supplied to the processing tank 26 again after being subjected to appropriate treatment (for example, filter treatment) so that it can be reused.

さらに、前記電解ドレッシングは電解液または弱電性ク
ーラント30を供給パイプ36を介して、両工具1,1
1間に供給しつつ遂行したのであるが、第4図に示す如
く加工槽26内に電解液または弱電性クーラント30を
、両工具1,11が埋没するまで満たした状態にて実施
することも可能である。
Further, the electrolytic dressing is performed by supplying an electrolytic solution or a weakly electric coolant 30 to both tools 1 and 1 through a supply pipe 36.
Although the process was carried out by supplying the electrolytic solution or the weakly conductive coolant 30 to the machining tank 26 until both tools 1 and 11 were buried as shown in FIG. It is possible.

加えて、DC電源部54よりの両工具1,11への電極
の印加に当たっては、前記AC電源部54よりの印加と
同様に、電解ドレッシングの最適条件に対称した可変抵
抗器60.電流計56およびボルトメーター58の制御
を図示しない制御部を介して制御しつつ実施するもので
ある。尚、DC電源部54よ7 りの印加時にはAC電源部53の切換スイッチ5つはO
FFとする。
In addition, when applying the electrodes to both tools 1 and 11 from the DC power supply section 54, similarly to the application from the AC power supply section 54, a variable resistor 60. The ammeter 56 and the voltmeter 58 are controlled through a control section (not shown). Note that when the DC power supply section 54 is applied, the five changeover switches of the AC power supply section 53 are turned OFF.
FF.

但し、場合によっては電解ドレッシングをAC電源部5
3を使用したACの電源による実施も可能である。
However, in some cases, electrolytic dressing may be
It is also possible to use an AC power source using 3.

因って、前述してきた放電加工並びに電解ドレッシング
の実施に必要な導電性研削工具lおよび導電性基準工具
11の保持装置、回転軸22.23駆動装置、放電加工
液28あるいは電解液または弱電性クーラント30の供
給部29,31. A CおよびDC電源部53.54
の各装置、各部の制御、これらの各装置、各部に関連す
るその他の制御に加えて、各装置および各部相互間にお
けるタイミング等の前記放電加工および電解ドレッシン
グに要求される制御を、図示しない制御部を介して制御
することによって、前述してきた、研削工具1の加工面
に対する創成加工と目立て加工を連続して自動的に遂行
することが可能である。
Therefore, a holding device for the conductive grinding tool l and the conductive reference tool 11, a drive device for the rotating shaft 22, 23, an electric discharge machining fluid 28, an electrolytic solution, or a weakly electrically conductive grinding tool necessary for performing the electrical discharge machining and electrolytic dressing described above. Coolant 30 supply parts 29, 31. AC and DC power supply section 53.54
In addition to the control of each device and each part, and other controls related to each of these devices and each part, the control required for the electrical discharge machining and electrolytic dressing, such as the timing between each device and each part, is controlled by a control (not shown). By controlling through the grinding section, it is possible to continuously and automatically perform the above-described generation processing and sharpening processing on the processing surface of the grinding tool 1.

(第2実施例) 前記第1実施例の構成において、導電性基準工8 具11を回転せしめるのに対して、導電性研削工具1は
停止しつつ前記放電加工並びに電解ドレッシングを行う
実施例を挙げることができ、この場合にも第1実施例と
同様の作用効果が得られる。
(Second Embodiment) In the configuration of the first embodiment, the conductive reference tool 8 and the tool 11 are rotated, while the conductive grinding tool 1 is stopped while performing the electrical discharge machining and electrolytic dressing. In this case as well, the same effects as in the first embodiment can be obtained.

また、前記実施例とは逆に導電性基準工具11を停止し
、導電性研削工具1を回転する実施も可能で、同様の作
用効果が得られる。
Further, contrary to the embodiment described above, it is also possible to stop the conductive reference tool 11 and rotate the conductive grinding tool 1, and the same effect can be obtained.

さらに、両工具1,11の停止状態下における放電加工
並びに電解ドレッシングの実施も可能であるが、導電性
基準工具11の加工面形状の維持という点において、前
述の各実施例に比較して劣る。
Furthermore, it is possible to perform electric discharge machining and electrolytic dressing while both tools 1 and 11 are stopped, but this method is inferior to the above-mentioned embodiments in terms of maintaining the machined surface shape of the conductive reference tool 11. .

尚、以上の実施に当たっては、電解ドレッシングの場合
、特に、第5図にて示した電解液または弱電性クーラン
ト30の供給部31からの供給パイプ36を介して両工
具1.11間の間隙p!2間に供給しつつ実施する場合
についての作用効果を比較検討したが、以下の各実施例
の場合には、特に電解ドレッシングの実施について、第
4図示の電解液または弱電性クーラント30を加工槽2
6内に所定量を油送しておき、かかる電解液または弱電
性ターラント30中にて、電解ドレッシングする場合に
ついて検討したものである。
In the above implementation, especially in the case of electrolytic dressing, the gap p between both tools 1.11 is ! We have compared and examined the effects of the cases in which the electrolytic solution or weakly electric coolant 30 shown in Figure 4 is supplied to the machining tank in each of the following examples, especially when performing electrolytic dressing. 2
In this study, a predetermined amount of oil is pumped into the electrolytic solution or the weakly electric tarant 30, and electrolytic dressing is performed.

その他の条件については第1実施例と同様である。Other conditions are the same as in the first embodiment.

しかして、両工具1,11のいずれか一方を停止し、他
方を回転しつつ実施する実施例にあっては第1実施例と
同様の作用効果を以て実施可能であるが、両工具1.1
1が停止状態下における第4図示の構成下における電解
ドレッシングについては、工具11の加工面状維持にお
いて、前記実施例より劣るものであることが判明してい
る。
Therefore, in an embodiment in which one of the two tools 1, 11 is stopped and the other is rotated, it can be carried out with the same effect as the first embodiment, but both tools 1.1
It has been found that the electrolytic dressing under the configuration shown in FIG. 4 when the tool 1 is stopped is inferior to the previous example in terms of maintaining the machined surface condition of the tool 11.

(発明の効果〕 本発明によれば、光学レンズ用研削工具等の砥石面の形
状創成から、切れる状態にする所謂目立て(ドレッシン
グ)までの一連の作業、工程を同一装置内で人手を介す
ることなく、速やかに行うことができ、作業環境保全、
美化にも効果がある。
(Effects of the Invention) According to the present invention, a series of operations and processes from creating the shape of the grinding wheel surface of an optical lens grinding tool, etc. to so-called dressing (dressing) to make it ready for cutting can be performed manually within the same device. It can be done quickly without any problems, preserving the working environment,
It is also effective for beautification.

しかも、従来の遊乱砥粒でのラッピングによる目立てと
比較すれば、ダイヤ等砥粒の脱落は皆無に近くドレッシ
ングされるので、切れる状態の研削工具が提供できる。
Moreover, compared to the conventional sharpening by lapping with loose abrasive grains, the dressing is performed with almost no dropout of abrasive grains such as diamond, so a grinding tool that can cut easily can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の概念図、第3図乃至第5
図は本発明の第1実施例を示し、第3図は全体の構成説
明図、第4図および第5図は同電解ドレッシングの説明
図、第6図乃至第9図は従来の研削研磨方法並びに研削
、研磨工具の加工面の創成および目立て方法を示す説明
図である。 1・・・導電性研削工具 2・・・砥石 3・・・工具皿 4・・・接着剤 11・・・導電性基準工具 20.21・・・上下ハウジング 22.23・・・回転軸 24 、25・・・回転駆動モーター 26・・・加工軸 27・・・挿通部 28・・・放電加工液 29.31・・・供給部 30・・・電解液または弱電性クーラント3233・・
・バルブ 34.36・・・供給バルブ 35.37・・・排出パイプ 40・・・電源部 41.42・・・給電ブラシ 43.44,45.46  ・・ベアリング47、.1
8・−・連結プーリー 49.50・・・駆動プーリー 51.52・・・張帯 53・・・AC電源部 54・・・DC電源部 55、56・・・電流計 57.58・・・ボルトメータ 59・・・切換用スイツチ 60・・・可変抵抗器
Figures 1 and 2 are conceptual diagrams of the present invention, Figures 3 to 5
The figure shows the first embodiment of the present invention, FIG. 3 is an explanatory diagram of the overall configuration, FIGS. 4 and 5 are explanatory diagrams of the same electrolytic dressing, and FIGS. 6 to 9 are conventional grinding and polishing methods. Also, it is an explanatory view showing a method for creating and sharpening a machined surface of a grinding and polishing tool. 1... Conductive grinding tool 2... Grinding wheel 3... Tool plate 4... Adhesive 11... Conductive reference tool 20.21... Upper and lower housing 22. 23... Rotating shaft 24 , 25... Rotation drive motor 26... Machining shaft 27... Insertion part 28... Electric discharge machining fluid 29.31... Supply part 30... Electrolyte solution or weakly electric coolant 3233...
- Valve 34.36... Supply valve 35.37... Discharge pipe 40... Power supply section 41.42... Power supply brush 43.44, 45.46... Bearing 47, . 1
8... Connection pulley 49.50... Drive pulley 51.52... Tension band 53... AC power supply section 54... DC power supply section 55, 56... Ammeter 57.58... Volt meter 59...Switch 60...Variable resistor

Claims (3)

【特許請求の範囲】[Claims] (1)導電性研削工具とこの導電性研削工具の加工面を
創成するための導電性基準工具を回転かつ相対せしめる
とともに前記導電性研削工具に陽極を、前記導電性基準
工具に陰極をそれぞれ印加しつつ放電加工液中にて放電
加工することにより、前記導電性基準工具の所定形状を
前記導電性研削工具の加工面に転写創成を行い、かつ前
記導電性研削工具と導電性基準工具の相対面間の距離を
一定に保持し、この相対面間に電解液または弱性クーラ
ントを供給しつつ直流電流を用いて、前記導電性研削工
具の加工面の目立て(ドレッシング)を行うことを特徴
とする研削工具の加工面創成方法。
(1) A conductive grinding tool and a conductive reference tool for creating a machined surface of the conductive grinding tool are rotated and made to face each other, and an anode is applied to the conductive grinding tool, and a cathode is applied to the conductive reference tool, respectively. By performing electrical discharge machining in an electrical discharge machining fluid, the predetermined shape of the electrically conductive reference tool is transferred onto the machining surface of the electrically conductive grinding tool, and the relative shape of the electrically conductive grinding tool and the electrically conductive reference tool is created. The machined surface of the conductive grinding tool is dressed by keeping the distance between the surfaces constant and supplying an electrolytic solution or a weak coolant between the opposing surfaces using a direct current. A method for creating a machined surface for a grinding tool.
(2)導電性研削工具とこの導電性研削工具の加工面を
創成するための導電性基準工具を相対せつめるとともに
前記導電性研削工具に陽極を、前記導電性基準工具に陰
極をそれぞれ印加しつつ放電加工液中にて放電加工する
ことにより、前記導電性基準工具の所定形状を前記導電
性研削工具の加工面に転写創成を行い、かつ前記導電性
研削工具と導電性基準工具の相対面間の距離を一定に保
持するとともに直流電流を用いつつ電解液中にて前記導
電性研削工具の加工面を電解ドレッシングすることを特
徴とする研削工具の加工面創成方法。
(2) A conductive grinding tool and a conductive reference tool for creating a machined surface of the conductive grinding tool are placed against each other, and an anode is applied to the conductive grinding tool, and a cathode is applied to the conductive reference tool, respectively. By performing electrical discharge machining in an electrical discharge machining fluid, the predetermined shape of the conductive reference tool is transferred onto the machining surface of the conductive grinding tool, and the relative surface of the conductive grinding tool and the conductive reference tool is A method for creating a machined surface of a grinding tool, comprising electrolytically dressing the machined surface of the conductive grinding tool in an electrolytic solution while maintaining a constant distance between the two and using a direct current.
(3)導電性研削工具と導電性研削工具の加工面を創成
するための導電性基準工具を回転かつ相対移動自在に保
持する前記導電性研削工具と導電性基準工具の保持装置
と、前記導電性研削工具と導電性基準工具を回転かつ相
対移動する駆動装置と、この駆動装置の制御装置と、前
記導電性研削工具と導電性基準工具の放電加工または目
立て(ドレッシング)加工槽と、この加工槽に放電加工
液を給電する供給部と、前記加工槽あるいは加工槽内に
相対配置される導電性研削工具と導電性基準工具の相対
面間に電解液または弱電性クーラントを供給する供給部
と、前記導電性研削工具と導電性研削工具に電極を印加
する直流電源と交流電源の電源部とを具備する研削工具
の加工面創成装置。
(3) A holding device for the conductive grinding tool and the conductive reference tool that rotatably and relatively moveably holds the conductive grinding tool and the conductive reference tool for creating a machining surface of the conductive grinding tool; A drive device for rotating and relatively moving a conductive grinding tool and a conductive reference tool, a control device for the drive device, an electrical discharge machining or dressing (dressing) machining bath for the conductive grinding tool and the conductive reference tool, and a processing tank for the conductive grinding tool and the conductive reference tool, a supply unit that supplies electrical discharge machining fluid to the tank; and a supply unit that supplies electrolyte or weakly conductive coolant between the machining tank or opposing surfaces of a conductive grinding tool and a conductive reference tool that are disposed relative to each other in the machining tank. . A machined surface creation device for a grinding tool, comprising: the conductive grinding tool; a DC power supply that applies an electrode to the conductive grinding tool; and an AC power supply unit.
JP24833889A 1989-09-25 1989-09-25 Method and device for generating work face of grinding tool Pending JPH03111162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24833889A JPH03111162A (en) 1989-09-25 1989-09-25 Method and device for generating work face of grinding tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24833889A JPH03111162A (en) 1989-09-25 1989-09-25 Method and device for generating work face of grinding tool

Publications (1)

Publication Number Publication Date
JPH03111162A true JPH03111162A (en) 1991-05-10

Family

ID=17176602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24833889A Pending JPH03111162A (en) 1989-09-25 1989-09-25 Method and device for generating work face of grinding tool

Country Status (1)

Country Link
JP (1) JPH03111162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058127A (en) * 1991-07-05 1993-01-19 Kanto Auto Works Ltd Method for manufacturing surface finishing tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058127A (en) * 1991-07-05 1993-01-19 Kanto Auto Works Ltd Method for manufacturing surface finishing tool

Similar Documents

Publication Publication Date Title
JP5363091B2 (en) Polishing machine equipped with a device for bringing the grinding wheel into an appropriate state and method thereof
JP2001030148A (en) Elid centerless grinding device
JPH0343144A (en) Method and device for grinding lens
JPH0343145A (en) Grinding device
US20060249398A1 (en) Electrolytic microfinishing of metallic workpieces
CA2299638C (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JP2001353648A (en) Device and method of grinding elid mirror surface of large diameter work
JPH03111162A (en) Method and device for generating work face of grinding tool
JPH07205006A (en) Lens grinding method
JPH0639644A (en) Grinding machine
JPH0295574A (en) Grinding method for electrolytic dressing and method and device for compound working of polishing method serving conductive grindstone for tool as well
JPH11320366A (en) Grinding device
JP3096342B2 (en) Electrolytic dressing grinding method and apparatus
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH03136764A (en) Method and apparatus for grinding spherical body
JP3194621B2 (en) Method and apparatus for generating spherical surface
JPH03190667A (en) Grinding method and device
JP2005111646A (en) Surface plate correcting method and surface plate correcting device for precise parallel surface grinder
JP3260304B2 (en) Truing or dressing method and apparatus for grinding tool
JPS62114876A (en) Dressing method for metal bond grindstone
JPH04322970A (en) Grinding method and device
JP2001088016A (en) Electrophoresis polishing agent and manufacture of formed body using it and optical device
JPH0752040A (en) Electrolytic dressing method and device therefor
JPH01321166A (en) Dressing device
JPH11165258A (en) Grinding device and grinding method