JPH03109238A - Production of carbon coated optical fiber - Google Patents

Production of carbon coated optical fiber

Info

Publication number
JPH03109238A
JPH03109238A JP1247515A JP24751589A JPH03109238A JP H03109238 A JPH03109238 A JP H03109238A JP 1247515 A JP1247515 A JP 1247515A JP 24751589 A JP24751589 A JP 24751589A JP H03109238 A JPH03109238 A JP H03109238A
Authority
JP
Japan
Prior art keywords
carbon
optical fiber
glass fiber
hydrocarbon
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247515A
Other languages
Japanese (ja)
Other versions
JP2684789B2 (en
Inventor
Toshihide Tokunaga
徳永 利秀
Nobutaka Suzuki
伸孝 鈴木
Yoshinori Kurosawa
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1247515A priority Critical patent/JP2684789B2/en
Publication of JPH03109238A publication Critical patent/JPH03109238A/en
Application granted granted Critical
Publication of JP2684789B2 publication Critical patent/JP2684789B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical fiber having superior H2 resistance and initial strength by bringing a glass fiber heated in an inert gaseous atmosphere into contact with gaseous cyclic hydrocarbon, thermally decomposing the hydrocarbon and forming a thin carbon film on the surface of the fiber. CONSTITUTION:A glass fiber is heated in an inert gaseous atmosphere and brought into contact with a gaseous mixture of gaseous cyclic hydrocarbon with an inert gas at the decomposition temp. of the hydrocarbon. A thin film of carbon formed by thermally decomposing the org. substance is formed on the surface of the glass fiber to carry out carbon coating.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はカーボンコーティング光ファイバの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a carbon coated optical fiber.

〔従来の技術〕[Conventional technology]

汎用の光ファイバは酸化ゲルマニウムでドープされた石
英ガラスから成るコアと、石英ガラスから成るクラッド
から構成されている。光ファイバの長期信顧性を確保す
るには耐水素特性(以下、耐H2特性と言う)が必要と
される。何故なら、光ファイバおよびケーブルのコーテ
イング材と金属材料、あるいはケーブル内の水分または
外から侵入してきた水と金属材料との反応で生じた水素
は、光フアイバ内に拡散し、伝送損失の増大を来す、光
ファイバのカーボンコーティングにより耐H2特性が改
良される。ことはJournal of Light−
wave Technology、 Vol、6+ N
o、2+ p、240(Feb、1988)およびEl
ectronics Letters+ Vol、24
+ No、21゜p、1323 (Oct、 13th
、 1988)に報告されている。
A general-purpose optical fiber consists of a core made of quartz glass doped with germanium oxide and a cladding made of quartz glass. Hydrogen resistance (hereinafter referred to as H2 resistance) is required to ensure long-term reliability of optical fibers. This is because hydrogen generated by the reaction between the coating material of optical fibers and cables and the metal material, or the moisture inside the cable or the water that has entered from the outside and the metal material, diffuses into the optical fiber and increases transmission loss. The carbon coating of the optical fiber improves its H2 resistance. Kotoha Journal of Light-
wave Technology, Vol, 6+N
o, 2+ p, 240 (Feb, 1988) and El
electronics Letters+ Vol, 24
+ No, 21°p, 1323 (Oct, 13th
, 1988).

光ファイバの表面にカーボン薄膜をコーティングするに
は、プラズマCVD法、熱cvD法、スパッタ法等があ
る。
A plasma CVD method, a thermal CVD method, a sputtering method, etc. are available for coating the surface of an optical fiber with a carbon thin film.

またガラス母材から延伸したファイバを加熱炉内で移送
しながら、気体状有機物の高温熱分解により光ファイバ
の表面にカーボン薄膜を形成させる方法も試みられてい
る。
Also, a method has been attempted in which a thin carbon film is formed on the surface of an optical fiber by high-temperature thermal decomposition of gaseous organic matter while the fiber drawn from a glass base material is transferred in a heating furnace.

〔発明が解決しようとする課題) しかし上記プラズマCVD法、熱CVD法、スパッタ法
等はいずれも光フアイバ製造工程の線引きライン上でカ
ーボンコーティングするのに適しておらず、効率よ〈実
施することができない。
[Problems to be Solved by the Invention] However, none of the above-mentioned plasma CVD methods, thermal CVD methods, sputtering methods, etc. are suitable for carbon coating on the drawing line of the optical fiber manufacturing process, and it is difficult to implement them efficiently. I can't.

また加熱炉内で有機物の熱分解により光ファイバにカー
ボン薄膜をコーティングする方法は、厚さ方向に均一な
密度のカーボン薄膜を形成させることができず、伝達損
失の小さい光ファイバを得ることができなかった。また
カーボンコーティング光ファイバの初期強度が小さいこ
とがしばしばあった。これは、カーボンコーティングと
光ファイバの密着性の不足によると考えられる。
Furthermore, the method of coating an optical fiber with a carbon thin film by thermal decomposition of organic matter in a heating furnace does not allow the formation of a carbon thin film with uniform density in the thickness direction, making it impossible to obtain an optical fiber with low transmission loss. There wasn't. Furthermore, the initial strength of carbon-coated optical fibers was often low. This is considered to be due to insufficient adhesion between the carbon coating and the optical fiber.

従って本発明の目的は、耐H2特性が良く、初期強度が
大きいカーボンコーティング光ファイバを効率よく製造
する方法を提供することにある。
Therefore, an object of the present invention is to provide a method for efficiently manufacturing a carbon-coated optical fiber having good H2 resistance and high initial strength.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明では、ガラスファイバ
の表面に有機物の熱分解によりカーボン薄■りを形成さ
せてカーボンコーティングを施すカーボンコーティング
光ファイバの製造方法において、ガラスファイバを不活
性ガスの雰囲気中で加熱した後、気体状環式炭化水素と
不活性ガスとの混合気体に炭化水素の分解温度で接触さ
せるようにした。
In order to achieve the above object, the present invention provides a method for manufacturing a carbon-coated optical fiber in which carbon coating is applied by forming a thin layer of carbon on the surface of a glass fiber by thermal decomposition of an organic substance. After heating in the reactor, it was brought into contact with a gas mixture of a gaseous cyclic hydrocarbon and an inert gas at the decomposition temperature of the hydrocarbon.

炭化水素の分解温度とは、炭化水素が分解されるに十分
な温度を意味し、炭化水素が分解される最低温度の意味
ではない。
By decomposition temperature of a hydrocarbon is meant the temperature sufficient to decompose the hydrocarbon, not the lowest temperature at which the hydrocarbon decomposes.

本発明のカーボンコーティング光ファイバの製造方法は
、下記各過程から成る。
The method for manufacturing a carbon coated optical fiber of the present invention consists of the following steps.

(1)ガラスファイバを不活性ガスの雰囲気中で加熱す
る過程 (2)ガラスファイバを炭化水素と不活性ガスとの混合
気体に炭化水素の分解温度で接触させる過程各過程につ
いて、以下に詳しく説明する。
(1) Process of heating the glass fiber in an inert gas atmosphere (2) Process of bringing the glass fiber into contact with a gas mixture of hydrocarbons and inert gas at the hydrocarbon decomposition temperature Each process is explained in detail below. do.

(1)ガラスファイバを不活性ガスの雰囲気中で加熱す
る過程 本発明では、後述のように炭化水素の分解温度でガラス
ファイバに炭化水素と不活性ガスとの混合気体を接触さ
せる前に、不活性ガスの雰囲気中で加熱することを特徴
としている。
(1) Process of heating the glass fiber in an inert gas atmosphere In the present invention, as described below, before contacting the glass fiber with a mixed gas of a hydrocarbon and an inert gas at the hydrocarbon decomposition temperature, an inert gas atmosphere is heated. It is characterized by heating in an atmosphere of active gas.

不活性ガスとして最も安価で簡便なものは窒素ガスであ
るが、アルゴンガス、ネオンガス、ヘリウムガス等を用
いてもよい。
The cheapest and simplest inert gas is nitrogen gas, but argon gas, neon gas, helium gas, etc. may also be used.

ガラスファイバに接触する不活性ガスの気流の線速度は
、炭化水素の分解温度でガラスファイバに接触させる炭
化水素と不活性ガスとの混合気体の気流の線速度より大
きくすることが好ましく、通常約2倍から50倍にする
のが適当である。
The linear velocity of the inert gas stream that contacts the glass fiber is preferably greater than the linear velocity of the gas mixture of hydrocarbon and inert gas that is brought into contact with the glass fiber at the decomposition temperature of the hydrocarbon, and is usually about It is appropriate to increase the amount by 2 to 50 times.

(2)ガラスファイバに炭化水素と不活性ガスとの混合
気体を炭化水素の分解温度で接触させる過程有機物を高
温で熱分解させて光ファイバの表面にカーボンの薄膜を
形成させる過程である。光ファイバとなるガラスファイ
バに、熱分解してカーボンを容易に形成する気体状炭化
水素と不活性ガスとの混合気体を、例えば加熱炉内で炭
化水素の分解温度で接触させる。熱源としては電熱、燃
焼ガス等通常のものを用いることができる。
(2) A process in which a mixed gas of a hydrocarbon and an inert gas is brought into contact with a glass fiber at the decomposition temperature of the hydrocarbon. This is a process in which organic matter is thermally decomposed at high temperatures to form a thin film of carbon on the surface of the optical fiber. A glass fiber that will become an optical fiber is brought into contact with a gaseous mixture of a gaseous hydrocarbon and an inert gas, which can be thermally decomposed to easily form carbon, at the decomposition temperature of the hydrocarbon, for example, in a heating furnace. As the heat source, ordinary heat sources such as electric heat and combustion gas can be used.

本発明では気体状環式炭化水素を不活性ガスとの混合気
体として用いることを、一つの特徴としている。環式炭
化水素は芳香族、脂環式いずれでもよいが、芳香族炭化
水素が望ましい。例えばベンゼン、トルエン、キシレン
等を用いることができる。
One feature of the present invention is that a gaseous cyclic hydrocarbon is used as a gas mixture with an inert gas. The cyclic hydrocarbon may be either aromatic or alicyclic, but aromatic hydrocarbons are preferred. For example, benzene, toluene, xylene, etc. can be used.

不活性ガスとして最も安価で簡便なものは窒素ガスであ
るが、アルゴンガス、ネオンガス、ヘリウムガス等を用
いてもよい。
The cheapest and simplest inert gas is nitrogen gas, but argon gas, neon gas, helium gas, etc. may also be used.

気体状炭化水素と不活性ガスとの混合気体を得るには、
常温または分解しない温度で液体状の炭化水素に不活性
ガスを吹き込み、炭化水素を気化させる方法を用いるこ
とができる。
To obtain a mixture of gaseous hydrocarbons and inert gas,
A method can be used in which an inert gas is blown into liquid hydrocarbons at room temperature or at a temperature that does not decompose them, and the hydrocarbons are vaporized.

炭化水素と不活性ガスの混合比は、気休の体積比で約1
=4から1=15程度が適当である。
The mixing ratio of hydrocarbon and inert gas is approximately 1 by volume.
=4 to 1=15 is appropriate.

加熱炉を用いる場合、竪(たて)型であることが望まし
いが、垂直である必要はなく、傾斜していてもよい。加
熱炉として石英マツフルは好適である。
When using a heating furnace, it is preferably vertical, but it does not have to be vertical and may be inclined. Quartz matzuru is suitable as a heating furnace.

上記二つの過程(1)および(2)は一つの加熱手段、
例えば加熱炉内で行われてもよい。すなわら、ガラス母
材から延伸したガラスファイバを長さ方向に移送する手
段を設け、ガラスファイバを長さ方向に移送しつつ、一
つの加熱炉内で、不活性ガスの雰囲気中で加熱し、さら
に炭化水素と不活性ガスとの混合気体に接触させて炭化
水素の熱分解により光ファイバの表面にカーボン薄膜を
形成させてもよい。例えば竪(たて)型の加熱炉を用い
加熱炉上部からガラスファイバを送り込む場合、加熱炉
上部に不活性ガスを供給し、加熱炉の中央部に炭化水素
と不活性ガスとの混合気体を供給すればよい。
The above two processes (1) and (2) are performed using one heating means,
For example, it may be carried out in a heating furnace. In other words, a means for transporting the glass fiber drawn from the glass base material in the length direction is provided, and the glass fiber is heated in an inert gas atmosphere in one heating furnace while being transported in the length direction. Furthermore, a carbon thin film may be formed on the surface of the optical fiber by thermal decomposition of the hydrocarbon by bringing it into contact with a mixed gas of a hydrocarbon and an inert gas. For example, when using a vertical heating furnace and feeding the glass fiber from the top of the heating furnace, inert gas is supplied to the top of the heating furnace, and a mixed gas of hydrocarbon and inert gas is supplied to the center of the heating furnace. Just supply it.

〔作用〕[Effect]

本発明のカーボンコーティング光ファイバの製造方法に
おいては、ガラスファイバは不活性ガスの雰囲気中で加
熱された後、炭化水素の分解温度で炭化水素と不活性ガ
スとの混合気体に接触し、炭化水素の熱分解により生成
したカーボンが光ファイバの表面に薄膜を形成する。加
熱の初期においてガラスファイバの表面の温度はまだ低
いが、不活性ガスの雰囲気中にあるのでカーボンは付着
せず、ガラスファイバは炭化水素の分解温度まで加熱さ
れてから初めて炭化水素と不活性ガスとの混合気体に接
触し、カーボンが付着する。このために厚さ方向に均一
な密度のカーボンコーティングが形成される。もしガラ
スファイバが加熱初期に不活性ガス雰囲気中に置かれな
いか、不活性ガスの供給が不足であると、表面の温度が
まだ低いガラスファイバにカーボンが低い密度で付着し
、炭化水素の分解温度まで加熱された後に高い密度のカ
ーボンが付着するから、カーボンコーティングは厚さ方
向に不均一となる。その結果、十分な耐H2特性が得ら
れず、伝送損失が増大し、ファイバの破断強度が低下す
る。
In the method for manufacturing a carbon-coated optical fiber of the present invention, the glass fiber is heated in an inert gas atmosphere, and then brought into contact with a gas mixture of hydrocarbons and inert gas at the decomposition temperature of hydrocarbons. Carbon produced by thermal decomposition forms a thin film on the surface of the optical fiber. At the beginning of heating, the surface temperature of the glass fiber is still low, but since it is in an inert gas atmosphere, carbon does not adhere to it, and only after the glass fiber is heated to the decomposition temperature of hydrocarbons, hydrocarbons and inert gas When it comes into contact with a gas mixture, carbon adheres to it. This results in the formation of a carbon coating with uniform density in the thickness direction. If the glass fiber is not placed in an inert gas atmosphere during the initial stage of heating, or if the supply of inert gas is insufficient, carbon will adhere at a low density to the glass fiber whose surface temperature is still low, resulting in the decomposition of hydrocarbons. The carbon coating is non-uniform through the thickness because of the high density of carbon that is deposited after being heated to that temperature. As a result, sufficient H2 resistance characteristics cannot be obtained, transmission loss increases, and fiber breaking strength decreases.

以下に実施例により本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

〔実施例〕〔Example〕

第1図に断面図を示す装置を用いてカーボンコーティン
グ光ファイバを製造した。第1回で、1は石英ガラス母
材、2は石英ガラスファイバ、3は延伸のための電気炉
、4は加熱炉、5は石英マツフル、6は窒素ガス供給口
、7は混合ガス供給口を示す。第1図に示すように、ま
ず、石英ガラス母材1ば電気炉3で2000°Cに加熱
されてファイバに延伸される。延伸されたガラスファイ
バは加熱炉4内でその表面にカーボン薄膜が形成され、
コーティングカップ8aと焼き付は炉9aを通ってシリ
コーン樹脂コーティングされ、さらにコーティングカッ
プ8bと焼き付は炉9bを通ってナイロンコーティング
された。
A carbon-coated optical fiber was manufactured using an apparatus whose cross-sectional view is shown in FIG. In the first session, 1 is a quartz glass base material, 2 is a quartz glass fiber, 3 is an electric furnace for drawing, 4 is a heating furnace, 5 is a quartz pine full, 6 is a nitrogen gas supply port, 7 is a mixed gas supply port shows. As shown in FIG. 1, first, a quartz glass base material 1 is heated to 2000° C. in an electric furnace 3 and drawn into a fiber. A thin carbon film is formed on the surface of the drawn glass fiber in the heating furnace 4.
The coating cup 8a and the baking cup passed through a furnace 9a to be coated with silicone resin, and the coating cup 8b and the baking cup passed through a furnace 9b to be coated with nylon.

加熱炉4内の温度は1200℃とした。石英マツフル5
は外径20 mm、内径16mmである。
The temperature inside the heating furnace 4 was 1200°C. Quartz pine full 5
has an outer diameter of 20 mm and an inner diameter of 16 mm.

石英マツフル5の上部に設けた窒素ガス供給口6から窒
素ガスを流ffi 101 / m i nで供給した
Nitrogen gas was supplied from a nitrogen gas supply port 6 provided at the top of the quartz pine full 5 at a flow rate ffi 101/min.

石英マツフル5の中央部に設けた混合ガス供給ロアから
は、30℃に保ったベンゼン中にQ、51!、/min
で吹き込んだ窒素ガス気流に31!、/minの窒素ガ
スを加えた混合ガス流を供給した。窒素ガスと混合ガス
の流量の比は、これらのガスが円筒形のマツフルに供給
されるから、それぞれのガスの線速度の比に等しい。
From the mixed gas supply lower installed in the center of the quartz Matsufuru 5, Q, 51! ,/min
31 to the nitrogen gas stream blown in! ,/min of nitrogen gas was supplied. The ratio of the flow rates of the nitrogen gas and the mixed gas is equal to the ratio of the linear velocities of each gas, since these gases are supplied to the cylindrical Matsufuru.

石英ガラスはプーリ10により引き取られながら、50
m/minで線引き(延伸)され加熱炉に送り込まれた
。加熱炉4の設定温度は1200°Cであるが、加熱炉
内上部でのガラスファイバの温度は約600°C以下で
ある。
While the quartz glass is being pulled by the pulley 10,
It was drawn (stretched) at a rate of m/min and sent into a heating furnace. Although the set temperature of the heating furnace 4 is 1200°C, the temperature of the glass fiber in the upper part of the heating furnace is about 600°C or less.

膜厚が0.05μmになるようカーボンコーティングを
施し、シリコーン樹脂コーティングされたシングルモー
ド光ファイバを、水素ガス中に温度100°Cで15時
間放置して耐水素試験を行った。その結果は第2図に示
す通りであった。第2図の縦軸は光伝送損失(aB/k
m)を示す。
A single mode optical fiber coated with carbon to a thickness of 0.05 μm and silicone resin was left in hydrogen gas at a temperature of 100° C. for 15 hours to conduct a hydrogen resistance test. The results were as shown in FIG. The vertical axis in Figure 2 is the optical transmission loss (aB/k
m).

またシリコーン樹脂コーティングの上に更にナイロンコ
ーティングした後、引張試験を行った。
Further, a tensile test was conducted after further coating nylon on the silicone resin coating.

破断確率50%での破断強度は7.9kgであった。The breaking strength at a probability of breakage of 50% was 7.9 kg.

〔比較例〕[Comparative example]

実施例1で窒素ガス流量を3ffi/minに減少させ
た場合には、第2図に示すように耐水素試験で波長域1
.3および1.55μmでの損失が若干増え、拡散した
H2による波長1.24μmの吸収が目立ち、破断強度
も6.5kgに減少した。部分的に破断強度が3ないし
4kgの部分も認められた。これはおそらく光ファイバ
とカーボンコーティングの密着の低下によると思われる
In Example 1, when the nitrogen gas flow rate was reduced to 3ffi/min, as shown in Figure 2, wavelength range 1 was obtained in the hydrogen resistance test.
.. The loss at wavelengths of 3 and 1.55 μm increased slightly, absorption at a wavelength of 1.24 μm due to diffused H2 was noticeable, and the breaking strength decreased to 6.5 kg. Some parts had a breaking strength of 3 to 4 kg. This is probably due to a decrease in the adhesion between the optical fiber and the carbon coating.

第2図には比較のため、カーボンコーティングを有しな
い汎用光ファイバの耐水素試験の結果も示した。
For comparison, FIG. 2 also shows the results of a hydrogen resistance test of a general-purpose optical fiber without carbon coating.

〔発明の効果] 本発明の方法によると、耐H,特性が良く、初期強度が
大きいカーボンコーティング光ファイバを、効率よく製
造することができる。
[Effects of the Invention] According to the method of the present invention, a carbon-coated optical fiber having good H resistance, characteristics, and high initial strength can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いた装置の略図、第2図
は本発明の実施例で得られたカーボンコーティング光フ
ァイバの耐水素試験の結果を示すグラフである。 符号の説明 1−・−・・−・石英ガラス母材 2−・・−・・・・・−石英ガラスファイバ3−・−・
−・−−一−−電気炉    4・・・−・−・−・・
加熱炉5−・・・−・−・・石英マツフル 6・・−・
−・・−・−・・窒素ガス供給ロアー・−・−・−混合
ガス供給口 8a、8b・・・・−・・・−・−コーティングカップ
9a、9b−・・・・−・・−焼き付は炉10−・−・
・プーリ
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention, and FIG. 2 is a graph showing the results of a hydrogen resistance test of a carbon-coated optical fiber obtained in an embodiment of the present invention. Explanation of symbols 1--・--・-- Quartz glass base material 2---- Quartz glass fiber 3---
−・−−1−−Electric furnace 4・・・−・−・−・・
Heating furnace 5--...-- Quartz pine full 6...--
-・・−・−・・Nitrogen gas supply lower −・−・−Mixed gas supply ports 8a, 8b・・−・−・−Coating cup 9a, 9b−・・・−・・− Baking is done in the furnace 10-...
・Pulley

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスファイバの表面に有機物の熱分解によりカ
ーボン薄膜を形成させてカーボンコーティングを施すカ
ーボンコーティング光ファイバの製造方法において、前
記ガラスファイバを不活性ガスの雰囲気中で加熱した後
、気体状環式炭化水素と不活性ガスとの混合気体に前記
炭化水素の分解温度で接触させることを特徴とする カーボンコーティング光ファイバの製造方法。
(1) In a method for manufacturing a carbon-coated optical fiber, in which a carbon thin film is formed on the surface of a glass fiber by thermal decomposition of an organic substance and carbon coating is applied, the glass fiber is heated in an inert gas atmosphere, and then a gaseous ring is formed on the surface of the glass fiber. 1. A method for producing a carbon-coated optical fiber, comprising contacting a mixed gas of a hydrocarbon and an inert gas at a decomposition temperature of the hydrocarbon.
(2)前記ガラスファイバに接触する前記不活性ガスの
線速度が前記ガラスファイバに接触する前記混合気体の
線速度より大である請求項第1項のカーボンコーティン
グ光ファイバの製造方法。
(2) The method for manufacturing a carbon-coated optical fiber according to claim 1, wherein the linear velocity of the inert gas in contact with the glass fiber is higher than the linear velocity of the mixed gas in contact with the glass fiber.
JP1247515A 1989-09-22 1989-09-22 Manufacturing method of carbon coated optical fiber Expired - Lifetime JP2684789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247515A JP2684789B2 (en) 1989-09-22 1989-09-22 Manufacturing method of carbon coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247515A JP2684789B2 (en) 1989-09-22 1989-09-22 Manufacturing method of carbon coated optical fiber

Publications (2)

Publication Number Publication Date
JPH03109238A true JPH03109238A (en) 1991-05-09
JP2684789B2 JP2684789B2 (en) 1997-12-03

Family

ID=17164632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247515A Expired - Lifetime JP2684789B2 (en) 1989-09-22 1989-09-22 Manufacturing method of carbon coated optical fiber

Country Status (1)

Country Link
JP (1) JP2684789B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227542A (en) * 1988-07-18 1990-01-30 Nippon Hoso Kyokai <Nhk> Method and device for x-ray recording and reproducing
JPH0274542A (en) * 1988-04-07 1990-03-14 Sumitomo Electric Ind Ltd Optical fiber coater
JPH02149450A (en) * 1988-12-01 1990-06-08 Fujikura Ltd Production of optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274542A (en) * 1988-04-07 1990-03-14 Sumitomo Electric Ind Ltd Optical fiber coater
JPH0227542A (en) * 1988-07-18 1990-01-30 Nippon Hoso Kyokai <Nhk> Method and device for x-ray recording and reproducing
JPH02149450A (en) * 1988-12-01 1990-06-08 Fujikura Ltd Production of optical fiber

Also Published As

Publication number Publication date
JP2684789B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JPH0283240A (en) Airtight sealed treated optical fiber
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
US3503798A (en) Silicon nitride film deposition method
US5037464A (en) Method of cleaning and carbon coating optical fiber
JPH03109238A (en) Production of carbon coated optical fiber
US3679475A (en) Method for producing boron-carbon fibers
JPH03109239A (en) Production of carbon coated optical fiber
US4294514A (en) Light-wave guides and method of producing same
CA1232569A (en) Manufacture of optical fibre preforms
JPS62279303A (en) Production of optical waveguide layer
JPH02160644A (en) Production of optical fiber
CN115613162B (en) Composite fiber and preparation method thereof
JPH0225853B2 (en)
JP3039975B2 (en) Optical fiber manufacturing method
JPH0235404A (en) Optical fiber
JPH02160642A (en) Production of optical fiber
JPH02149450A (en) Production of optical fiber
JPH03275535A (en) Production of hermetically-coated optical fiber
JP2581285B2 (en) Manufacturing method of heat resistant optical fiber
JPH0312345A (en) Production of hermetically-coated optical fiber
JP3039961B2 (en) Optical fiber manufacturing method
JP2798790B2 (en) Optical fiber manufacturing method
JPH0269339A (en) Coating device for optical fiber
JP2635430B2 (en) Carbon film forming equipment
JPH0273315A (en) Optical fiber