JPH03108371A - Manufacture of infrared ray detecting element - Google Patents

Manufacture of infrared ray detecting element

Info

Publication number
JPH03108371A
JPH03108371A JP1247317A JP24731789A JPH03108371A JP H03108371 A JPH03108371 A JP H03108371A JP 1247317 A JP1247317 A JP 1247317A JP 24731789 A JP24731789 A JP 24731789A JP H03108371 A JPH03108371 A JP H03108371A
Authority
JP
Japan
Prior art keywords
film
metal film
infrared ray
ray detecting
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1247317A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ueda
敏之 上田
Tetsuo Saito
哲男 齊藤
Masahiro Tanaka
昌弘 田中
Tamotsu Yamamoto
保 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1247317A priority Critical patent/JPH03108371A/en
Publication of JPH03108371A publication Critical patent/JPH03108371A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of crosstalk by forming a metallic film between PN junction areas which constitute infrared ray detecting elements, and heat-treating this metallic film so as to introduce metallic atoms between the PN junction areas. CONSTITUTION:An epitaxial layer 11 of Hg1-xCdxTe is formed on a CdZnTe substrate 15. Next, a resist film 16 of a specified pattern is formed on the layer 11, and with this as a mask, an N-type layer 17 is formed to form a PN junction area 12, and this is made infrared ray detecting element 13. Next, a resist film 18 is formed on this infrared ray detecting element, and then with this film 18 as a mask, a metallic film 14 is formed. Next, the film 18 and the film 14 thereon are removed, and the film 14 between the infrared ray detecting elements is made a contact electrode of the substrate 15. Next, the film 14 is annealed by laser. As a result, the metallic atoms of the film 14 are introduced into the substrate 15, and carrier concentration increases, whereby the lives of a small number of carriers are shortened, and the carriers generated between the detecting elements vanish, so the generation of cross talk decreases.

Description

【発明の詳細な説明】 〔概 要〕 多素子型の赤外線検知素子の製造方法に関し、クロスト
ークを発生しない多素子型の光起電力型の赤外線検知素
子を目的とし、 水銀を含む化合物半導体結晶に該結晶と逆導電型の不純
物を導入して該結晶に所定の間隔を隔ててP−N接合領
域を形成した後、或いは該P−N接合を形成する以前に
、前記基板のP−N接合領域の間に金属膜を被着形成し
、該金属膜を熱処理して該金属膜の金属原子をP−N接
合領域間に導入する工程を有すること構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for manufacturing a multi-element type infrared sensing element, the objective is to produce a multi-element type photovoltaic type infrared sensing element that does not generate crosstalk, and a compound semiconductor crystal containing mercury is used. After forming a P-N junction region at a predetermined interval in the crystal by introducing an impurity of a conductivity type opposite to that of the crystal, or before forming the P-N junction, the P-N junction region of the substrate is The method includes the steps of depositing a metal film between the bonding regions, heat-treating the metal film, and introducing metal atoms of the metal film between the P-N bonding regions.

〔産業上の利用分野〕[Industrial application field]

本発明は多素子型の光起電力型の赤外線検知素子の製造
方法に関する。
The present invention relates to a method for manufacturing a multi-element photovoltaic infrared sensing element.

エネルギーバンドギャップの狭い水銀・カドミウム・テ
ルル(HgI−* Cdx Te)より成るP型の化合
物半導体結晶に該結晶に対して逆導電型の不純物原子を
導入して所定の領域のP−N接合部を多数設けた多素子
型の光起電力型の赤外線検知素子は周知である。
Impurity atoms of the opposite conductivity type to the crystal are introduced into a P-type compound semiconductor crystal made of mercury, cadmium, and tellurium (HgI-*Cdx Te), which has a narrow energy band gap, to create a P-N junction in a predetermined region. A multi-element type photovoltaic infrared sensing element provided with a large number of infrared rays is well known.

このような多素子型赤外線検知素子において、検知素子
の高感度化、高解像度化を図るために、化合物半導体結
晶に形成される該検知素子間のピッチをできるだけ狭く
して該検知素子を高密度に配設することが望まれている
In such a multi-element type infrared sensing element, in order to increase the sensitivity and resolution of the sensing element, the pitch between the sensing elements formed in the compound semiconductor crystal is made as narrow as possible to increase the density of the sensing elements. It is desired that the system be installed in

〔従来の技術〕[Conventional technology]

従来、このような多素子型の赤外線検知素子を製造する
方法として第2図に示すように、CdTe基板l上に液
相エピタキシャル成長して形成したP型の)Igt−x
 Cdz Teエピタキシャル層2にポロン(B)原子
をイオン注入してN型層3を形成してPN接合部4を形
成して赤外線検知素子5を形成し、この赤外線検知素子
を多数配設して多素子型の光起電力型の赤外線検知素子
を形成していた。
Conventionally, as shown in FIG. 2, a method for manufacturing such a multi-element type infrared sensing element is to use P-type (Igt-x) which is formed by liquid phase epitaxial growth on a CdTe substrate.
Poron (B) atoms are ion-implanted into the Cdz Te epitaxial layer 2 to form an N-type layer 3, a PN junction 4 is formed, and an infrared sensing element 5 is formed, and a large number of these infrared sensing elements are arranged. A multi-element photovoltaic infrared sensing element was formed.

このような赤外線検知素子は、該素子の高感度化および
高解像度化を図るためにできるだけ、高密度に赤外線検
知素子を配設する必要がある。
In order to increase the sensitivity and resolution of such an infrared sensing element, it is necessary to arrange the infrared sensing elements as densely as possible.

然し、第3図に示すように、CdTe基板1の裏面側よ
り矢印六方向に沿って入射された光が光電変換されて発
生するキャリア6の拡散長より検知素子間の距離lが短
(なる程度に、高密度に赤外線検知素子5A、5Bを化
合物半導体結晶に形成すると、赤外線検知素子5A、5
B間で発生したキャリア6が隣接する検知素子5A、5
Bに到達し、該検知素子で得られる信号にクロストーク
の現象が生じて該検知素子の空間分解能が低下し、高解
像度の赤外線画像が得られない問題がある。
However, as shown in FIG. 3, the distance l between the sensing elements is shorter than the diffusion length of carriers 6 generated by photoelectric conversion of light incident from the back side of CdTe substrate 1 along the six directions of arrows. When the infrared sensing elements 5A, 5B are formed in a compound semiconductor crystal with high density, the infrared sensing elements 5A, 5
The carrier 6 generated between the adjacent detection elements 5A and 5
B, a crosstalk phenomenon occurs in the signal obtained by the detection element, and the spatial resolution of the detection element decreases, resulting in a problem that a high-resolution infrared image cannot be obtained.

このような問題点を解決するために、本出願人は第4図
に示すように、特開昭63〜133580号に於いてH
g (水銀)空孔をアクセプタとした高濃度のP゛型’
g+−x Cdx Te基板7に所定のパターンにl1
gを選択的に拡散して前記11g空孔を埋めて形成した
P型島状領域8を形成し、このP型島状領域にN型層9
を形成してダイオードを形成し、これを−個の画素とし
て前記Hgを拡散していないP“HgI−++Cd、 
Te基板の領域をチャネルストップとした多素子型の光
起電力型赤外線検知素子を形成していた。
In order to solve such problems, the present applicant has proposed H.
g (Mercury) Highly concentrated P type with vacancies as acceptors
g+-x Cdx Te substrate 7 in a predetermined pattern l1
A P-type island region 8 is formed by selectively diffusing g to fill the 11g vacancies, and an N-type layer 9 is formed in this P-type island region.
A diode is formed by forming a diode, and this is used as a pixel of P"HgI-++Cd, in which the Hg is not diffused.
A multi-element photovoltaic infrared sensing element was formed with the Te substrate region serving as a channel stop.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、このような方法であるとH,が拡散定数の大きい
原子であるため、該Hg原子をP″Hfh□CdX T
e基板7に所定の濃度、所定の領域に精度良く拡散しよ
うとすると、温度、時間等を厳密に制御しなければなら
ず、Hg原子をP ” Hgr−x Cdx Te基板
に所定の濃度で拡散するのは困難で、従って所望の濃度
のP型のHgI−x Cdz Ti3結晶の島状領域が
形成されない不都合がある。
However, in this method, since H is an atom with a large diffusion constant, the Hg atom is converted to P″Hfh□CdX T
In order to accurately diffuse Hg atoms into a predetermined concentration and a predetermined area on the e-substrate 7, temperature, time, etc. must be strictly controlled, and Hg atoms are diffused onto the P'' Hgr-x Cdx Te substrate at a predetermined concentration. Therefore, there is a disadvantage that island-like regions of P-type HgI-x Cdz Ti3 crystals having the desired concentration cannot be formed.

本発明は上記した問題点を解決し、前記した赤外線検知
素子間に容易にチャネルストップが形成でき、検知素子
で得られる信号にクロストークの現象が発生しないよう
にした多素子型の光起電力型の赤外線検知素子の製造方
法を目的とする。
The present invention solves the above-mentioned problems and is a multi-element type photovoltaic device in which a channel stop can be easily formed between the above-mentioned infrared sensing elements and crosstalk phenomenon does not occur in the signals obtained by the sensing elements. The purpose of this invention is to provide a method for manufacturing a type of infrared sensing element.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための本発明の赤外線検知素子の製
造方法は、第1図(a)より第1図(C)迄に示すよう
に、水銀を含む化合物半導体結晶11に該結晶と逆導電
型の不純物を導入して所定の間隔を隔ててP−N接合領
域12を形成して赤外線検知素子13を形成した後、或
いは該P−N接合領域12を形成する以前に、該P−N
接合領域12の間に金属膜14を被着形成後、該金属膜
14を熱処理して前記金属膜の金属原子を前記化合物半
導体結晶11に形成されたP−N接合領域間に導入する
工程を有することを特徴としている。
As shown in FIG. 1(a) to FIG. 1(C), the method for manufacturing an infrared sensing element of the present invention to achieve the above object is to provide a compound semiconductor crystal 11 containing mercury with a conductivity opposite to that of the crystal. After forming the infrared sensing element 13 by introducing a type of impurity and forming the P-N junction regions 12 at predetermined intervals, or before forming the P-N junction regions 12,
After forming the metal film 14 between the bonding regions 12, heat-treating the metal film 14 to introduce metal atoms of the metal film between the P-N junction regions formed in the compound semiconductor crystal 11. It is characterized by having

〔作 用〕 一般にP型化合物半導体結晶に形成された少数キャリア
の寿命τはオージェ再結合の寿命をτ4、放射再結合の
寿命をτえ、ショックレーリード再結合の寿命をτ3、
で示すと第(11式のようになる。
[Function] In general, the lifetime τ of minority carriers formed in a P-type compound semiconductor crystal is the Auger recombination lifetime τ4, the radiative recombination lifetime τ, and the Shockley-Reed recombination lifetime τ3,
If it is shown as Equation (11).

1/τ=1/τ、+1/τ、+1/τ、l・・・・・・
・・・・・・(1)τ*  (no + po+ n 
e )刊・・・・・・・・・・・・(2)但し、noは
電子濃度、poは正孔濃度、noは少数キャリア濃度を
示す。またτ、は第(3)式で表せる。
1/τ=1/τ, +1/τ, +1/τ, l...
......(1) τ* (no + po+ n
e) Publication (2) However, no represents the electron concentration, po represents the hole concentration, and no represents the minority carrier concentration. Further, τ can be expressed by equation (3).

τ^  ((po+n5)(no+po+n、))  
−’ −・・・・・・・・・(3) またτ311は第(4)式で表せる。
τ^ ((po+n5)(no+po+n,))
−' −・・・・・・・・・(3) Moreover, τ311 can be expressed by equation (4).

τsyr  po−’・・・・・・・・・(4)第(1
1〜第(4)式に示すようにキャリア濃度が大になるに
つれて少数キャリア寿命は短くなる。
τsyr po−'・・・・・・・・・(4)th (1st
As shown in equations 1 to (4), the minority carrier lifetime becomes shorter as the carrier concentration increases.

つまり第(2)、第(3)および第(4)式とも、正札
キャリア濃度が増加すると、第(2)式は(no + 
po+ n m )第(3)式は((po + n e
 )(no + po+ n m )) 、第(4)式
はpoにそれぞれ反比例するからτ1、τ8、τ、ll
  は小さく成る。従ってil1式より少数キャリア寿
命τも小さくなる。
In other words, in equations (2), (3), and (4), when the carrier concentration of the genuine tag increases, equation (2) becomes (no +
po + n m ) Equation (3) is ((po + n e
)(no + po+ nm)), since equation (4) is inversely proportional to po, τ1, τ8, τ, ll
becomes smaller. Therefore, the minority carrier lifetime τ also becomes smaller than the il1 equation.

11g1□Cd、 Te結晶に於いては、金、銀、銅等
の金属原子が正孔濃度を増加させる原子で、この原子を
検知素子間に4人すると、少数キャリアの寿命は短くな
り、そのため検知素子間で光電変換されて化合物半導体
結晶に形成された少数キャリアの正孔の寿命が短くなる
ので、この少数キャリアが隣接する検知素子に到達しな
くなり、従ってクロストークの発生が少なくなる。
In 11g1□Cd, Te crystals, metal atoms such as gold, silver, and copper are atoms that increase the hole concentration.If four of these atoms are placed between the sensing elements, the lifetime of minority carriers will be shortened. Since the lifetime of the holes of minority carriers formed in the compound semiconductor crystal through photoelectric conversion between the sensing elements is shortened, these minority carriers no longer reach adjacent sensing elements, and therefore the occurrence of crosstalk is reduced.

そしてこの化合物半導体結晶に導入する金属原子を、検
知素子間に金属膜を被着して該検知素子のコンタクト電
極として形成し、この金属膜をレーザアニールすると金
属膜内の金属原子が容易に化合物半導体結晶に導入され
て少数キャリ、アの再結合中心となり、この再結合中心
に少数キャリアが捕獲されて該少数キャリアが容易に消
滅する。
Then, the metal atoms to be introduced into this compound semiconductor crystal are formed by depositing a metal film between the sensing elements as a contact electrode of the sensing element, and when this metal film is laser annealed, the metal atoms in the metal film easily form a compound. When introduced into the semiconductor crystal, it becomes a recombination center for minority carriers, A, and the minority carriers are captured at this recombination center and easily disappear.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図(alに示すように、カドミウム・亜鉛・テルル
(CdZnTe)より成る基板15上に厚さが20μm
でl xlOI6/ cm”のキャリア濃度を有するP
型のHg+−,1CdxTe (x =0.22)のエ
ピタキシャル層11を液相エピタキシャル成長方法によ
り形成する。
As shown in FIG.
P with a carrier concentration of l xlOI6/cm”
An epitaxial layer 11 of type Hg+-, 1CdxTe (x = 0.22) is formed by a liquid phase epitaxial growth method.

次いで該P型Hg+−x Cdx Teエピタキシャル
層11上に所定のパターンのレジスト膜16を形成し、
該レジスト膜16をマスクとしてイオン注入法によりB
゛原子イオン注入してN型層17を形成してPN接合領
域12を形成し、赤外線検知素子13とする。
Next, a resist film 16 with a predetermined pattern is formed on the P-type Hg+-x Cdx Te epitaxial layer 11,
By using the resist film 16 as a mask, B is
``Atomic ion implantation is performed to form an N-type layer 17 to form a PN junction region 12, and an infrared sensing element 13 is formed.

次いで第1図(b)に示すように、該赤外線検知素子上
にレジスト膜18を形成した後、該レジスト膜18をマ
スクとして金、銀、或いは銅の金属膜14を蒸着により
形成する。
Next, as shown in FIG. 1(b), a resist film 18 is formed on the infrared sensing element, and then a metal film 14 of gold, silver, or copper is formed by vapor deposition using the resist film 18 as a mask.

次いで第1図(C)に示すように、前記第1図(b)の
レジスト膜18を除去するとともにその上の金属膜14
をも除去し、赤外線検知素子13間に金属膜14を基板
のコンタクト電極として形成する。
Next, as shown in FIG. 1(C), the resist film 18 of FIG. 1(b) is removed and the metal film 14 thereon is removed.
is also removed, and a metal film 14 is formed between the infrared sensing elements 13 as a contact electrode of the substrate.

次いで図示しないが、波長が488nmで出力がlWの
アルゴン(^r)イオンレーザ光を、5μ−の直径の光
ビームに集光し、走査速度が10鶴/分となるようにし
て金属Hg14上を走査し、前記蒸着により被着した金
属膜14をレーザアニールする。その後、図示しないが
電荷転送素子のような信号処理素子とコンタクトを採る
ためのインジウム(In)よりなる接続電極を前記赤外
線検知素子13上に蒸着により形成して多素子型赤外線
検知素子を形成する。
Next, although not shown in the figure, an argon (^r) ion laser beam with a wavelength of 488 nm and an output of 1 W was focused into a light beam with a diameter of 5 μ-, and was applied onto the metal Hg 14 at a scanning speed of 10/min. is scanned, and the metal film 14 deposited by the vapor deposition is laser annealed. Thereafter, although not shown, a connection electrode made of indium (In) for making contact with a signal processing element such as a charge transfer element is formed by vapor deposition on the infrared sensing element 13 to form a multi-element type infrared sensing element. .

このようにすれば、前記金属膜14中の金属原子がレー
ザアニールによって化合物半導体基板内に導入され、キ
ャリア濃度が増加することによって少数キャリアの寿命
も短くなり、検知素子間で発生したキャリアが消滅する
ためにクロストークの発生が少なくなる検知素子が得ら
れる。
In this way, the metal atoms in the metal film 14 are introduced into the compound semiconductor substrate by laser annealing, and the carrier concentration increases, which shortens the life of minority carriers, and the carriers generated between the sensing elements disappear. Therefore, a sensing element with less occurrence of crosstalk can be obtained.

なお、P−N接合12を形成する以前のHg1−x C
dXTe結晶にコンタクト電極を形成し、レーザアニル
で金属原子を添加した後、P−N接合を形成しても良い
Note that Hg1-x C before forming the P-N junction 12
A PN junction may be formed after forming a contact electrode on a dXTe crystal and adding metal atoms by laser annealing.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、検知素
子間で発生したキャリアが容易に消滅するのでクロスト
ークの発生を見ない高解像度の多素子型赤外線検知素子
が得られる効果がある。
As is clear from the above description, according to the present invention, carriers generated between sensing elements are easily annihilated, so that a high-resolution multi-element infrared sensing element that does not cause crosstalk can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図体)より第1図(C1迄は本発明の赤外線検知素
子の製造工程を示す断面図、 第2図は従来の赤外線検知素子の断面図、第3図は従来
の赤外線検知素子に於ける不都合を示す状態図、 第4図は従来の赤外線検知素子の製造方法を示す断面図
である。 図において、 11は化合物半導体結晶(P型Hg+−x Cdx T
eエピタキシャル層)、12はP−N接合領域、13は
赤外線検知素子、14は金属膜、15はCdZnTe基
板、16.18はレジスト膜、17はN型層を示す。 5iS4  図
Figure 1 (up to C1 is a cross-sectional view showing the manufacturing process of the infrared sensing element of the present invention, Figure 2 is a cross-sectional view of a conventional infrared sensing element, and Figure 3 is a cross-sectional view of a conventional infrared sensing element. Fig. 4 is a cross-sectional view showing the conventional manufacturing method of an infrared sensing element. In the figure, 11 is a compound semiconductor crystal (P-type Hg+-x Cdx T
12 is a P-N junction region, 13 is an infrared sensing element, 14 is a metal film, 15 is a CdZnTe substrate, 16.18 is a resist film, and 17 is an N-type layer. 5iS4 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)水銀を含む化合物半導体結晶(11)に該結晶と
逆導電型の不純物を導入して該結晶に所定の間隔を隔て
てP−N接合領域(12)を形成した後、前記基板のP
−N接合領域の間に金属膜(14)を被着形成し、該金
属膜を熱処理して該金属膜の金属原子をP−N接合領域
間に導入する工程を有することを特徴とする赤外線検知
素子の製造方法。
(1) After introducing an impurity of a conductivity type opposite to that of the crystal into a compound semiconductor crystal (11) containing mercury to form P-N junction regions (12) at a predetermined interval in the crystal, P
- Infrared rays characterized by comprising a step of depositing and forming a metal film (14) between the N junction regions, heat-treating the metal film and introducing metal atoms of the metal film between the P-N junction regions. Method of manufacturing a sensing element.
(2)前記P−N接合領域(12)を形成する以前に、
前記基板のP−N接合予定領域の間に前記金属膜(14
)を被着形成し、該金属膜を熱処理して該金属膜の金属
原子をP−N接合予定領域間に導入する工程を有するこ
とを特徴とする請求項(1)記載の赤外線検知素子の製
造方法。
(2) Before forming the P-N junction region (12),
The metal film (14
), and heat-treating the metal film to introduce metal atoms of the metal film between the planned P-N junction regions. Production method.
(3)前記金属膜をレーザアニールして前記金属膜の金
属原子を前記化合物半導体結晶に形成されたP−N接合
領域間に導入する工程を有することを特徴とする請求項
(1)または(2)に記載の赤外線検知素子の製造方法
(3) The method further comprises a step of laser annealing the metal film to introduce metal atoms of the metal film between P-N junction regions formed in the compound semiconductor crystal. 2) The method for manufacturing an infrared sensing element according to item 2).
JP1247317A 1989-09-21 1989-09-21 Manufacture of infrared ray detecting element Pending JPH03108371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247317A JPH03108371A (en) 1989-09-21 1989-09-21 Manufacture of infrared ray detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247317A JPH03108371A (en) 1989-09-21 1989-09-21 Manufacture of infrared ray detecting element

Publications (1)

Publication Number Publication Date
JPH03108371A true JPH03108371A (en) 1991-05-08

Family

ID=17161600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247317A Pending JPH03108371A (en) 1989-09-21 1989-09-21 Manufacture of infrared ray detecting element

Country Status (1)

Country Link
JP (1) JPH03108371A (en)

Similar Documents

Publication Publication Date Title
US9276022B2 (en) Low crosstalk, front-side illuminated, back-side contact photodiode array
JPS5812746B2 (en) semiconductor photodetector
US9397244B2 (en) CdHgTe photodiodes array
JPS63128677A (en) Mamufacture of semiconductor photodetector
US6180967B1 (en) Bicolor infrared detector with spatial/temporal coherence
JPH0828493B2 (en) Light detector
US7041983B2 (en) Planar geometry buried junction infrared detector and focal plane array
JPH03108371A (en) Manufacture of infrared ray detecting element
US5198370A (en) Method for producing an infrared detector
JPS60182764A (en) Semiconductor light receiving device
JPH0330479A (en) Infrared detector
EP0142891B1 (en) Infrared-sensitive charge-coupled device and method of manufacturing the same
JP2699838B2 (en) Infrared detector and manufacturing method thereof
JPH01228180A (en) Infrared ray detecting element
JPS63237484A (en) Semiconductor device
JPH02159761A (en) Infrared detector
JPH05343727A (en) Infrared detector and its manufacture
JP2001274451A (en) Semiconductor image pickup element and method of manufacturing it
JPH0319377A (en) Infrared detector
JP2716025B2 (en) Array type infrared detector and method of manufacturing the same
JPH01201971A (en) Infra-red ray detector
JPH0453164A (en) Infrared ray detection device
JPH0385762A (en) Photodetector
JPH01205476A (en) Infrared ray detector
JPS60182765A (en) Semiconductor light receiving device