JPH02159761A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH02159761A
JPH02159761A JP63315875A JP31587588A JPH02159761A JP H02159761 A JPH02159761 A JP H02159761A JP 63315875 A JP63315875 A JP 63315875A JP 31587588 A JP31587588 A JP 31587588A JP H02159761 A JPH02159761 A JP H02159761A
Authority
JP
Japan
Prior art keywords
region
substrate
infrared
compound semiconductor
protrudent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63315875A
Other languages
Japanese (ja)
Inventor
Hiroyuki Wakayama
若山 博之
Hajime Sudo
須藤 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63315875A priority Critical patent/JPH02159761A/en
Publication of JPH02159761A publication Critical patent/JPH02159761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To prevent the cross talk of a photoelectrically converted signal by a method wherein impurity atoms are introduced into a compound semiconductor crystal which is partitioned by a protruded region and buried in a recessed region of a semiconductor substrate where the conductivity type of the impurity atoms is opposite to that of the compound semiconductor crystal. CONSTITUTION:A compound semiconductor crystal 11 and opposite conductivity type impurity atoms are introduced into a region which is buried in a recessed region 14 provided to a semiconductor substrate 11 and partitioned by a protrudent region 13 of the substrate 11 to form infrared detective elements 5C, 5D, and 5E elementally isolated from each other by the protrudent region 13. Therefore, infrared rays being incident facing a protrudent region 13B are not incident on the detective elements 5C and 5D adjacent to the protrudent region 13B, and carriers occurred by infrared rays incident on facing the protrudent region 13C are prevented from reaching to the adjacent detective elements 5D and 5E. By this setup, the cross talk of a signal can be prevented.

Description

【発明の詳細な説明】 〔概 要〕 裏面入射型の光起電力型赤外線検知装置に関し、隣接す
る検知素子間で光電変換された信号がクロストークを生
じるのを防止するのを目的とし、半導体基板に凹凸領域
を設け、該凹部領域内に化合物半導体結晶を埋設し、前
記基板の凸部領域で仕切られた化合物半導体結晶に該結
晶と逆導電型の不純物原子を導入し、前記基板の凸部領
域で素子分離された赤外線検知素子を設けたことで構成
する。
[Detailed Description of the Invention] [Summary] Regarding a back-illuminated photovoltaic infrared detection device, the purpose of this is to prevent crosstalk of signals photoelectrically converted between adjacent detection elements. An uneven region is provided in the substrate, a compound semiconductor crystal is buried in the depressed region, and an impurity atom having a conductivity type opposite to that of the crystal is introduced into the compound semiconductor crystal partitioned by the raised region of the substrate. It is constructed by providing an infrared sensing element that is separated in a region.

〔産業上の利用分野〕[Industrial application field]

本発明は裏面入射型の光起電力型赤外線検知装置に関す
る。
The present invention relates to a back-illuminated photovoltaic infrared sensing device.

カドミウムテルル(CdTe)のような赤外線を透過し
、高抵抗な化合物半導体基板にエネルギーバンドギャッ
プの狭い水銀・カドミウム・テルル(Hg+−x Cd
x Te)のような化合物半導体結晶層をエピタキシャ
ル成長し、該結晶層に該結晶層と逆導電型の不純物原子
を導入してP−N接合を形成してホトダイオードよりな
る検知素子を形成した裏面入射型の光起電力型赤外線検
知装置は周知である。
Mercury/cadmium/tellurium (Hg+-
A back-illuminated method in which a compound semiconductor crystal layer such as x Te) is epitaxially grown, and impurity atoms of the opposite conductivity type to that of the crystal layer are introduced into the crystal layer to form a P-N junction to form a sensing element consisting of a photodiode. Photovoltaic infrared sensing devices of the type are well known.

〔従来の技術〕[Conventional technology]

第4図は従来の光起電力型赤外線検知装置の断面図で、
図示するように赤外線を透過し、エピタキシャル成長用
のCdTe基板1上に、P型のogCdXTeのエピタ
キシャル層2が液相エピタキシャル成長方法等を用いて
形成され、該エピタキシャル層2の所定位置に所定パタ
ーンにN型の不純物、例えばB原子がイオン注入されて
N型層3が形成されてP−N接合部4を有する光起電力
型のホトダイオードよりなる検知素子5が形成されてい
る。
Figure 4 is a cross-sectional view of a conventional photovoltaic infrared detection device.
As shown in the figure, an epitaxial layer 2 of P-type ogCdXTe is formed on a CdTe substrate 1 for epitaxial growth, which transmits infrared rays, using a liquid phase epitaxial growth method or the like. A type impurity such as B atoms is ion-implanted to form an N-type layer 3, and a sensing element 5 comprising a photovoltaic photodiode having a PN junction 4 is formed.

更に該基板上に硫化亜鉛(ZnS)膜等の絶縁性保護膜
6が形成され、このホトダイオードよりなる検知素子5
上の保護膜6は開口され、前記検知素子5と接続するよ
うにしてインジウム(In)よりなる金属電極7が形成
され、該金属電極を介して前記検知素子で光電変換され
た信号を処理する電荷転送素子等の信号処理素子8の入
力ダイオードと接続されている。
Furthermore, an insulating protective film 6 such as a zinc sulfide (ZnS) film is formed on the substrate, and a sensing element 5 made of this photodiode is formed.
The upper protective film 6 is opened, and a metal electrode 7 made of indium (In) is formed so as to be connected to the detection element 5, and the signal photoelectrically converted by the detection element is processed through the metal electrode. It is connected to an input diode of a signal processing element 8 such as a charge transfer element.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような赤外線検知装置と前記した信号処
理素子とを結合した赤外線撮像装置に於いては、赤外線
検知装置の基板1の裏面側より矢印AおよびB方向に示
すように赤外線を入射している。
By the way, in an infrared imaging device that combines such an infrared detection device and the signal processing element described above, infrared rays are incident from the back side of the substrate 1 of the infrared detection device in the directions of arrows A and B. There is.

このような基板1の裏面側より入射した赤外線は、第3
図に示すように基板1を透過した後、エピタキシャル層
2で光電変換されて少数キャリア8となり、この少数キ
ャリア8はその拡散長内にある検知素子4に注入される
ことで電気信号となる。
The infrared rays incident from the back side of the substrate 1 are
As shown in the figure, after passing through the substrate 1, the light is photoelectrically converted into minority carriers 8 in the epitaxial layer 2, and these minority carriers 8 are injected into the detection element 4 within the diffusion length thereof, thereby becoming an electric signal.

ところでこのような赤外線検知装置は、高解像度化を図
るために、検知素子の二次元化、或いは素子の高密度化
が図られている。そのため隣接する検知素子間の間隔が
狭くなる傾向にある。そしてこの検知素子間の間隔!は
、例えば矢印B方向より入射された入射赤外線によって
発生した少数ギヤリア8Bの拡散長程度か、或いはこの
拡散長以下になった場合は、前記した少数キャリアは対
象画素となる赤外線検知素子5A以外の検知素17−5
Bへも到達して光電変換された電気信号のクロストクの
現象を発生する問題がある。そのため、検知素子の間隔
は100μm以−ヒ必要としているのが現状であり、更
に高密度に検知素子を配置した場合でもクロストークを
発生し難い検知装置が望まれる。
By the way, in order to achieve high resolution in such an infrared detection device, the detection elements are made two-dimensional or the density of the elements is increased. Therefore, the distance between adjacent sensing elements tends to become narrower. And the spacing between these sensing elements! is, for example, approximately the diffusion length of the minority gear 8B generated by the incident infrared rays incident from the direction of arrow B, or if it becomes less than this diffusion length, the minority carriers mentioned above are present in the infrared detecting element 5A, which is the target pixel. Detection element 17-5
There is a problem in that a cross-tock phenomenon occurs in the electrical signal that reaches B and is photoelectrically converted. Therefore, the current situation is that the spacing between the sensing elements is required to be 100 μm or more, and a sensing device that is less likely to cause crosstalk even when the sensing elements are arranged at a higher density is desired.

本発明はヒ記した問題点に鑑みてなされたもので、検知
素子を高密度に配設しても隣接した検知素子に光電変換
されたキャリアが到達しない高解像度の赤外線検知装置
の提供を目的としている。
The present invention has been made in view of the above-mentioned problems, and aims to provide a high-resolution infrared detection device in which photoelectrically converted carriers do not reach adjacent detection elements even when detection elements are arranged in high density. It is said that

〔課題を解決するための手段〕[Means to solve the problem]

−F記目的を達成する本発明の赤外線検知装置は、第1
図の原理図に示すように半導体基板11に凹凸領域14
.13を設け、該凹部領域14内に化合物半導体結晶1
2を埋設し、前記基板の凸部領域13で仕切られた領域
に前記化合物半導体結晶と逆導電型の不純物原子を導入
して前記基板の凸部領域13で素子分離された赤外線検
知素子5C,5D、5Eを設けたことで構成する。
- The infrared detection device of the present invention that achieves the object described in F.
As shown in the principle diagram of FIG.
.. 13, and a compound semiconductor crystal 1 is provided in the recessed region 14.
2 is buried, and impurity atoms of a conductivity type opposite to that of the compound semiconductor crystal are introduced into a region partitioned by the convex regions 13 of the substrate, so that the elements are separated by the convex regions 13 of the substrate, It is configured by providing 5D and 5E.

〔作 用〕[For production]

ト記第1図の原理図に示すように予め凹凸領域を形成し
た赤外線透過基板11に、赤外線検知素子形成用の化合
物半導体結晶層12を設け、この結晶層内に素子形成用
の不純物原子を導入して、前記凸部領域13A、 13
B、 13C,13Dで画定された領域内に検知素子5
G、5D、5Bを形成すると該検知素子は前記凸部領域
13八、 1.3B、、13G、 130で素子分離さ
れる。
As shown in the principle diagram of FIG. 1, a compound semiconductor crystal layer 12 for forming an infrared sensing element is provided on an infrared transmitting substrate 11 on which uneven regions have been formed in advance, and impurity atoms for forming an element are provided in this crystal layer. Introducing the convex regions 13A, 13
The detection element 5 is located within the area defined by B, 13C, and 13D.
After forming G, 5D, and 5B, the sensing elements are separated by the convex regions 138, 1.3B, , 13G, and 130.

この凹凸領域14.13を形成するCdTeの基板11
は、検知素子形成用の化合物半導体結晶層12よりも高
抵抗に保つようにする。
CdTe substrate 11 forming this uneven region 14.13
is maintained at a higher resistance than the compound semiconductor crystal layer 12 for forming the sensing element.

゛すると基板の凸部領域13A、13Bで画定された検
知素子5Cに対応して入射された矢印Cに示す赤外線は
、対象の検知素子5Cの化合物半導体結晶12に導入さ
れて少数キャリア8Cとなって該検知素子5CのP−N
接合部9で信号電荷となる。
Then, the infrared rays shown by the arrow C that are incident on the detection element 5C defined by the convex regions 13A and 13B of the substrate are introduced into the compound semiconductor crystal 12 of the target detection element 5C and become minority carriers 8C. P-N of the sensing element 5C
It becomes a signal charge at the junction 9.

然し、凸部領域13B、 13Gで画定された検知素子
5DのP−N接合部9の側端部9八に対向して入射され
た矢印りに示す赤外線の光電変換されたキャリア8Dの
うち、隣接した検知素子5Cに拡散しようとしたキャリ
アの拡散長が、隣接する検知素子5Cに拡散するのに充
分な値であっても前記した高抵抗の基板11の凸部領域
13八に遮られて拡散できない。
However, among the carriers 8D photoelectrically converted from the infrared rays shown by the arrows, which are incident on the side edge 98 of the P-N junction 9 of the sensing element 5D defined by the convex regions 13B and 13G, Even if the diffusion length of carriers attempting to diffuse into the adjacent sensing element 5C is sufficient to diffuse into the adjacent sensing element 5C, it is blocked by the convex region 138 of the high-resistance substrate 11 described above. Can't spread.

また隣接する検知素子5Dと5Eの間の凸部領域13G
に対向して入射された矢印Eに示す赤外線は検知素子に
入射されず、そのまま基板を透過するので信号電荷とな
らない。
Also, a convex region 13G between adjacent sensing elements 5D and 5E.
The infrared rays shown by the arrow E that are incident opposite to the infrared rays are not incident on the detection element and are transmitted through the substrate as they are, so that they do not become signal charges.

そのため、凸部領域13Bに対向して入射された赤外線
は該凸部領域13Bに隣接する検知素子5C,50に入
射されず、また凸領域13Cに対向して入射された赤外
線で発生したキャリアは隣接する検知素子5D、5Eの
いずれにも到達せず信号のクロストクを発生しない。
Therefore, the infrared rays incident opposite to the convex region 13B are not incident on the detection elements 5C, 50 adjacent to the convex region 13B, and the carriers generated by the infrared rays incident opposite to the convex region 13C are The signal does not reach any of the adjacent sensing elements 5D and 5E, and no signal crosstock occurs.

〔実 施 例・〕〔Example·〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

前記した第2図は本発明の赤外線検知装置の一実施例を
示す断面図である。
FIG. 2 described above is a sectional view showing one embodiment of the infrared detection device of the present invention.

図示するように本発明の赤外線検知装置は、半導体基板
11に凹凸領域1.4.13を設け、該凹部領域14内
にP型の11g1−x Cdx Teのエピタキシャル
層16を埋設し、前記基板の凸部領域13で仕切られた
領域に前記化合物半導体結晶層と逆導電型の不純物原子
を導入してN゛型層17を形成して赤外線検知素子5C
,5Dおよび5Eを設ける。
As shown in the figure, in the infrared detection device of the present invention, a semiconductor substrate 11 is provided with concavo-convex regions 1.4.13, a P-type 11g1-x Cdx Te epitaxial layer 16 is buried in the concave regions 14, and Impurity atoms of a conductivity type opposite to that of the compound semiconductor crystal layer are introduced into the region partitioned by the convex region 13 to form an N-type layer 17, thereby forming an infrared sensing element 5C.
, 5D and 5E are provided.

そして基板11−ヒにZnS膜よりなる保護膜18が基
板のP−N接合部9領域−Fに選択的に形成され、前記
N゛型層17上に信号処理素子との結合用のInの金属
ハンプ19が形成され、該金属ハンプ19と接触しない
ように基板トに検知素子のバイアス電圧印加用の金のコ
ンタク1〜電極21が設けられている。
Then, a protective film 18 made of a ZnS film is selectively formed on the substrate 11-H in the P-N junction region 9-F of the substrate, and an In film for coupling with the signal processing element is formed on the N-type layer 17. A metal hump 19 is formed, and gold contacts 1 to 21 for applying a bias voltage to the sensing element are provided on the substrate so as not to come into contact with the metal hump 19.

このような本発明の赤外線検知装置を形成する方法の一
実施例につき第3図(a)より第3図((2)迄を用い
て説明する。
An embodiment of the method for forming the infrared detecting device of the present invention will be described with reference to FIGS. 3(a) to 3(2).

第3図(a)に示すようにCd T e基板11上の所
定位置に、所定パターンのレジスト膜15をホトリソグ
ラフィ法を用いて形成する。
As shown in FIG. 3(a), a resist film 15 having a predetermined pattern is formed at a predetermined position on the Cd Te substrate 11 using photolithography.

次いで第3図(b)に示すように該レジスト膜15をマ
スクとして用いてCdTe基板11を臭素(Brz) 
とメタノール(CIhOI+)の混合液を用いて素子形
成予定領域に深さが30μm程度の四部領域】4を形成
する。
Next, as shown in FIG. 3(b), using the resist film 15 as a mask, the CdTe substrate 11 is exposed to bromine (Brz).
A four-part region 4 having a depth of about 30 μm is formed in the region where the element is to be formed using a mixed solution of 1 and methanol (CIhOI+).

次いで第3図(C)に示すように前記レジスト膜15を
除去した後、該基板」二にP型のHg、−8CdXTe
のエピタキシャル層16を液相エピタキシャル成長法を
用いて25μm程度の厚さに形成する。
Next, as shown in FIG. 3(C), after removing the resist film 15, the substrate was coated with P-type Hg, -8CdXTe.
The epitaxial layer 16 is formed to a thickness of about 25 μm using a liquid phase epitaxial growth method.

次いで該エピタキシャル結晶層16にボロン原子をイオ
ン注入してN′″層17を形成する。
Next, boron atoms are ion-implanted into the epitaxial crystal layer 16 to form an N'' layer 17.

次いで第3図(d)に示すように前記基板を研磨し、前
記基板基板に形成した凹凸領域の凸部領域13が露出す
るまで研磨し、その表面を前記した臭素とメタノールの
混合液の希釈液にてエツチングする。
Next, as shown in FIG. 3(d), the substrate is polished until the convex regions 13 of the uneven regions formed on the substrate are exposed, and the surface is diluted with the above-described mixed solution of bromine and methanol. Etch with liquid.

次いで第3図(e)に示すように基板表面にZnSより
成る保護膜14を蒸着法等を用いて形成する。
Next, as shown in FIG. 3(e), a protective film 14 made of ZnS is formed on the surface of the substrate using a vapor deposition method or the like.

次いで第3図(f)に示すように、検知素子のPN接合
部トに選択的に前記保護膜14を残し、他の領域に形成
されている前記保護膜をレジスト膜(図示せず)をマス
クとして用いてエツチングして除去した後、蒸着および
レジスト膜をマスクとして用いたエツチングによりN4
層上にInの金属ハンプ19を形成する。
Next, as shown in FIG. 3(f), the protective film 14 is selectively left on the PN junction of the sensing element, and the protective film formed in other areas is covered with a resist film (not shown). After removing by etching using the resist film as a mask, N4 was removed by vapor deposition and etching using the resist film as a mask.
A metal hump 19 of In is formed on the layer.

次いで第3図(樽に示すように、前記検知素子のP−N
接合部上とN″領域上を除いた領域上に蒸着およびレジ
スト膜を用いたリフトオフ法により前記ダイオードのバ
イアス電圧印加用の金のコンタクト電極21を形成して
素子を形成する。
Then, in FIG. 3 (as shown in the barrel, the P-N of the sensing element
A gold contact electrode 21 for applying a bias voltage to the diode is formed on the region except the junction portion and the N'' region by vapor deposition and a lift-off method using a resist film to form an element.

このようにすれば基板の底部より基板の凸部領域、即ち
検知素子間領域に対向して入射された光は基板を透過し
てエピタキシャル層16を通過しないので光電変換され
ず、号電荷とならない。また検知素子を形成する化合物
半導体結晶層内に形成されたP−N接合部の側端部に対
向して入射されて、光電変換された少数キャリアは、隣
接する素子間の距離が少数キャリアの拡散長より短い場
合でも前記高抵抗の基板の凸部領域に遮られ、隣接する
検知素子に信号電荷が導入されないので信号電荷のクロ
ストークの発生しない赤外線検知装置が得られる。
In this way, light incident from the bottom of the substrate facing the convex region of the substrate, that is, the region between the sensing elements, is transmitted through the substrate and does not pass through the epitaxial layer 16, so it is not photoelectrically converted and does not become a signal charge. . In addition, the minority carriers that are incident on the side edges of the P-N junction formed in the compound semiconductor crystal layer forming the sensing element and photoelectrically converted are Even when the infrared rays are shorter than the diffusion length, they are blocked by the convex region of the high-resistance substrate and the signal charges are not introduced into the adjacent detection elements, so that an infrared detection device in which crosstalk of signal charges does not occur can be obtained.

〔発明の効果〕〔Effect of the invention〕

以トの説明から明らかなように本発明によれば赤外線検
知装置の製造の初期段階で素子分離ができ、高密度に検
知素子を形成してもクロスl−−りの発生しない、鮮明
な赤外画像が形成される赤外線検知装置が得られる効果
がある。
As is clear from the following description, according to the present invention, elements can be separated at the initial stage of manufacturing an infrared detection device, and even when sensing elements are formed in high density, clear red light can be produced without cross-reflection. This has the effect of providing an infrared detection device in which an external image is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の赤外線検知装置の原理図、第2図は本
発明の装置の一実施例の断面図、第3図(a)より第3
図(g)迄は本発明の装置の製造方法を示す断面図、 第4回は従来の装置の断面図である。 図において、 5G、50.5Eは赤外線検知素子、8C,8Dは少数
キャリア、9,9AはPごN接合部、】1は半導体裁板
(CdTe基板)、I2は化合物半導体結晶層、13,
13八、13813C,13Dは凸部領域、14は凹部
領域、]5はレジスト膜、1GはP型tJg+−x c
dXTeエピタキシャル層、】7はN+層、18は保護
膜、19はIn金属バンプ、2】はコンタクト電極を示
す。
Fig. 1 is a principle diagram of the infrared detection device of the present invention, Fig. 2 is a sectional view of an embodiment of the infrared detection device of the present invention, and Fig.
The figures up to (g) are cross-sectional views showing the method of manufacturing the device of the present invention, and the fourth figure is a cross-sectional view of a conventional device. In the figure, 5G and 50.5E are infrared sensing elements, 8C and 8D are minority carriers, 9 and 9A are P-N junctions, ]1 is a semiconductor cutting board (CdTe substrate), I2 is a compound semiconductor crystal layer, 13,
138, 13813C, 13D are convex regions, 14 are concave regions, ]5 is a resist film, 1G is P type tJg+-x c
dXTe epitaxial layer, ]7 is an N+ layer, 18 is a protective film, 19 is an In metal bump, and 2] is a contact electrode.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板(11)に凹凸領域(14、13)を設け、
該凹部領域(14)内に化合物半導体結晶(12)を埋
設し、前記基板の凸部領域(13)で仕切られた化合物
半導体結晶(12)に該結晶と逆導電型の不純物原子を
導入し、前記基板の凸部領域(13)で素子分離された
赤外線検知素子を設けたことを特徴とする赤外線検知装
置。
Providing uneven regions (14, 13) on a semiconductor substrate (11),
A compound semiconductor crystal (12) is buried in the concave region (14), and impurity atoms of a conductivity type opposite to that of the crystal are introduced into the compound semiconductor crystal (12) partitioned by the convex region (13) of the substrate. . An infrared detection device comprising an infrared detection element separated by the convex region (13) of the substrate.
JP63315875A 1988-12-13 1988-12-13 Infrared detector Pending JPH02159761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63315875A JPH02159761A (en) 1988-12-13 1988-12-13 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63315875A JPH02159761A (en) 1988-12-13 1988-12-13 Infrared detector

Publications (1)

Publication Number Publication Date
JPH02159761A true JPH02159761A (en) 1990-06-19

Family

ID=18070648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63315875A Pending JPH02159761A (en) 1988-12-13 1988-12-13 Infrared detector

Country Status (1)

Country Link
JP (1) JPH02159761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201184A (en) * 2006-01-26 2007-08-09 Nec Electronics Corp Solid-state imaging device
JP2008300743A (en) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp Infrared solid-state imaging apparatus, and manufacturing method thereof
JP2012142638A (en) * 2012-04-27 2012-07-26 Renesas Electronics Corp Solid-state imaging device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201184A (en) * 2006-01-26 2007-08-09 Nec Electronics Corp Solid-state imaging device
US8334915B2 (en) 2006-01-26 2012-12-18 Renesas Electronics Corporation Solid-state image pickup device
JP2008300743A (en) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp Infrared solid-state imaging apparatus, and manufacturing method thereof
JP2012142638A (en) * 2012-04-27 2012-07-26 Renesas Electronics Corp Solid-state imaging device

Similar Documents

Publication Publication Date Title
US10056416B2 (en) Majority current assisted radiation detector device
EP0518243B1 (en) Two-color radiation detector array and method of fabricating same
KR100670828B1 (en) Photo-detector for image signal of infrared laser radar and method of manufacturing the same
JPS5812746B2 (en) semiconductor photodetector
JP3049015B2 (en) Active pixel cell with bandgap design
JPH05267695A (en) Infrared image sensing device
JPH0828493B2 (en) Light detector
JPH02159761A (en) Infrared detector
JPH04246860A (en) Photoelectric conversion device
US10608040B2 (en) Photodetection device which has an inter-diode array and is overdoped by metal diffusion and manufacturing method
US5075748A (en) Photodetector device
JPS6154314B2 (en)
US3916429A (en) Gated silicon diode array camera tube
JPS63273365A (en) Infrared-ray detector
JPH0654803B2 (en) Semiconductor light receiving device
JPH0319377A (en) Infrared detector
JPH07105522B2 (en) Semiconductor device
CN110710000B (en) Semiconductor photodetector device with protection from ambient backlight
JPH02155269A (en) Infrare-ray detector
JPH03148175A (en) Infrared ray detector
JP3364989B2 (en) Avalanche photodiode for split optical sensor
JPH012375A (en) infrared detection device
JPH01201971A (en) Infra-red ray detector
JPH01147875A (en) Infra-red ray detector
JPS60182765A (en) Semiconductor light receiving device