JPH03108244A - Contact device for photocathode of phototube and its manufacture - Google Patents

Contact device for photocathode of phototube and its manufacture

Info

Publication number
JPH03108244A
JPH03108244A JP24029389A JP24029389A JPH03108244A JP H03108244 A JPH03108244 A JP H03108244A JP 24029389 A JP24029389 A JP 24029389A JP 24029389 A JP24029389 A JP 24029389A JP H03108244 A JPH03108244 A JP H03108244A
Authority
JP
Japan
Prior art keywords
substrate
contact device
photocathode
contact
narrow conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24029389A
Other languages
Japanese (ja)
Inventor
Eugene Andre Begin Michel
ミッシェル ウージェン アンドレ ベギン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Philips Gloeilampenfabrieken NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Gloeilampenfabrieken NV filed Critical Philips Gloeilampenfabrieken NV
Priority to JP24029389A priority Critical patent/JPH03108244A/en
Publication of JPH03108244A publication Critical patent/JPH03108244A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a high quantum efficiency and a low resistance value per unit area by forming a contact device with a narrow conductive contact, accumulated in an effective area on a substrate. CONSTITUTION: A contact device 10 is formed with a narrow conductive contact 20, accumulated in an effective area on a substrate 12 as a glass window. In manufacture, a photopolymerized resin layer 30 is accumulated on the substrate 12, and the resin layer is exposed to light and developed to form a track 31 for the narrow conductive contact 20. A metal layer 32 is accumulated in an effective area on the substrate 12. The residual resin area and the metal layer area located outside the track 31 are removed with a known treatment as 'lift-off' method using ultrasonic wave and acetone, so that only the narrow conductive contact 20 can remain on the surface of the substrate 12. In the final treatment, a photoelectric cathode 11 is accumulated on the surface of the substrate 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光電陰極を支持する基板上に金属被覆を設けて
成る光電管の光電陰極用接点装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a contact device for a photocathode of a phototube, which comprises a metal coating provided on a substrate supporting the photocathode.

本発明は斯る接点装置の製造方法にも関するものである
The invention also relates to a method of manufacturing such a contact device.

本発明は高速イメージ増倍管及び超高速スロット走査型
撮像管の分野に特に有用である。
The invention is particularly useful in the fields of high speed image intensifiers and ultra high speed slot scanning imager tubes.

(従来の技術) 光電管及び特に高速及び超高速光電管用の光電陰極接点
装置に対し解決すべき技術的問題は、光電陰極と関連す
る時定数RC(Rは光電陰極の単位面積当りの抵抗値)
を低減するために管の電源から光電陰極への電子の高速
供給を得ることにある。
BACKGROUND OF THE INVENTION A technical problem to be solved for photocathode contact devices for photocells and especially for high-speed and ultra-fast photocells is the time constant RC associated with the photocathode (R is the resistance per unit area of the photocathode).
The goal is to obtain a high-speed supply of electrons from the tube power supply to the photocathode in order to reduce the

動作中、光電陰極は実際上急速に自身の電子を放出しつ
くしてしまうので、管を高いスイッチング速度で動作さ
せる必要がある場合には光電陰極の電子を極めて短時間
内に再発生させるのに電子の高速供給が絶対に必要であ
る。この技術的問題に対する既知の解決方法は前記光電
陰極を支持する基板上に金属被覆を形成し、例えばニッ
ケル、ニッケルークロム、アルミニウム又はプラチナか
ら成る半透明の導電性のサブ層を構成することにある。
During operation, the photocathode depletes its electrons practically rapidly, so if the tube needs to operate at high switching speeds, it is necessary to regenerate the photocathode electrons within a very short time. A fast supply of electrons is absolutely necessary. A known solution to this technical problem consists in forming a metallization on the substrate supporting the photocathode, for example comprising a translucent conductive sublayer of nickel, nickel-chromium, aluminum or platinum. be.

(発明が解決しようとする課題) この既知の接点装置の量子効率は一方では光電陰極自体
の感度に□より、及び他方では導電性のサブN/基板組
立体の光透過率により制限される。
The quantum efficiency of this known contact device is limited on the one hand by the sensitivity of the photocathode itself and on the other hand by the light transmission of the conductive sub-N/substrate assembly.

これがため、このサブ層の厚さは2つのN(金属及び光
電陰極)の組立体の抵抗率とサブ層及び光電陰極の光透
過率との正しい兼合いが得られるように選択される。換
言すれば、導電性サブ層の厚さはその単位面積当りの抵
抗値が相当低くなるように十分な厚さにする必要がある
が(代表的には100〜500人)、これでは厚すぎて
装置の量子効率が許容し得ないほどに減少してしまう。
The thickness of this sublayer is therefore chosen to obtain the right trade-off between the resistivity of the two N (metal and photocathode) assembly and the light transmission of the sublayer and photocathode. In other words, the thickness of the conductive sublayer needs to be thick enough so that its resistance per unit area is fairly low (typically 100-500), but this is too thick. This results in an unacceptably reduced quantum efficiency of the device.

実際には、この兼合いを得る必要があるために特に超高
速光電管を完全に満足する接点装置を得ることはできな
い。更に、この既知のタイプの接点装置は、導電性サブ
層の抵抗率が比較的高く、光電陰極の周縁でしか電子が
効率良く注入されない欠点がある。
In practice, the need to achieve this trade-off makes it impossible to obtain a contact device that is completely satisfactory, especially for ultrafast phototubes. Furthermore, this known type of contact device has the disadvantage that the electrically conductive sublayer has a relatively high resistivity and that electrons can only be efficiently injected at the periphery of the photocathode.

本発明の目的は上述の技術的問題を解決し、高い量子効
率と、光電陰極の全有効区域に亘って略々均一に光電陰
極に電子を注入することを可能にする低い単位面積当り
の抵抗値とを得ることができる光電管の光電陰極用接点
装置を提供することにある。基板が透明なコアガラス部
分と不透明なエツジガラス部分を有する光ファイバの束
の端面である特定の例においては光透過率が不透明なエ
ツジガラス部分により予め減少しているのでこれ以上減
少させないことが望まれる。
The object of the present invention is to solve the above-mentioned technical problem and to provide a high quantum efficiency and a low resistance per unit area, which makes it possible to inject electrons into the photocathode substantially uniformly over the entire effective area of the photocathode. It is an object of the present invention to provide a contact device for a photocathode of a phototube, which can obtain the following values. In certain instances where the substrate is the end face of a bundle of optical fibers having a transparent core glass portion and an opaque edge glass portion, it is desired that the light transmittance is already reduced by the opaque edge glass portion and not further reduced. .

(課題を解決するための手段) 上述の技術的問題を解決する本発明の手段は、接点装置
を基板の有効区域上に堆積した幅狭の導電性接点により
形成することにある。この場合、前記幅狭導電性接点の
幅を調整することにより所望の総合光透過率を得ること
ができると共に、これら接点に十分な厚さを与えること
により所望の総合抵抗値を得ることができる。更に、電
子の注入は光電陰極の周縁部で優先的に起らず、全有効
区域に亘って一様に起り、これにより応答時間が更に改
善される。その理由は、電子が光電陰極の種々の部分に
移動するのに要する時間が減少するためである。特定の
実施例では、前記幅狭導電性接点を光ファイバの束の端
面のエツジガラス部分上に堆積する。この場合、コアガ
ラス部分及びエツジガラス部分と関連する初期光透過率
は幅狭導電性接点の存在により影響されない。
SUMMARY OF THE INVENTION The means of the invention to solve the above-mentioned technical problem consists in forming the contact device with narrow electrically conductive contacts deposited on the active area of the substrate. In this case, a desired overall light transmittance can be obtained by adjusting the width of the narrow conductive contacts, and a desired overall resistance value can be obtained by giving these contacts a sufficient thickness. . Furthermore, the injection of electrons does not occur preferentially at the periphery of the photocathode, but occurs uniformly over the entire effective area, which further improves the response time. The reason is that the time required for electrons to travel to different parts of the photocathode is reduced. In a particular embodiment, the narrow conductive contact is deposited on an edge glass portion of an end face of a bundle of optical fibers. In this case, the initial light transmission associated with the core glass portion and the edge glass portion is not affected by the presence of the narrow conductive contacts.

本発明の接点装置を製造する方法は“リフトオブとして
既知の技術を実行し、基板上に光重合性樹脂層を堆積し
、次いでこれを露光し現像して幅狭導電性接点を形成す
るためのトラックを形成し、次いで基板の全有効区域上
に金属層を堆積し、次いで超音波処理によって残存する
光重合性樹脂層及び前記トラックの外側に位置する金属
層部分を除去し、次いで基板の表面上に光電陰極を堆積
するのが有利である。
The method of manufacturing the contact device of the present invention includes performing a technique known as "lift-of" to deposit a layer of photopolymerizable resin on a substrate, which is then exposed and developed to form a narrow conductive contact. forming tracks, then depositing a metal layer over the entire effective area of the substrate, then removing the remaining photopolymerizable resin layer and the metal layer portion located outside said tracks by ultrasonication, and then Advantageously, a photocathode is deposited on top.

(実施例) 図面につき本発明の詳細な説明する。(Example) The invention will be explained in detail with reference to the drawings.

第1a及びIb図は光電陰極11を支持する基板12上
に金属被覆を設けて成る光電管の光電陰極用接点装置1
00本発明の第1の実施例を示す断面図及び平面図であ
る。第1a及び1b図に示すように、第1の実施例では
接点装置10を、第18及びIb図の場合にはガラス窓
である基板12の有効区域上に堆積された幅狭の導電性
接点20で構成する。これらの幅狭導電性接点20は前
記接点装置10を具える光電管の電源に接続される。接
点装置10の電気抵抗値を小さくすると共に光電陰極1
1との電子交換の速度を増大するために、幅狭導電性接
点20には従来−般に使われている金属サブ層の厚さよ
り著しく大きい厚さ、例えば数拾倍の厚さを与えると共
に十分な光透過率を維持することができる。この場合に
は幅狭導電性接点20の光透過率は実際上零であるため
、接点装置の光透過率は基板12の有効区域が幅狭導電
性接点20によって占められる面積と基板12の有効区
域の面積との比により決まる。第1a及びIb図に示す
ように幅狭導電性接点20が等間隔の平行導線である場
合には、装置の光透過率はこれら導線の幅りとこれら導
線の間隔りとの比により決まる。これがため、幅りが1
0人で、間隔りが100人の場合、装置の光透過率は9
0χである。これに対し、既知の半透明サブ層の場合に
は、光透過率は60〜70χ程度に制限され、これらの
値は例えば約50人のパラジウム層に対し得られるもの
である。
Figures 1a and 1b show a contact device 1 for a photocathode of a phototube, which comprises a metal coating on a substrate 12 supporting a photocathode 11.
00 is a sectional view and a plan view showing a first embodiment of the present invention. As shown in Figures 1a and 1b, in a first embodiment the contact device 10 is a narrow conductive contact deposited on the active area of a substrate 12, which in the case of Figures 18 and Ib is a glass window. Consists of 20. These narrow conductive contacts 20 are connected to the power source of the phototube comprising the contact device 10. While reducing the electrical resistance value of the contact device 10, the photocathode 1
In order to increase the rate of electron exchange with 1, the narrow conductive contact 20 is provided with a thickness that is significantly greater, e.g. Sufficient light transmittance can be maintained. In this case, the light transmittance of the narrow conductive contacts 20 is practically zero, so that the light transmittance of the contact device is determined by the effective area of the substrate 12 occupied by the narrow conductive contacts 20 and the effective area of the substrate 12. It is determined by the ratio to the area of the area. When the narrow conductive contacts 20 are equally spaced parallel conductive wires, as shown in Figures 1a and Ib, the light transmission of the device is determined by the ratio of the width of these conductors to the spacing of these conductors. Because of this, the width is 1
If there are 0 people and the distance is 100 people, the light transmittance of the device is 9
It is 0χ. In contrast, in the case of known translucent sublayers, the light transmission is limited to around 60-70x, and these values are obtained for example for a palladium layer of about 50 people.

第2a及び2b図は接点装置10の第2の実施例を示し
、本例では基Fi12が透明コアガラス部分12と不透
明エツジガラス部分23を有する光ファイバの束の端面
である。この特定の実施例では前記幅狭導電性接点20
をエツジガラス部分22上に堆積した金属導線とする。
Figures 2a and 2b show a second embodiment of the contact device 10, in which the base Fi 12 is the end face of a bundle of optical fibers having a transparent core glass portion 12 and an opaque edge glass portion 23. In this particular embodiment, the narrow conductive contact 20
Let be the metal conductive wire deposited on the edge glass portion 22.

この場合接点装置10は光透過率の減少を何も生じない
In this case, the contact device 10 does not cause any reduction in light transmission.

第3図は第1a、Ib、2a及び2b図につき述べた接
点装置を製造する種々の工程を示す。この装置の製造に
おいては、(a)基板12上に光重合性樹脂層30を堆
積し、次いでω)この樹脂層を露光し、現像して前記幅
狭導電性接点20のためのトラック31を形成する。基
板12がガラス窓である第3図の例では、ポジ型光重合
性樹脂30を用い、これを前記トラック31を有するマ
スクを通して露光する。他方、基板が光ファイバの束の
端面である場合(第2a及び2b図)には、ネガ型の光
重合性樹脂を用い、これをマスクを用いないで光ファイ
バの束自体を通して露光する。次に、(C)基板12の
全有効区域上に金属層32を堆積する。この金属層は数
百オングストロームの厚さにすることができる。次に、
(d)超音波及びアセトンを用いる°“リフトオフ”法
として既知の処理によって残存樹脂及び前記トラック3
1の外側に位置する金属層部分を除去して基板12の表
面上に幅狭導電性接点20のみを残存させる。金属層3
2を形成するのに用いる金属はガラスに良好に付着し得
ると共に光電陰極を汚染しない金属、即ち金、パラジウ
ム、ニッケルークロム混合物である。最后の処理(e)
において、光電陰極11を基板12の表面上に堆積する
FIG. 3 shows the various steps for manufacturing the contact device described in connection with FIGS. 1a, Ib, 2a and 2b. The manufacture of this device involves (a) depositing a photopolymerizable resin layer 30 on the substrate 12, and then ω) exposing and developing the resin layer to form tracks 31 for the narrow conductive contacts 20. Form. In the example of FIG. 3 in which the substrate 12 is a glass window, a positive photopolymerizable resin 30 is used and exposed through a mask having the tracks 31 described above. On the other hand, if the substrate is the end face of a bundle of optical fibers (FIGS. 2a and 2b), a negative photopolymerizable resin is used and is exposed through the bundle of optical fibers itself without the use of a mask. Next, (C) a metal layer 32 is deposited over the entire effective area of the substrate 12. This metal layer can be several hundred angstroms thick. next,
(d) residual resin and said track 3 by a process known as the "lift-off" method using ultrasound and acetone;
1 is removed, leaving only narrow conductive contacts 20 on the surface of substrate 12. metal layer 3
The metals used to form 2 are metals that can adhere well to glass and do not contaminate the photocathode: gold, palladium, nickel-chromium mixtures. Final processing (e)
In , a photocathode 11 is deposited on the surface of a substrate 12 .

【図面の簡単な説明】[Brief explanation of drawings]

第1a図は本発明接点装置の第1の実施例の断面図、 第1b図は第1a図の接点装置の平面図、第2a図は本
発明接点装置の第2の実施例の断面図、 第2b図は第2a図の接点装置の平面図、第3図は本発
明接点装置の製造方法の順次の製造工程を示す断面図で
ある。
FIG. 1a is a sectional view of a first embodiment of the contact device of the present invention, FIG. 1b is a plan view of the contact device of FIG. 1a, and FIG. 2a is a sectional view of a second embodiment of the contact device of the present invention. FIG. 2b is a plan view of the contact device shown in FIG. 2a, and FIG. 3 is a sectional view showing the sequential manufacturing steps of the method for manufacturing the contact device of the present invention.

Claims (1)

【特許請求の範囲】 1、光電陰極(11)を支持する基板(12)上に金属
被覆を設けて成る光電管の光電陰極用接点装置(10)
において、該接点装置(10)を基板(12)の有効区
域(21)上に堆積した幅狭の導電性接点(20)によ
り形成したことを特徴とする接点装置。 2、前記基板(12)がガラス窓である特許請求の範囲
1記載の接点装置において、前記幅狭導電性接点(20
)は等間隔の平行金属導線であることを特徴とする接点
装置。 3、前記基板(12)が透明なコアガラス部分(22)
と不透明なエッジガラス部分(23)を有する光ファイ
バの束の端面である特許請求の範囲1記載の接点装置に
おいて、前記幅狭導電性接点(20)は前記エッジガラ
ス部分(23)上に堆積された金属導線であることを特
徴とする接点装置。 4、特許請求の範囲1〜3の何れかに記載の接点装置を
製造するに当り、基板(12)上に光重合性樹脂層(3
0)を堆積し、次いでこれを露光し現像して幅狭導電性
接点(20)を形成するためのトラック(31)を形成
し、次いで基板の全有効区域(21)上に金属層(32
)を堆積し、次いで超音波処理によって残存する光重合
性樹脂層及び前記トラック(31)の外側に位置する金
属層部分を除去し、次いで基板の表面上に光電陰極(1
1)を堆積することを特徴とする接点装置の製造方法。 5、特許請求の範囲3に記載の接点装置を製造する特許
請求の範囲4記載の方法において、前記光重合性樹脂層
(30)を前記透明なコアガラス部分(22)を経て露
光することを特徴とする接点装置の製造方法。
[Claims] 1. A contact device (10) for a photocathode of a phototube, comprising a metal coating on a substrate (12) that supports a photocathode (11).
Contact device (10), characterized in that the contact device (10) is formed by a narrow conductive contact (20) deposited on an active area (21) of a substrate (12). 2. The contact device according to claim 1, wherein the substrate (12) is a glass window, wherein the narrow conductive contact (20
) is a contact device characterized by being equally spaced parallel metal conductive wires. 3. The substrate (12) is a transparent core glass portion (22)
A contact device according to claim 1, wherein the narrow conductive contact (20) is deposited on the edge glass portion (23). A contact device characterized in that it is a metal conducting wire. 4. In manufacturing the contact device according to any one of claims 1 to 3, a photopolymerizable resin layer (3) is provided on the substrate (12).
0), which is then exposed and developed to form tracks (31) for forming narrow conductive contacts (20), and then deposits a metal layer (32) over the entire active area (21) of the substrate.
), then the remaining photopolymerizable resin layer and the metal layer portion located outside the tracks (31) are removed by ultrasonication, and then a photocathode (1) is deposited on the surface of the substrate.
1) A method for manufacturing a contact device, comprising depositing the following: 5. In the method according to claim 4 for manufacturing the contact device according to claim 3, the photopolymerizable resin layer (30) is exposed to light through the transparent core glass portion (22). A method for manufacturing a featured contact device.
JP24029389A 1989-09-18 1989-09-18 Contact device for photocathode of phototube and its manufacture Pending JPH03108244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24029389A JPH03108244A (en) 1989-09-18 1989-09-18 Contact device for photocathode of phototube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24029389A JPH03108244A (en) 1989-09-18 1989-09-18 Contact device for photocathode of phototube and its manufacture

Publications (1)

Publication Number Publication Date
JPH03108244A true JPH03108244A (en) 1991-05-08

Family

ID=17057325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24029389A Pending JPH03108244A (en) 1989-09-18 1989-09-18 Contact device for photocathode of phototube and its manufacture

Country Status (1)

Country Link
JP (1) JPH03108244A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088403A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission-type photoelectric cathode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088403A (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission-type photoelectric cathode
WO2015064173A1 (en) * 2013-11-01 2015-05-07 浜松ホトニクス株式会社 Transmission photocathode
US9824844B2 (en) 2013-11-01 2017-11-21 Hamamatsu Photonics K.K. Transmission mode photocathode

Similar Documents

Publication Publication Date Title
KR100614456B1 (en) Display substrate electrodes with auxiliary metal layers for enhanced conductivity
KR100606214B1 (en) Process for forming electrodes
US3681134A (en) Microelectronic conductor configurations and methods of making the same
CA1161967A (en) Process for the preparation of large area tft arrays
JPS6161280B2 (en)
JPH0545005B2 (en)
JPH03108244A (en) Contact device for photocathode of phototube and its manufacture
US5038072A (en) Contact device for the photocathode of photoelectric tubes and manufacturing method
US5156936A (en) Contact device for the photocathode of photoelectric tubes and manufacturing method
US3367806A (en) Method of etching a graded metallic film
EP0060487A1 (en) Plugged pinhole thin film and method of making same
JPH0428132B2 (en)
JPS6161659B2 (en)
GB1312497A (en) Superconductor elements
JPH01177015A (en) Liquid crystal display device and production thereof
US3716428A (en) Method of etching a metal which can be passivated
JP2838943B2 (en) Method for manufacturing thin film transistor
JPH07202229A (en) Selective film-forming method
JPS58198814A (en) Method of producing touch type coordinate detecting panel
JPH0373083B2 (en)
JPS58165213A (en) Method of forming transparent electrode
SU841071A1 (en) Method of manufacturing thin-film circuits
JPS62115872A (en) Thin film transistor
JPS5914237A (en) Production method of gas discharge panel
JPH06310742A (en) Fabrication of photovoltaic element