JPH03108125A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH03108125A
JPH03108125A JP24563489A JP24563489A JPH03108125A JP H03108125 A JPH03108125 A JP H03108125A JP 24563489 A JP24563489 A JP 24563489A JP 24563489 A JP24563489 A JP 24563489A JP H03108125 A JPH03108125 A JP H03108125A
Authority
JP
Japan
Prior art keywords
film
magnetic
base film
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24563489A
Other languages
Japanese (ja)
Other versions
JP2808723B2 (en
Inventor
Kyoji Noda
恭司 野田
Yasuhiro Notohara
康裕 能登原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1245634A priority Critical patent/JP2808723B2/en
Publication of JPH03108125A publication Critical patent/JPH03108125A/en
Application granted granted Critical
Publication of JP2808723B2 publication Critical patent/JP2808723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To increase coercive force and S/N by forming a base film of specified thickness while applying voltage on a substrate, and then forming a magnetic film while applying voltage on the base film. CONSTITUTION:The base film 8 comprising Cr is formed by sputtering while -300V DC voltage to the sputtering device is applied on the substrate 1 covered with a Ni-P film 2. The base film 8 is made 100 - 1,000Angstrom thick. The magnetic film 9 comprising Co-Ni-Cr magnetic material is then formed by sputtering while -300V DC voltage to the sputtering device is applied on the substrate 1, film 2, and film 8. Further a Cr film 10 is formed on the magnetic film 9 and a protective film 5 thereon. By forming the base film 8 to <=1,000Angstrom thickness, reproduction output can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、下地膜にCrを用い、磁性膜にCO系耐磁性
材料用いる磁気記録媒体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a magnetic recording medium using Cr for the underlayer and a CO-based magnetically resistant material for the magnetic film.

従来の技術 第6図は従来の磁気記録媒体を示す斜視図である。第6
図において、1はアルミ合金でできた基板、2は基板1
の上にめっき法によって形成されたN1−P膜で、N1
−P膜2は表面を鏡面加工した後にテクスチャー加工が
施されている。3は基板1の上に膜厚1500Aで形成
された下地膜で、下地膜3はCrで構成されている。4
は下地膜3の上に膜厚600人で形成された磁性膜で、
磁性膜4はCo−Ni−Cr系磁性材料で構成されてい
る。5は磁性膜4の上に膜厚200Aで形成された保護
膜で、保護膜5はCで構成されている。今回下地膜3は
磁性膜にCo−Ni−Cr系磁性材料を用いたので、膜
厚を1500Aとしたが、磁性膜にCo−Cr−Ta系
磁性材料を用いた場合には下地膜3の膜厚を100OA
にしていた。
Prior Art FIG. 6 is a perspective view showing a conventional magnetic recording medium. 6th
In the figure, 1 is a substrate made of aluminum alloy, 2 is a substrate 1
N1-P film formed by plating on top of N1
- The surface of the P film 2 is mirror-finished and then textured. Reference numeral 3 denotes a base film formed on the substrate 1 to a thickness of 1500 Å, and the base film 3 is made of Cr. 4
is a magnetic film formed on the base film 3 to a thickness of 600 mm,
The magnetic film 4 is made of a Co-Ni-Cr magnetic material. Reference numeral 5 denotes a protective film formed on the magnetic film 4 to a thickness of 200 Å, and the protective film 5 is made of carbon. This time, the base film 3 used a Co-Ni-Cr based magnetic material for the magnetic film, so the film thickness was set to 1500A. However, if a Co-Cr-Ta based magnetic material was used for the magnetic film, the base film 3 Film thickness 100OA
I was doing it.

近年ディスクドライブの小型化のために磁気記録媒体の
大容量化が進められている。この大容量化を実現するた
めの手段として現在−数的に進められているのは、磁気
記録媒体のトラック間を狭(する面密度の向上や、ビッ
ト間を狭くする線密度の向上である。しかしながら磁気
記録媒体の面密度および線密度を向上させて行くと再生
出力が小さくなってしまうという問題点を有していた。
In recent years, the capacity of magnetic recording media has been increased in order to miniaturize disk drives. The methods currently being numerically advanced to achieve this larger capacity include improving areal density by narrowing the distance between tracks of magnetic recording media, and improving linear density by narrowing the distance between bits. However, there has been a problem in that as the areal density and linear density of the magnetic recording medium are improved, the reproduction output becomes smaller.

この問題点の解決のために磁性膜により大きな保磁力を
持たせ、面密度および線密度を向上させても再生出力が
小さくならないような磁気記録媒体の開発が進められて
いる。第7図は他の磁気記録媒体の部分断面図を示す。
In order to solve this problem, progress is being made in the development of magnetic recording media in which the magnetic film has a larger coercive force and the reproduction output does not decrease even if the areal density and linear density are improved. FIG. 7 shows a partial cross-sectional view of another magnetic recording medium.

第7図において、1は基板、2はN1−P膜、3は下地
膜、5は保護膜でこれらは第6図に示す磁気記録媒体と
同じ構成を有している。6はCrで構成され、膜厚15
00人で形成された下地膜、7は下地膜3の上に形成さ
れた磁性膜で、磁性膜7はCo−Ni−Cr系磁性材料
によって構成され、膜厚600人で形成されている。こ
の様に構成された磁気記録媒体と第6図に示す磁気記録
媒体と異なる点は、磁性膜及びその下地膜の形成方法に
違いがある。第6図に示す磁気記録媒体はN1−P膜2
を形成した基板1の上に下地膜3を形成し、下地膜3の
上に磁性膜4をスパッタリング法等を用いて形成される
だけであるが、第7図に示す磁気記録媒体はN1−P膜
2及び基板1に直流電圧を加えなか下地膜6を形成し、
また基板1及びN1−P膜2及び下地膜6に所定の直流
電圧を加えながらさらに下地膜6の上に磁性膜7をスパ
ッタリング法等を用いて形成されている。このように形
成された第7図の磁気記録媒体は第6図のものに比べて
保磁力が非常に太き(なる。例えば下地膜3の厚さを1
500Aとして、その上にCo−Ni−Cr系磁性材料
で磁性膜4を形成してその保磁力を測定すると約100
0エルステツドに対して、基板1及びN1−P膜2に一
300ボルトの直流電圧を加えてスパッタリングにより
下地膜3を形成し、下地膜3及びN1−P膜2及び基板
1に一300ボルトの直流電圧を加えてCo−Ni−C
r系磁性材料をスパッタリングする事によって磁性膜7
を形成して、保磁力を測定すると約1600エルステツ
ドであった。このように基板1等に直流電圧を加えなが
ら下地膜及び磁性膜を形成すると保磁力の大きくなるこ
とがわかる。上記の場合基板1等に加える直流電圧を一
300ボルトとしたが一400ボルト、−500ボルト
と電圧を太き(していったら、保磁力はそれにともなっ
て大きくなっていく。
In FIG. 7, 1 is a substrate, 2 is an N1-P film, 3 is a base film, and 5 is a protective film, which have the same structure as the magnetic recording medium shown in FIG. 6 is composed of Cr and has a film thickness of 15
The base film 7 is a magnetic film formed on the base film 3. The magnetic film 7 is made of a Co--Ni--Cr magnetic material and has a thickness of 600. The difference between the magnetic recording medium constructed in this manner and the magnetic recording medium shown in FIG. 6 is the method of forming the magnetic film and its underlying film. The magnetic recording medium shown in FIG.
The base film 3 is formed on the substrate 1 on which the magnetic film 4 is formed, and the magnetic film 4 is formed on the base film 3 using a sputtering method or the like. However, the magnetic recording medium shown in FIG. A base film 6 is formed while applying a DC voltage to the P film 2 and the substrate 1,
Furthermore, while applying a predetermined DC voltage to the substrate 1, the N1-P film 2, and the base film 6, a magnetic film 7 is further formed on the base film 6 using a sputtering method or the like. The magnetic recording medium shown in FIG. 7 formed in this way has a much thicker coercive force than the one shown in FIG.
500A, a magnetic film 4 is formed on it using a Co-Ni-Cr magnetic material, and its coercive force is measured to be approximately 100A.
A base film 3 is formed by sputtering by applying a DC voltage of 1,300 volts to the substrate 1 and the N1-P film 2, and a DC voltage of 1,300 volts is applied to the base film 3, the N1-P film 2, and the substrate 1. Co-Ni-C by applying DC voltage
The magnetic film 7 is formed by sputtering an r-based magnetic material.
was formed and the coercive force was measured to be about 1600 oersted. It can be seen that when the base film and magnetic film are formed while applying a DC voltage to the substrate 1 etc. in this way, the coercive force increases. In the above case, the DC voltage applied to the substrate 1 etc. was set to 1,300 volts, but as the voltage increases to 400 volts and -500 volts, the coercive force increases accordingly.

発明が解決しようとする課題 しかしながら基板に直流電圧を加えながら作成した磁性
膜7は、保磁力は太き(できるが、磁性膜7の再生出力
の中のノイズの比が太き(なる。
Problems to be Solved by the Invention However, the magnetic film 7 produced while applying a DC voltage to the substrate has a large coercive force (possibly), but the noise ratio in the reproduced output of the magnetic film 7 becomes large.

すなわちS/N比が悪くなる。したがって磁気ヘッドが
データを記録したり再生したりする際にエラーを起こす
事が多く磁気記録媒体の信頼性がそこなわれるという問
題点を有していた。
In other words, the S/N ratio deteriorates. Therefore, when the magnetic head records or reproduces data, errors often occur and the reliability of the magnetic recording medium is impaired.

本発明は前記従来の問題点を解決するもので、基板に直
流電圧を加えながら磁性膜を形成しても保磁力を従来よ
りも大きくしたまま、S/N比を太き(することができ
る磁気記録媒体の製造方法を提供することを目的として
いる。
The present invention solves the above-mentioned conventional problems, and even if a magnetic film is formed while applying a DC voltage to the substrate, the S/N ratio can be increased while maintaining the coercive force larger than before. The object of the present invention is to provide a method for manufacturing a magnetic recording medium.

課題を解決するための手段 この目的を達成するために、基板に電圧を加えながら下
地膜を100A以上1000A以下の膜厚で形成し、そ
の上に下地膜に電圧を加えながら形成された磁性膜を設
けた。
Means for Solving the Problem In order to achieve this objective, a base film is formed with a thickness of 100A or more and 1000A or less while applying a voltage to the substrate, and a magnetic film is formed on the base film while applying a voltage to the base film. has been established.

作   用 この構成により、下地膜の粒径が小さくなるので、その
上に形成される磁性膜の粒径も小さくなり、下地膜の上
に形成さ、れる磁性膜のS/N比を太き(することがで
きる。
Effect: With this configuration, the grain size of the base film becomes smaller, so the grain size of the magnetic film formed thereon also becomes smaller, increasing the S/N ratio of the magnetic film formed on the base film. (can do.

実施例 第1図は本発明の一実施例における磁気記録媒体の断面
図を示す拡大断面図である。第1図において1は基板、
2はN1−P膜、5は保護膜でこれらは従来の構成と同
じである。8はN1−P膜3の上に形成され、Crで構
成された下地膜で、下地膜8は膜厚300人で形成され
ている。また下地膜8はN1−P膜2を形成した基板1
にスパッタ装置に対して一300ボルトの直流電圧を加
えながら、スパッタリングをする事により形成されてい
る。9は下地膜8の上に形成され、COつoN 1−L
o Cr+(+ 磁性材料で構成された磁性膜で、磁性
膜9は膜厚600Aで形成されている。磁性膜9は基板
l及びNi −P膜及び下地膜8にスパッタ装置に対し
て一300ボルトの直流電圧をかけながらスパッタリン
グする事により形成されている。10は磁性膜9の上に
形成され、磁性膜9が腐食するのを防止するCr膜であ
る。以上の様に構成された磁気記録媒体は非常に保磁力
が大きく、シかもノイズが小さくS/N比が非常に大き
い。以下基板1及びN1−P膜2及び下地膜8に電圧を
印加する方法について説明する。スパッタ室を移動する
基板保磁部材にN1−P膜2まで形成した基板1を保持
し、基板保持部材にスパッタ室に設けられたブラシを接
触させる。そしてそのブラシを介してスパッタ装置に対
して一300ボルトの電圧を印加する。すると基板1等
に電圧を加える事ができる。
Embodiment FIG. 1 is an enlarged sectional view showing a sectional view of a magnetic recording medium in an embodiment of the present invention. In Fig. 1, 1 is a substrate;
2 is an N1-P film, and 5 is a protective film, which are the same as the conventional structure. 8 is a base film formed on the N1-P film 3 and made of Cr, and the base film 8 is formed to have a thickness of 300 mm. Further, the base film 8 is the substrate 1 on which the N1-P film 2 is formed.
It is formed by sputtering while applying a DC voltage of 1,300 volts to a sputtering device. 9 is formed on the base film 8, and the CON 1-L
o Cr+(+) A magnetic film made of a magnetic material, and the magnetic film 9 is formed to have a film thickness of 600A. It is formed by sputtering while applying a DC voltage of volts. 10 is a Cr film formed on the magnetic film 9 to prevent the magnetic film 9 from being corroded. The recording medium has a very large coercive force, low noise, and a very large S/N ratio.The method of applying voltage to the substrate 1, the N1-P film 2, and the base film 8 will be explained below. The substrate 1 formed up to the N1-P film 2 is held on a moving substrate holding member, and a brush provided in the sputtering chamber is brought into contact with the substrate holding member.Then, a voltage of 1,300 volts is applied to the sputtering apparatus through the brush. Then, voltage can be applied to the substrate 1, etc.

次に下地膜の膜厚と本実施例の磁気記録媒体の保磁力の
関係について第2図を用いて説明する。
Next, the relationship between the thickness of the base film and the coercive force of the magnetic recording medium of this example will be explained with reference to FIG.

第2図において横軸は下地膜の膜厚をとり縦軸には磁性
膜の保磁力をとっている。比較のために基板に直流電圧
を加えずに下地膜及び磁性膜を形成した従来の磁気記録
媒体の下地膜の膜厚と保磁力の関係を第3図に示す。第
3図も第2図と同様に横軸には下地膜の膜厚を、縦軸に
は保磁力をとっている。この時従来と本書の磁性膜は双
方ともC0QON im Crho 系磁性材料によっ
て膜厚を600Aとして形成した。この2つを比べると
わかるように、本実施例の磁気記録媒体の保磁力は下地
II!1600八以上では1600エルステツドと一定
だが、500A以下では急激に減少している。しかし急
激に減少しているとはいえ下地膜の膜厚が10OAの保
磁力を見てみると1000エルステツドと第3図に示す
従来の磁気記録媒体の最大保磁力と同じ大きさである。
In FIG. 2, the horizontal axis represents the thickness of the underlying film, and the vertical axis represents the coercive force of the magnetic film. For comparison, FIG. 3 shows the relationship between the thickness of the base film and the coercive force of a conventional magnetic recording medium in which the base film and magnetic film were formed without applying a DC voltage to the substrate. In FIG. 3, as in FIG. 2, the horizontal axis represents the thickness of the base film, and the vertical axis represents the coercive force. At this time, both the conventional magnetic film and the magnetic film of this book were formed with a film thickness of 600A using C0QON im Crho magnetic material. As can be seen by comparing these two, the coercive force of the magnetic recording medium of this example is the same as that of the substrate II! Above 1600A, it is constant at 1600 oersted, but below 500A it decreases rapidly. However, although the coercive force is rapidly decreasing, when the underlying film thickness is 10 OA, the coercive force is 1000 oersted, which is the same as the maximum coercive force of the conventional magnetic recording medium shown in FIG.

すなわち下地膜の膜厚が100A以上であれば十分な保
磁力が得られることがわかる。下地膜の最低の膜厚を1
00Aとしたのは、膜厚が100A以下の場合Crの結
晶構造の安定したものができないからである。
That is, it can be seen that sufficient coercive force can be obtained if the thickness of the base film is 100 A or more. The minimum film thickness of the base film is 1
The reason for setting the value to 00A is that if the film thickness is less than 100A, a stable Cr crystal structure cannot be obtained.

次に下地膜の厚さと磁気記録媒体の再生出力に関係につ
いて第4図をもちいて説明する。
Next, the relationship between the thickness of the base film and the reproduction output of the magnetic recording medium will be explained using FIG. 4.

第4図において横軸は下地膜の膜厚で、縦軸には相対出
力値を示す。この時下地膜の膜厚が200Aの時の再生
出力を基準に取っている。第4図から判るように下地膜
が30OAぐらいが一番相対出力値が大きいことが判る
。従来の磁気記録媒体では下地膜の厚さは磁性膜の材料
によっても多少異なるが100OA以上形成していた。
In FIG. 4, the horizontal axis represents the thickness of the base film, and the vertical axis represents the relative output value. At this time, the reproduction output when the thickness of the base film is 200A is taken as a reference. As can be seen from FIG. 4, the relative output value is the largest when the base film is about 30 OA. In conventional magnetic recording media, the thickness of the underlying film is 100 OA or more, although it varies somewhat depending on the material of the magnetic film.

しかし本実施例のように基板等に電圧をかけた状態で磁
性膜及び下地膜を形成する磁気記録媒体においては、下
地膜の膜厚を1000A以下にした方がより大きな相対
出力値が得られる事がわかる。
However, in a magnetic recording medium in which the magnetic film and underlayer are formed with a voltage applied to the substrate as in this example, a larger relative output value can be obtained by setting the thickness of the underlayer to 1000A or less. I understand.

次に下地膜の厚さと磁気記録媒体のS/N比の関係につ
いて第5図を用いて説明する。
Next, the relationship between the thickness of the base film and the S/N ratio of the magnetic recording medium will be explained using FIG.

第5図において、横軸は下地膜の厚さをとり、縦軸には
磁気記録媒体の相対S/N比をとっている。この時下地
膜の厚さが200OAの時のS/N比を基準にとってい
る。第5図かられかるように第4図に示す下地膜の膜厚
と相対出力値の関係と同じ様な曲線を描いている。すな
わち下地膜を1000A以下にして、その下地膜の上に
磁性膜を形成すれば従来のS/N比より大きくなる事が
わかる。また第4図及び第5図かられかるように下地膜
の膜厚が1500Aと500Aの時の相対出力値を比べ
ると500Aの方が約1dBはど大きくなっているが、
S/N比は1.3dB太き(なっている。これは何を意
味するかと言うと、通常なら出力が1dB上っ・たらS
/N比も1dB上るが、本実施例の場合S/N比が1.
3dBに向上している。すなわち膜厚が約100Aから
約1000Aまでの間では再生出力のなかのノイズが占
める割合が下地膜を1500A以上形成した時よりも小
さ(なっている事を示している。すなわち非常に特性の
良い磁気記録媒体を作成する事ができる。この様に特性
がよくなる理由として、下地膜を薄(形成すれば、下地
膜の粒径が小さくなり、その下地膜の上に形成される磁
性膜は、下地膜の粒径と同じ粒径でエピタキシー成長し
、きめ細かな磁性膜が形成されるからではないかと考え
られる。
In FIG. 5, the horizontal axis represents the thickness of the base film, and the vertical axis represents the relative S/N ratio of the magnetic recording medium. At this time, the S/N ratio when the thickness of the base film is 200 OA is used as the standard. As can be seen from FIG. 5, a curve similar to the relationship between the thickness of the base film and the relative output value shown in FIG. 4 is drawn. That is, it can be seen that if the base film is set to 1000 A or less and a magnetic film is formed on the base film, the S/N ratio becomes larger than the conventional S/N ratio. Also, as can be seen from Figures 4 and 5, when comparing the relative output values when the base film thickness is 1500A and 500A, 500A is about 1 dB larger, but
The S/N ratio is 1.3 dB thicker. What this means is that normally if the output increases by 1 dB, the S
/N ratio also increases by 1 dB, but in this example, the S/N ratio is 1.
This has improved to 3dB. In other words, when the film thickness is from about 100A to about 1000A, the proportion of noise in the reproduced output is smaller than when the base film is formed over 1500A.In other words, the characteristics are very good. It is possible to create a magnetic recording medium.The reason why the characteristics are improved like this is that by forming a thin underlayer, the grain size of the underlayer becomes smaller, and the magnetic film formed on the underlayer becomes thinner. This is thought to be because epitaxial growth occurs with the same grain size as the underlying film, forming a fine magnetic film.

以上のように本実施例によれば、基板1及びN1−P膜
2にスパッタ装置に対して−300ボルトの電圧を印加
しなからCrで300Aの膜厚の下地膜8を形成し、基
板1及びNi −P膜2及び下地膜8にスパッタ装置に
対して一300ボルトの電圧を加えながら磁性膜を形成
する事によって、保磁力の大きな、しかもS/N比の太
き(なり、磁気記録媒体の信頼性を向上させる事ができ
る。
As described above, according to this embodiment, a voltage of -300 volts is applied to the sputtering device on the substrate 1 and the N1-P film 2, and then the base film 8 is formed with Cr to a thickness of 300 A. By forming a magnetic film on 1, Ni-P film 2, and base film 8 while applying a voltage of 1,300 volts to a sputtering device, a magnetic film with a large coercive force and a large S/N ratio (and magnetic The reliability of the recording medium can be improved.

なお本実施例において下地膜の厚さを300Aとしたが
上記述べたように下地膜の厚さを100Aから100O
Aの間にしても従来よりも保磁力を太き(でき、S/N
比が大きくする事ができる。基板等に印加される電圧を
一300ボルトとしたが、この電圧に限定されるわけで
はない。例えば−400ボルトや一500ボルト等でも
同様の効果を得る事ができる。また本実施例では磁性膜
にC0QII N izo Crlo磁性材料を用いて
いたが、co系磁性材料でも同様の効果を得る事ができ
る。
In this example, the thickness of the base film was 300A, but as mentioned above, the thickness of the base film could be changed from 100A to 100A.
Even between A, the coercive force is thicker than before (and the S/N
The ratio can be increased. Although the voltage applied to the substrate etc. was set at 1,300 volts, it is not limited to this voltage. For example, the same effect can be obtained with -400 volts or 1,500 volts. Further, in this embodiment, a COQII Nizo Crlo magnetic material was used for the magnetic film, but the same effect can be obtained using a co-based magnetic material.

発明の効果 本発明は、基板に電圧を加えながら下地膜を100A以
上1000A以下の膜厚で形成し、その上に下地膜に電
圧を加えながら形成された磁性膜を設けた事により、下
地膜の粒径が小さくなるので、その上に形成される磁性
膜の粒径も小さ(なり、下地膜の上に形成される磁性膜
のS/N比を大きくすることができるので、エラーレー
トを小さ(する事ができ、磁気記録媒体の信頼性を向上
させる事ができる。
Effects of the Invention The present invention forms a base film with a thickness of 100A or more and 1000A or less while applying a voltage to the substrate, and then provides a magnetic film formed while applying a voltage to the base film on top of the base film. Since the grain size of the base film becomes smaller, the grain size of the magnetic film formed thereon also becomes smaller (this makes it possible to increase the S/N ratio of the magnetic film formed on the base film, thereby reducing the error rate. The reliability of the magnetic recording medium can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における磁気記録媒体の部分
断面図、第2図は本実施例における磁気記録媒体の下地
膜と保磁力の関係を示す図、第3図は磁性膜形成時に基
板に電圧を加えない従来の磁気記録媒体の下地膜と保磁
力の関係を示す図、第4図は同下地膜と相対出力値の関
係を示す図、第5図は同下地膜と相対S/N比の関係を
示す図、第6図は従来の磁気記録媒体の部分断面図、第
7図は他の従来の磁気記録媒体の部分断面図である。 1・・・・・・基板 2・・・・・・N1−P膜 5・・・・・・保護膜 8・・・・・・下地膜 9・・・・・・磁性膜 10・・・・・・Cr膜 第1図
FIG. 1 is a partial cross-sectional view of a magnetic recording medium in an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the base film and coercive force of the magnetic recording medium in this embodiment, and FIG. A diagram showing the relationship between the base film and coercive force of a conventional magnetic recording medium in which no voltage is applied to the substrate. Figure 4 is a diagram showing the relationship between the base film and relative output value. Figure 5 is a diagram showing the relationship between the base film and relative S. FIG. 6 is a partial cross-sectional view of a conventional magnetic recording medium, and FIG. 7 is a partial cross-sectional view of another conventional magnetic recording medium. 1... Substrate 2... N1-P film 5... Protective film 8... Base film 9... Magnetic film 10... ...Cr film Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)基板に電圧を加えながら前記基板の上に下地膜を
形成し、前記下地膜に電圧を加えながら前記下地膜の上
に磁性膜を形成する磁気記録媒体の製造方法であって、
前記下地膜の膜厚を100Å以上1000Å以下にした
事を特徴とする磁気記録媒体の製造方法。
(1) A method for manufacturing a magnetic recording medium, comprising forming a base film on the substrate while applying a voltage to the substrate, and forming a magnetic film on the base film while applying a voltage to the base film, the method comprising:
A method for manufacturing a magnetic recording medium, characterized in that the thickness of the base film is 100 Å or more and 1000 Å or less.
(2)下地膜はCrで構成され、磁性膜はCo系磁性材
料によって構成された事を特徴とする請求項第1項記載
の磁気記録媒体の製造方法。
(2) The method for manufacturing a magnetic recording medium according to claim 1, wherein the base film is made of Cr and the magnetic film is made of a Co-based magnetic material.
JP1245634A 1989-09-21 1989-09-21 Manufacturing method of magnetic recording medium Expired - Lifetime JP2808723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245634A JP2808723B2 (en) 1989-09-21 1989-09-21 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245634A JP2808723B2 (en) 1989-09-21 1989-09-21 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH03108125A true JPH03108125A (en) 1991-05-08
JP2808723B2 JP2808723B2 (en) 1998-10-08

Family

ID=17136579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245634A Expired - Lifetime JP2808723B2 (en) 1989-09-21 1989-09-21 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2808723B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076026A (en) * 1983-09-30 1985-04-30 Fuji Xerox Co Ltd Production of vertical magnetic recording medium
JPS61227231A (en) * 1985-03-30 1986-10-09 Unitika Ltd Production of magnetic recording body
JPS61278029A (en) * 1985-05-31 1986-12-08 Mitsubishi Electric Corp Production of magnetic recording element
JPS63308264A (en) * 1987-06-09 1988-12-15 Hiroshi Teramachi Pre-load adjusting device for rectilinear motion guide mechanism
JPS6457420A (en) * 1987-08-28 1989-03-03 Ayao Wada Substrate for magnetic disk

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076026A (en) * 1983-09-30 1985-04-30 Fuji Xerox Co Ltd Production of vertical magnetic recording medium
JPS61227231A (en) * 1985-03-30 1986-10-09 Unitika Ltd Production of magnetic recording body
JPS61278029A (en) * 1985-05-31 1986-12-08 Mitsubishi Electric Corp Production of magnetic recording element
JPS63308264A (en) * 1987-06-09 1988-12-15 Hiroshi Teramachi Pre-load adjusting device for rectilinear motion guide mechanism
JPS6457420A (en) * 1987-08-28 1989-03-03 Ayao Wada Substrate for magnetic disk

Also Published As

Publication number Publication date
JP2808723B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
JP2524514B2 (en) Magnetic recording media
JP3099790B2 (en) Perpendicular magnetic recording media
JPH04102223A (en) Magnetic recording medium and production thereof and magnetic recorder
JPH0556565B2 (en)
US4544591A (en) Perpendicular magnetic recording medium
JPH10228620A (en) Perpendicular magnetic recording medium
JPS60239916A (en) Vertical magnetic recording medium
JPH03108125A (en) Production of magnetic recording medium
JPS61199224A (en) Magnetic recording medium
JP2725502B2 (en) Magnetic recording media
JPH06187628A (en) Magnetic recording medium and magnetic memory device
JPH11185237A (en) Perpendicular magnetic recording medium and its production
JP2990975B2 (en) Magnetic recording media
JP2732153B2 (en) Metal thin-film magnetic recording media
JPS58130439A (en) Magnetic recording medium
JPS61113121A (en) Vertical magnetic recording medium
JP2000182233A (en) Magnetic recording medium
JPH053050B2 (en)
JPS58130437A (en) Magnetic recording medium
JPS58130438A (en) Magnetic recording medium
JPH01133217A (en) Magnetic recording body
JPH04134618A (en) Magnetic recording medium
JPH05135342A (en) Magnetic recording medium
JPH0744852A (en) Perpendicular magnetic recording medium
JPH04307421A (en) Magnetic recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12