JPS63308264A - Pre-load adjusting device for rectilinear motion guide mechanism - Google Patents

Pre-load adjusting device for rectilinear motion guide mechanism

Info

Publication number
JPS63308264A
JPS63308264A JP62142382A JP14238287A JPS63308264A JP S63308264 A JPS63308264 A JP S63308264A JP 62142382 A JP62142382 A JP 62142382A JP 14238287 A JP14238287 A JP 14238287A JP S63308264 A JPS63308264 A JP S63308264A
Authority
JP
Japan
Prior art keywords
slider
motion guide
piezoelectric actuator
work table
guide mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62142382A
Other languages
Japanese (ja)
Other versions
JPH0310831B2 (en
Inventor
Hiroshi Teramachi
博 寺町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62142382A priority Critical patent/JPS63308264A/en
Publication of JPS63308264A publication Critical patent/JPS63308264A/en
Publication of JPH0310831B2 publication Critical patent/JPH0310831B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/064Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with two rows of balls, one on each side of the rail
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/262Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members with means to adjust the distance between the relatively slidable members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Machine Tool Units (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To avoid horizontal and axial looseness by providing a piezoelectric actuator between a bolt tightening a movable member and the movable member on a slider movably held on a track table through balls. CONSTITUTION:A rectilinear motion guide mechanism includes a slider 21 movably held on a track table 18 through balls 20 and a work table 16 tightened by a bolt 22 through a piezoelectric actuator 23 at a designed space L above the slider. When electric field is applied to the piezoelectric actuator 23 at need, the actuator is elongated in the longitudinal direction of the bolt and the recess portion of the slider 21 sags inward to be deformed, so that pre-load is given to the balls 20 between the slider 21 and the track table 18. Thus, the axial looseness of the track table and the lateral looseness intersecting perpendicularly thereto with respect to the work table can be avoided to increase rigidity. Furthermore, when pre-load is cancelled at the time of no-load feeding, the occurrence of disadvantages such as lowering of life and generation of heat can be restrained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、使用条件によっで予圧量を無断階に変え得る
ようにした直線運動案内機構の予圧調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a preload adjustment device for a linear motion guide mechanism, which allows the amount of preload to be changed without permission depending on usage conditions.

(従来の技術) この種直線運動案内機構は、軌道台にホールを介してス
ライダを移動自在に嵌合保持せしめて構成され、工作機
械のワークテーブルの慴動部等に応用される。
(Prior Art) This type of linear motion guide mechanism is constructed by fitting and holding a slider movably in a track base through a hole, and is applied to a sliding part of a work table of a machine tool, etc.

ところで、工作機械のワークテーブル等の48動部に設
けられる直線運動案内機構に軌道台の軸方向ガタや軌道
台と直交する横方向のガタがあると、高精度な機械加工
が望めない。そこで、斯かる直線運動案内機構の軸方向
及び又は横方向のガタを無くして高精度な機械加工を実
現すべく当該直線運動案内機構に予圧を付与することが
行なわれる。而して、この予圧付与の方法としては軌道
台とスライダとの間に大きめのサイズのホールを挿入す
るのが一般的である。
By the way, if there is play in the axial direction of the track or in the lateral direction orthogonal to the track in the linear motion guide mechanism provided in the 48 moving parts such as the work table of a machine tool, highly accurate machining cannot be expected. Therefore, in order to eliminate the axial and/or lateral backlash of the linear motion guide mechanism and realize highly accurate machining, a preload is applied to the linear motion guide mechanism. A common method for applying this preload is to insert a hole of a larger size between the track and the slider.

(発明が解決しようとする問題点) しかしながら、従来の上記した予圧の付与方法(定圧予
圧)によれば、切削加工時等の荷重の変化、及び・切削
加工時と切削加工終了後のテーブル移動時の変化に応じ
て予圧量を任意に変えることかできξrいため、一方で
は予圧量の不足によって、切削加工時にワークテーブル
に切削反力や工具側の振動等が作用して切削面のビビリ
現象等を生じ高精度な機械加工を行なえないといった問
題が生じる。他方、過大な予圧量を付与すると、切削加
工終了後のテーブル移動時に、慴動抵抗が異常に増加す
ることによってワークテーブルの早送りや軽快な送りを
行なえないばかりか、発熱や寿命低下の問題を生じてい
た。
(Problems to be Solved by the Invention) However, according to the conventional method of applying preload (constant pressure preload) described above, changes in load during cutting, etc., and table movement during and after cutting Since the amount of preload can be changed arbitrarily depending on the change in time, on the other hand, due to insufficient amount of preload, cutting reaction force and vibration from the tool side act on the work table during cutting, resulting in chatter on the cutting surface. etc., resulting in a problem that high-precision machining cannot be performed. On the other hand, if an excessive amount of preload is applied, sliding resistance will abnormally increase when the table moves after cutting, which will not only make it impossible to move the work table quickly or easily, but also cause problems such as heat generation and shortened service life. was occurring.

そこで本発明は上記事情に鑑みてなされたもので、その
目的とするところは、使用条件によって予圧を任意に調
整できるようになし、これによって一方では加工精度の
向上を図るとともに、他方では軽快な早送りを行なえる
直線運動案内機構を提供するにある。
Therefore, the present invention was made in view of the above circumstances, and its purpose is to enable preload to be adjusted arbitrarily depending on the usage conditions, thereby improving machining accuracy on the one hand, and on the other hand, making it easy to use. To provide a linear motion guide mechanism capable of performing rapid forwarding.

(問題点を解決するための手段) 上記目的を達成すべく本発明は、鋼球を介して軌道台に
スライダを直線移動可能に嵌合して成る直線運動案内機
構において、その上面中央に長手方向凹溝を形成したス
ライダ上に、当該スライダの長手方向凹溝部の中央位置
で僅かな隙間が形成されるように可動部材をボルト連結
するとともに、当該ボルトの頭部と可動部材の被締付座
面との間に圧電アクチュエータを介設した。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a linear motion guide mechanism in which a slider is fitted to a track via a steel ball so as to be capable of linear movement. A movable member is connected with a bolt to a slider having a directional groove formed therein so that a slight gap is formed at the center of the longitudinal groove of the slider, and the head of the bolt and the movable member to be tightened are connected. A piezoelectric actuator was interposed between the seat and the seat.

(作 用) 上記の構成を有する本発明において、可動部材の被締付
座面とボルト頭部間に介在する圧電アクチュエータに一
方向の電界を印加すれば圧電気逆効果によって圧電アク
チュエータが伸長するので、軌道台とスライダ間に介在
せしめられたボールに必要量の予圧を付与することがで
きる。この場合、圧電アクチュエータの電極に印加され
る電圧と圧電素子の変位量とは比例関係にあるので、必
要に応じて印加電圧の量を制御することによって予圧量
を無段階に調整することができる。
(Function) In the present invention having the above configuration, if a unidirectional electric field is applied to the piezoelectric actuator interposed between the fastened seat surface of the movable member and the bolt head, the piezoelectric actuator will expand due to piezoelectric reverse effect. Therefore, the necessary amount of preload can be applied to the ball interposed between the track base and the slider. In this case, since there is a proportional relationship between the voltage applied to the electrodes of the piezoelectric actuator and the amount of displacement of the piezoelectric element, the amount of preload can be adjusted steplessly by controlling the amount of applied voltage as necessary. .

(実施例) 以下に本発明の一実施例を添付図面に基づいて説明する
(Example) An example of the present invention will be described below based on the accompanying drawings.

本発明に係る直線運動案内機構を工作機械の一方向テー
ブルに応用した状態を示す第3図において、1はハウジ
ング本体2の側壁2a、2b間に水平に架設されたねじ
軸であって、該ねじ軸1はボールベアリング3.3にて
側壁2a、2bに回転自在に支承されている。そして、
このねじ軸1の一方側端部にはギヤ4が結着されており
、該ギヤ4はモータ5の出力軸端に結着されたギヤ6に
噛合している。
In FIG. 3 showing a state in which the linear motion guide mechanism according to the present invention is applied to a one-way table of a machine tool, reference numeral 1 denotes a screw shaft installed horizontally between side walls 2a and 2b of the housing body 2; The screw shaft 1 is rotatably supported by the side walls 2a, 2b by ball bearings 3.3. and,
A gear 4 is connected to one end of the screw shaft 1, and the gear 4 meshes with a gear 6 connected to the end of the output shaft of a motor 5.

ところで、前記ねじ軸1には第2図に示す如く一条の連
続した螺旋溝7が形成されており、該ねじ軸1には螺旋
溝7に係合する複数のボール8・・・を介して2つのナ
ツト9,10が所定の間隔を設けて移動自在に螺合して
いる。そして両ダブルナツト9.10間には単一または
二割りの環状圧電素子11が介設されている。この圧電
素子には電圧を印加すると素子が伸縮するという特性が
あるため、本発明においては当該圧電素子の特性を利用
した圧電アクチュエータ(変位素子)として構成してい
る。なお、圧電アクチュエータはねじ軸1に平行状に配
置される複数の棒状圧電素子によって形成してもよいが
、棒状のものに比へて環状のアクチュエータの方が伸長
幅が均一になるので予圧調整量の誤差が少ない。以上の
ねじ軸1、ダブルナツト9.10及び圧電アクチュエー
タ11によりボールねじ機構Aが形成されるようになっ
ている。
By the way, as shown in FIG. 2, the screw shaft 1 has a continuous spiral groove 7 formed therein, and the screw shaft 1 has a plurality of balls 8 that engage with the spiral groove 7. Two nuts 9 and 10 are movably screwed together at a predetermined interval. A single or split annular piezoelectric element 11 is interposed between both double nuts 9 and 10. Since this piezoelectric element has a characteristic that it expands and contracts when a voltage is applied, the present invention is configured as a piezoelectric actuator (displacement element) that utilizes the characteristic of the piezoelectric element. Note that the piezoelectric actuator may be formed by a plurality of rod-shaped piezoelectric elements arranged parallel to the screw shaft 1, but an annular actuator has a more uniform extension width than a rod-shaped actuator, so it is necessary to adjust the preload. There is little error in quantity. A ball screw mechanism A is formed by the screw shaft 1, double nuts 9 and 10, and piezoelectric actuator 11 described above.

また、第3図に示すごとく、両ナツト9.10はワーク
テーブル16に垂設したブラケット15に保持されてお
り、このワークテーブル16は直線運動案内機構Cを介
して紙面垂直方向に互いに平行に敷設された前後一対の
軌道台18.18に沿って軸方向へ移動自在に支持され
、該ワークテーブル16上にはワークWがセットされて
いる。尚、第3図中、19は不図示の駆動源によって回
転駆動されてワークWの上面を機械加工するフライス等
の工真である。
Further, as shown in FIG. 3, both nuts 9 and 10 are held by a bracket 15 vertically installed on a work table 16, and this work table 16 is moved parallel to each other in a direction perpendicular to the plane of the paper via a linear motion guide mechanism C. The work table 16 is supported so as to be movable in the axial direction along a pair of front and rear track stands 18.18, and a work W is set on the work table 16. In FIG. 3, reference numeral 19 denotes a cutting tool such as a milling cutter that is rotationally driven by a drive source (not shown) to machine the upper surface of the workpiece W.

前記スライドガイド機構Cは、第1図(一方の軌道台の
み図示)に示すごとく、紙面垂直方向に敷設された単一
の軌道台18の両斜面に形成された直線状の凹溝18a
、18aに転勤自在に係合して無端状に整列循環する複
数のボール20・・・を介して、前後−組で溝形の断面
形状を有するスライダ21を紙面垂直方向に移動自在に
保持して構成される。又、上記スライダ21の上面中央
部には長手方向凹溝21aが形成されており、当該長手
方向凹溝21aの中央位置において該スライダ21の上
面に前記ワークテーブル16が所定の間隙△Lを設けて
ホルト22により締結されている。即ちスライダの長手
方向凹溝21aの中央位置には長手方向へ所定の間隔を
設けて複数のねじ穴21bが穿設され、他方該凹溝21
aの溝幅の範囲T内において所定の間隙△してスライダ
上面に当接せしめられるワークテーブル16の側縁には
前記スライダのねし穴21bに対応する段付の遊嵌穴1
6aが同数だけ貫通穿設されていて、同軸配置の遊嵌穴
16aとねじ穴21c内にボルト22が螺挿される。尚
第1図中、符号16bはホルト頭部22aを収納する大
径部、16cは被締付座面でボルトを介してスライダ2
1の中央部を上方へ引き上げる際の支点部として機能す
る。最もこの被締付座面は段部に形成される場合に限ら
れるわけではなく、ワークテーブルの上面を用いてもよ
い。そして、ボルト22の頭部22aとワークテーブル
16の被締付座面16cとの間には前記圧電アクチュエ
ータ11・・・と同様に単一または二割りで環状、或は
棒状の圧電アクチュエータ23・・・(実際にはワーク
テーブル16の4隅に総計4ケ所設置される)が介設さ
れている。
As shown in FIG. 1 (only one track is shown), the slide guide mechanism C has linear grooves 18a formed on both slopes of a single track 18 installed in a direction perpendicular to the plane of the paper.
, 18a, and are arranged and circulated endlessly through a plurality of balls 20..., which are arranged and circulated in an endless manner, the slider 21, which has a groove-shaped cross section, is held movably in the direction perpendicular to the plane of the drawing. It consists of Further, a longitudinal groove 21a is formed in the center of the upper surface of the slider 21, and the work table 16 is provided with a predetermined gap ΔL on the upper surface of the slider 21 at the center position of the longitudinal groove 21a. and is fastened by a bolt 22. That is, a plurality of screw holes 21b are bored in the center of the longitudinal groove 21a of the slider at predetermined intervals in the longitudinal direction, and
A stepped loose fitting hole 1 corresponding to the slotted hole 21b of the slider is provided on the side edge of the work table 16 which is brought into contact with the upper surface of the slider with a predetermined gap Δ within the groove width range T of a.
The bolts 22 are screwed into the loose fitting holes 16a and screw holes 21c which are coaxially arranged. In FIG. 1, reference numeral 16b is a large diameter portion that accommodates the Holt head 22a, and 16c is a seat surface to be tightened, which is connected to the slider 2 via a bolt.
It functions as a fulcrum when pulling the center part of 1 upward. The seat surface to be tightened is not limited to the case where it is formed on a stepped portion, and the upper surface of the work table may also be used. And, between the head 22a of the bolt 22 and the seat surface 16c of the work table 16 to be tightened, there is a piezoelectric actuator 23, which is single or divided into two parts and has an annular or rod shape, similar to the piezoelectric actuator 11. (Actually, a total of four locations are installed at the four corners of the work table 16) are interposed.

ところで、第3図に示す実施例においては前記ホールね
じ機構Aによりワークテーブル16を軌道台18.18
にそってx−X方向に移送せしめるものであるが、第4
図に示す他の実施例においては、ワークテーブル16を
x−X方向のみならずこれと直交するY−Y方向にも移
送せしめる別のボールねし機構Bが設けられている。
By the way, in the embodiment shown in FIG. 3, the work table 16 is moved to the track base 18.
The fourth
In the other embodiment shown in the figures, a separate ball mechanism B is provided which allows the work table 16 to be moved not only in the x-x direction but also in the Y-Y direction perpendicular thereto.

第4図に示す実施例について更に詳述するに、第3図に
示す実施例と同一の構成要素については同一の符号を付
して説明すると、第4図の実施例においては、ワークテ
ーブル16を軌道台18゜18に沿ってx−X方向へ移
送させる第一のボールねじ機構A(第3図のボールねじ
機構Aと全く同一のもの)の直下位置に、該第−ボール
ねじ機構Aと直交するように第二のボールねじ機構Bが
設けられており、軌道台18’、18’に沿ってワーク
テーブル16をx−X方向と直交するY−Y方向に移送
せしめるようになっている。而して、この第二ボールね
じ機構Bも第一ボールねじ機構Aと同じくねじ軸、ダブ
ルナツト及び圧電アクチュエータから構成されており、
第一ボールねじ機構Aを保持するハウジング本体2を軌
道台18′、18′沿いにY−Y方向へ移動させること
により、テーブルなY−Y方向へ移送させるものである
。要するに、第4図に示すねじ軸1′と不図示のダブル
ナツト及び圧電アクチュエータが該ボールねじ機構Bを
構成し、このボールねじ機構Bはワークテーブルを軌道
台18′、18′に沿ってY−Y方向へ移送せしめる。
To further explain the embodiment shown in FIG. 4, the same components as those in the embodiment shown in FIG. 3 will be described with the same reference numerals. Directly below the first ball screw mechanism A (exactly the same as the ball screw mechanism A in FIG. 3) that moves the ball in the x-X direction along the track 18°18, A second ball screw mechanism B is provided so as to be orthogonal to the work table 16, and is configured to move the work table 16 along the tracks 18', 18' in the YY direction orthogonal to the xX direction. There is. Therefore, like the first ball screw mechanism A, this second ball screw mechanism B is also composed of a screw shaft, a double nut, and a piezoelectric actuator.
By moving the housing body 2 holding the first ball screw mechanism A in the Y-Y direction along the tracks 18', 18', the table is transferred in the Y-Y direction. In short, the screw shaft 1' shown in FIG. 4, a double nut (not shown), and a piezoelectric actuator constitute the ball screw mechanism B, and this ball screw mechanism B moves the work table along the tracks 18', 18' along the Y-axis. Transfer it in the Y direction.

尚、上記ねじ軸1′端部は不図示のギヤを介してモータ
5′に連結されている。
The end of the screw shaft 1' is connected to a motor 5' via a gear (not shown).

次に、ボールねじ機構A、B及び直線運動案内機構Cの
作用を説明する。
Next, the functions of the ball screw mechanisms A and B and the linear motion guide mechanism C will be explained.

例えば、モータ5を駆動すれば、このモータ5の回転力
はギヤ6.4を経てねじ軸lに伝達され、該ねじ軸1が
定位置で回転駆動される。そして、このねじ軸lの回転
によってこれに螺合するナラh9,10がねじ軸1に沿
って直線移動し、この移動によってワークテーブル16
が軌道台18.18に沿ってx−X方向へ移送される。
For example, when the motor 5 is driven, the rotational force of the motor 5 is transmitted to the screw shaft 1 through the gear 6.4, and the screw shaft 1 is rotated at a fixed position. As the screw shaft l rotates, the nuts h9 and 10 that are screwed thereto move linearly along the screw shaft 1, and this movement causes the work table 16
is transported along the track 18.18 in the xx direction.

同様の操作によってワークテーブル16をY−Y方向へ
移送することもできる。
The work table 16 can also be moved in the Y-Y direction by a similar operation.

而して、例えばボールねじ機構Aを構成するナツト9.
10間に介設される圧電アクチュエータ11に必要に応
じて電界を加えれば、この圧電アクチュエータ11は圧
電気逆効果によってねじ軸方向へ伸長し、両ナツト9.
10を互いに離間する方向へ付勢し、当該ホールねじ機
構Aの予圧を任意に変える。そして、該ボールねじ機構
Aの予圧を高めれば、ナツト9,10のねじ軸1に沿う
動き(ガタ)が無くなり、従ってワークテーブル16の
゛X−X方向に沿う軸方向ガタの解消と剛性の向上を図
ることができる。同様にしてホールねじ機構Bの予圧を
必要に応じて高めれば、ワークテーブル16のY−Y方
向に沿う軸方向ガタも無くなるばかりか剛性を高められ
る。
Thus, for example, the nut 9 constituting the ball screw mechanism A.
If an electric field is applied as necessary to the piezoelectric actuator 11 interposed between the nuts 9 and 10, the piezoelectric actuator 11 will expand in the direction of the screw axis due to the piezoelectric reverse effect, and the piezoelectric actuator 11 will expand in the direction of the screw axis due to the piezoelectric reverse effect.
10 in the direction of separating them from each other, and arbitrarily change the preload of the hole screw mechanism A. If the preload of the ball screw mechanism A is increased, the movement (backlash) of the nuts 9 and 10 along the screw shaft 1 is eliminated, thereby eliminating the axial play of the work table 16 along the X-X direction and increasing the rigidity. You can improve your performance. Similarly, by increasing the preload of the Hall screw mechanism B as necessary, not only the axial backlash along the Y-Y direction of the work table 16 can be eliminated, but also the rigidity can be increased.

ところで、本発明に係る直線運動案内機構Cに設けられ
る圧電アクチュエータ23にも必要に応じて電界を加え
れば、該圧電アクチュエータ23はボルトの長手方向へ
伸長し、これによってスライダ21が撓み変形し、該ス
ライダ21とボール20との間の隙間が調整されて該直
線運動案内機構Cの予圧が任意に調整される。即ち、圧
電アクチュエータ23をボルトの長手方向へ伸長せしめ
れば、スライダ21の中央部にはボルト22を介して上
方への引張力が作用し、この上方引張力によってスライ
ダ21の中央部は隙間ΔLを挟めるように上方へ撓み変
形し、この結果スライダのスカート部21cが軌道台1
8側へ接近し、スライダ21と軌道台18間のボール2
0を予備圧縮して、ワークテーブルに関する軌道台18
の軸方向及びこれと直交する横方向のガタを解消し得る
ばかりか剛性を高められる。
By the way, if an electric field is also applied to the piezoelectric actuator 23 provided in the linear motion guide mechanism C according to the present invention as necessary, the piezoelectric actuator 23 will expand in the longitudinal direction of the bolt, thereby deforming the slider 21, By adjusting the gap between the slider 21 and the ball 20, the preload of the linear motion guide mechanism C can be adjusted as desired. That is, when the piezoelectric actuator 23 is extended in the longitudinal direction of the bolt, an upward tensile force acts on the center portion of the slider 21 via the bolt 22, and this upward tensile force causes the center portion of the slider 21 to close the gap ΔL. As a result, the skirt portion 21c of the slider is bent upward so as to pinch the track base 1.
8 side, the ball 2 between the slider 21 and the track 18
0 is pre-compressed and the track base 18 regarding the work table is
Not only can play in the axial direction and the lateral direction perpendicular to this be eliminated, but also the rigidity can be increased.

次に以下の場合の予圧調整について説明する。Next, preload adjustment in the following cases will be explained.

(A)一方向テーブルに適用される場合(第3図参照) 例えば、第3図に示す矢印a方向(X−X方向)にワー
クテーブル16を移送させながら定位置の工具19でワ
ークWを切削加工する場合、ボールねじ機構A及び直線
運動案内機構Cの予圧を圧電アクチュエータの作動によ
って高めていくと、ワークテーブル16はX−X方向へ
固定されるので、軸方向ガタを解消し得るのと同時に剛
性を確保し得、これによりワークWの切削面のビビリ現
象が解消されてワークWは高精度に機械加工され得る。
(A) When applied to a one-way table (see Figure 3) For example, while moving the work table 16 in the direction of arrow a (X-X direction) shown in Figure 3, the work W is moved with the tool 19 in a fixed position. When performing cutting, if the preload of the ball screw mechanism A and the linear motion guide mechanism C is increased by operating the piezoelectric actuator, the work table 16 is fixed in the X-X direction, so that the axial play can be eliminated. At the same time, rigidity can be ensured, thereby eliminating the chatter phenomenon on the cutting surface of the workpiece W, allowing the workpiece W to be machined with high precision.

なお、切削加工時の荷重が変化すれば、これに応じて予
圧量を適宜調整することもできる。そして、機械加工の
終了後に圧電アクチュエータに対する電圧の印加量を減
少させることによって予圧量を解消または低減すれば、
ワークテーブル16は慴動抵抗のない状態で軽快に早送
りでき、当該ボールねじ機構A及び直線運動案内機構C
の発熱、寿命低下等の問題を生じることがない。
Note that if the load during cutting changes, the amount of preload can be adjusted accordingly. Then, if the amount of preload is eliminated or reduced by reducing the amount of voltage applied to the piezoelectric actuator after machining is completed,
The work table 16 can be easily fast-forwarded without any sliding resistance, and the ball screw mechanism A and the linear motion guide mechanism C
There are no problems such as heat generation or shortened lifespan.

(B)X−Yテーブルに適用される場合(第4図参照) 例えば、第4図に示す矢印す方向(X−X方向)にテー
ブル16を移送させながら定位置の工具19でワークW
を切削加工する場合を例にとって説明すると、X−X方
向へのワークテーブル16の固定または解放は、第3図
のときと同じくボールねじ機構A及び直線運動案内機構
Cに対する予圧の付与または解放によって行なわれる。
(B) When applied to an X-Y table (see Fig. 4) For example, while moving the table 16 in the arrow direction (X-X direction) shown in Fig. 4, the workpiece W is
Taking the case of cutting as an example, the work table 16 is fixed or released in the X-X direction by applying or releasing preload to the ball screw mechanism A and the linear motion guide mechanism C, as in the case of FIG. It is done.

ところで、X−X方向へワークテーブル16を移送させ
ながらワークWの切削加工を行なう際に、当該ワークテ
ーブル16に対してはX−X方向のみならずY−Y方向
にも切削反力や工具側の振動等が作用していることから
、Y−Y方向のガタの解消及び剛性がないと、ワークテ
ーブル16がY−Y方向へ動いたりして加工精度が出な
い。
By the way, when cutting the work W while moving the work table 16 in the X-X direction, cutting reaction forces and tools are applied to the work table 16 not only in the X-X direction but also in the Y-Y direction. Since side vibrations and the like are acting, unless backlash in the Y-Y direction is eliminated and rigidity is not achieved, the work table 16 will move in the Y-Y direction and machining accuracy will not be achieved.

従って、第4図に示されるようなX−Yテーブルに応用
される場合には、切削加工の際にX−X方向のみならず
Y−Y方向にも二重に固定しておく必要があり、このた
めボールねじ機構B及び直線運動案内機構Cの予圧を調
整することによってY−Y方向のガタの解消と剛性を確
保しておくのである。
Therefore, when applied to an X-Y table as shown in Figure 4, it is necessary to double-fix it not only in the X-X direction but also in the Y-Y direction during cutting. Therefore, by adjusting the preload of the ball screw mechanism B and the linear motion guide mechanism C, the looseness in the Y-Y direction can be eliminated and rigidity can be ensured.

尚、ワークテーブル16をX−X方向からY−Y方向へ
方向転換して切削加工する場合や加工終了後にテーブル
移動させる場合には、必要に応じてボールねじ機構B及
び直線運動案内機構Cの予圧量を調整すればよい。
In addition, when changing the direction of the work table 16 from the X-X direction to the Y-Y direction and performing cutting, or when moving the table after machining, the ball screw mechanism B and the linear motion guide mechanism C may be adjusted as necessary. Just adjust the amount of preload.

(発明の効果) 以上の説明で明らかな如く本発明によれば、ボールを介
して軌道台に移動自在に保持されるスライダに可動部材
を締結するボルトと該可動部材との間に圧電アクチュエ
ータを介設して、圧電気逆効果による圧電アクチュエー
タの伸縮により直線運動案内機構の予圧を使用条件に応
じて任意に変えることができ、これにより軸方向及びこ
と・直交する水平方向のガタの解消と必要な剛性を保し
得るので、加工精度を向上させられるばかか寿命の低下
、発熱等の問題を解消すること力゛きるという効果が得
られる。
(Effects of the Invention) As is clear from the above description, according to the present invention, a piezoelectric actuator is provided between the bolt that fastens the movable member to the slider movably held on the track via the ball and the movable member. The preload of the linear motion guide mechanism can be arbitrarily changed according to the usage conditions by expanding and contracting the piezoelectric actuator due to the piezoelectric reverse effect. Since the necessary rigidity can be maintained, it is possible to improve the machining accuracy, and also to solve problems such as shortened life and heat generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る直線運動案内機構の細面図、第2
図はボールねじ機構の断面図、第3は同直線運動案内機
構を採用して成る工作機柳一方向ワークテーブルの破断
側面図、第4図(=直線運動案内工作機械のX−Yワー
クテーブル平面図である。 符号の説明 C・・・直線運動案内機構  16・・・ワークテーフ
18・・・軌道台      20・・・ホール21・
・・スライダ     22・・・ボルト23・・・圧
電アクチュエータ
FIG. 1 is a detailed view of the linear motion guide mechanism according to the present invention, and FIG.
The figure is a cross-sectional view of the ball screw mechanism, the third figure is a cutaway side view of a Yanagi one-way worktable for a machine tool that uses the same linear motion guide mechanism, and the fourth figure is an X-Y worktable of a linear motion guide machine tool. FIG.
...Slider 22...Bolt 23...Piezoelectric actuator

Claims (1)

【特許請求の範囲】[Claims] 鋼球を介して軌道台にスライダを直線移動可能に嵌合し
て成る直線運動案内機構において、その上面中央に長手
方向凹溝を形成したスライダ上に、当該スライダの長手
方向凹溝部の中央位置で僅かな隙間が形成されるように
可動部材をボルト連結するとともに、当該ボルトの頭部
と可動部材の被締付座面との間に圧電アクチュエータを
介設したことを特徴とする直線運動案内機構の予圧調整
装置。
In a linear motion guide mechanism in which a slider is linearly movably fitted to a track via a steel ball, a longitudinal groove is formed at the center of the top surface of the slider. A linear motion guide characterized in that the movable members are connected by bolts so that a slight gap is formed between them, and a piezoelectric actuator is interposed between the head of the bolt and the seat surface of the movable member to be tightened. Mechanism preload adjustment device.
JP62142382A 1987-06-09 1987-06-09 Pre-load adjusting device for rectilinear motion guide mechanism Granted JPS63308264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142382A JPS63308264A (en) 1987-06-09 1987-06-09 Pre-load adjusting device for rectilinear motion guide mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142382A JPS63308264A (en) 1987-06-09 1987-06-09 Pre-load adjusting device for rectilinear motion guide mechanism

Publications (2)

Publication Number Publication Date
JPS63308264A true JPS63308264A (en) 1988-12-15
JPH0310831B2 JPH0310831B2 (en) 1991-02-14

Family

ID=15314065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142382A Granted JPS63308264A (en) 1987-06-09 1987-06-09 Pre-load adjusting device for rectilinear motion guide mechanism

Country Status (1)

Country Link
JP (1) JPS63308264A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294960U (en) * 1989-01-13 1990-07-27
JPH03108125A (en) * 1989-09-21 1991-05-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
DE102007045236A1 (en) * 2007-09-21 2009-04-02 Robert Bosch Gmbh Linear roller bearing, has guide carriage, which is formed in sections in H-shape with transverse bar and two side bars, and piezo-controlling device, which is arranged between two upper shanks of side bars
JP2010175065A (en) * 2009-02-02 2010-08-12 Mitsubishi Heavy Ind Ltd Worm gear unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294960U (en) * 1989-01-13 1990-07-27
JPH03108125A (en) * 1989-09-21 1991-05-08 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
DE102007045236A1 (en) * 2007-09-21 2009-04-02 Robert Bosch Gmbh Linear roller bearing, has guide carriage, which is formed in sections in H-shape with transverse bar and two side bars, and piezo-controlling device, which is arranged between two upper shanks of side bars
JP2010175065A (en) * 2009-02-02 2010-08-12 Mitsubishi Heavy Ind Ltd Worm gear unit

Also Published As

Publication number Publication date
JPH0310831B2 (en) 1991-02-14

Similar Documents

Publication Publication Date Title
US7234675B2 (en) Vertical guide unit and stage system with the same unit
JPH0581766B2 (en)
JPH0251617A (en) Bearing for linear slide and table for linear slide
JPH0470505B2 (en)
US6698982B2 (en) Machine tool
JPS63308264A (en) Pre-load adjusting device for rectilinear motion guide mechanism
US7216559B2 (en) Guide actuator with high radial direction load capacity
JPH05277870A (en) Driving device and xy driving device having such driving device
JPS63318313A (en) Pre-load adjustment device for linear motion guide mechanism
US9233444B2 (en) Adjustable key block assemblies and associated methods of adjusting extra large workpieces
JPS63308263A (en) Pre-load adjusting device for ball screw
US8561508B2 (en) Hard turning micro-machine tool
JP3080252B2 (en) Linear actuation unit
JPH0624575Y2 (en) Machine tool / equipment transfer device
JPS63162133A (en) Guiding device
JPH0451687B2 (en)
JP2000320638A (en) Linear movement guide device with feed screw
JPH022659B2 (en)
JPH0331934B2 (en)
JP2000210832A (en) Drive mechanism for moving body, and machine tool
JPS641704B2 (en)
JPH03229016A (en) Guiding device for movable member
JPH0336753Y2 (en)
JP2024072598A (en) Ball screws and machine tools
JPH0625735Y2 (en) Precision moving device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 17