JPH03107920A - Driving method for liquid crystal display device - Google Patents

Driving method for liquid crystal display device

Info

Publication number
JPH03107920A
JPH03107920A JP24737589A JP24737589A JPH03107920A JP H03107920 A JPH03107920 A JP H03107920A JP 24737589 A JP24737589 A JP 24737589A JP 24737589 A JP24737589 A JP 24737589A JP H03107920 A JPH03107920 A JP H03107920A
Authority
JP
Japan
Prior art keywords
liquid crystal
molecules
interface
voltage
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24737589A
Other languages
Japanese (ja)
Inventor
Katsumi Kondo
克己 近藤
Shin Yonetani
慎 米谷
Teruo Kitamura
輝夫 北村
Motomi Odamura
織田村 元視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24737589A priority Critical patent/JPH03107920A/en
Publication of JPH03107920A publication Critical patent/JPH03107920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain a liquid crystal display device with more satisfactory response characteristic by improving the orienting state of the molecule of ferroelectric liquid crystal and a driving method. CONSTITUTION:A liquid crystal molecule at the interface on one side of a liquid crystal layer 10 and substrates 1, 1' is fixed weakly against the substrates 1, 1' than the liquid crystal molecule at the interface on the other side, and an initializing pulse is applied to all the picture elements before write, and the spontaneous polarization of the liquid crystal molecule is oriented at a spray state. Next, as for impression voltage to perform the switching of the write, the impression voltage higher than a voltage by which the molecule is inverted on the interface where the molecule is fixed weakly, and the one lower than the voltage by which the molecule is inverted on the interface where the molecule is fixed strongly are applied to a selected picture element. In such a way, since switching speed can be increased more than ever even when the same liquid crystal is used, it is possible to drive a display element with the picture elements more than ever.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、強誘電性液晶組成物を用いた液晶表示装置の
利用方法に係り、特に液晶マトリックス表示装置の利用
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of using a liquid crystal display device using a ferroelectric liquid crystal composition, and particularly to a method of using a liquid crystal matrix display device.

[従来の技術] 強誘電性液晶表示袋f’f(以下液晶表示装置と云う)
においては、セル厚(2枚の基板間にはさまれる液晶層
の厚さ)を薄くして、強誘電性液晶の分子配向双安定性
による電気光学的メモリ性を付与し、該素子の各画素に
印加電圧のパルスの波高および極性を適宜設定して印加
することにより、二つの安定状態間のスイッチングを行
ない表示する方法が提案されている(特開昭56−10
7210号)。
[Prior art] Ferroelectric liquid crystal display bag f'f (hereinafter referred to as liquid crystal display device)
In this method, the cell thickness (thickness of the liquid crystal layer sandwiched between two substrates) is reduced to provide electro-optical memory properties due to the molecular orientation bistability of the ferroelectric liquid crystal, and each of the devices is A method has been proposed in which display is performed by switching between two stable states by appropriately setting the wave height and polarity of an applied voltage pulse to a pixel (Japanese Patent Application Laid-Open No. 1986-10).
No. 7210).

前記においては、いずれの安定状態においても液晶分子
の自発分極(Ps)は、基板との界面上で基板面にほぼ
垂直に配向していると共に、上下基板上の自発分極の向
きは互いにほぼ平行になっている。
In the above, in any stable state, the spontaneous polarization (Ps) of the liquid crystal molecules is oriented almost perpendicular to the substrate surface on the interface with the substrate, and the directions of the spontaneous polarization on the upper and lower substrates are almost parallel to each other. It has become.

また、前記二つの安定状態間のスイッチングは、自発分
極の向きとほぼ逆向きとなる電界(E)を印加すること
によって行なう。
Furthermore, switching between the two stable states is performed by applying an electric field (E) in a direction substantially opposite to the direction of spontaneous polarization.

[発明が解決しようとする課題] 一般に強誘電性液晶のスイッチングに要する時間τは、
次式(1)により表わせる。
[Problem to be solved by the invention] Generally, the time τ required for switching a ferroelectric liquid crystal is:
It can be expressed by the following equation (1).

η τ=           (I) sE (ηは自発分極の反転に対する粘度) 式(1)から明らかなように、液晶の応答時間(で)を
短縮するには、粘度(η)が低く、自発分極(Ps)の
大きな液晶を用いて、高電界(E)を印加すればよい。
η τ= (I) sE (η is the viscosity for reversal of spontaneous polarization) As is clear from equation (1), in order to shorten the response time (at) of the liquid crystal, the viscosity (η) must be low and the spontaneous polarization ( A high electric field (E) may be applied using a liquid crystal with a large Ps).

従って、こうした液晶材料の開発が精力的に行なわれて
いるが、このような材料物性の改良だけではネマチック
液晶の場合と同様に自ずと限界がある。
Therefore, although efforts are being made to develop such liquid crystal materials, there are limits to the improvement of such material properties alone, as in the case of nematic liquid crystals.

例えば、2000ライン以上の液晶マトリックス表示装
置の時分割駆動を行なおうとすると、その応答性が問題
となっているのが現状である。
For example, when trying to time-divisionally drive a liquid crystal matrix display device with 2000 lines or more, the current situation is that its responsiveness is a problem.

本発明の目的は、前記強誘電性液晶の分子の配向状態と
利用方法を工夫することにより、より応答特性の優れた
液晶表示装置を提供することにある。
An object of the present invention is to provide a liquid crystal display device with even more excellent response characteristics by devising the alignment state of the molecules of the ferroelectric liquid crystal and its utilization method.

[課題を解決するための手段] 前記目的は、以下に説明する発明によって達成できる。[Means to solve the problem] The above object can be achieved by the invention described below.

即ち、電極を有し少なくとも一方が透明な一対の基板を
スペーサを介し対向させて形成したセルと、 該セル内
に封入された強誘電性液晶層と、前記液晶分子の配向変
化に対応して前記セルを透過する光の強度を変化せしめ
る光学手段を有する液晶表示装置の利用方法において、 前記液晶表示装置内の前記液晶層と前記基板との一方の
界面における液晶分子を、他方の界面における液晶分子
よりも基板に対して弱く固定し、書込み前に全画素に初
期化パルスを印加することにより前記液晶分子の自発分
極をスプレィ状態に配向し。
That is, a cell is formed by opposing a pair of substrates with electrodes and at least one of which is transparent through a spacer, a ferroelectric liquid crystal layer sealed within the cell, and a ferroelectric liquid crystal layer that responds to changes in the orientation of the liquid crystal molecules. In the method of using a liquid crystal display device having an optical means for changing the intensity of light transmitted through the cell, the liquid crystal molecules at one interface between the liquid crystal layer and the substrate in the liquid crystal display device are replaced by the liquid crystal molecules at the other interface. The liquid crystal molecules are fixed weakly to the substrate than the molecules, and the spontaneous polarization of the liquid crystal molecules is oriented in a spray state by applying an initialization pulse to all pixels before writing.

次いで書込みのスイチングを行なうための印加電圧は、
弱く分子を固定した方の界面上での分子が反転する電圧
よりも高く、強く分子を固定した方の界面上での分子が
反転する電圧よりも低い電圧を、選択画素に印加するこ
とを特徴とする液晶表示装置の利用方法にある。
Next, the applied voltage for switching the write is:
It is characterized by applying a voltage to the selected pixel that is higher than the voltage at which molecules are reversed on the interface where molecules are weakly fixed, and lower than the voltage at which molecules are reversed at the interface where molecules are strongly fixed. This is how to use a liquid crystal display device.

第2図は本発明が対象とする液晶マトリックス表示装置
の構成を示す斜視図である。
FIG. 2 is a perspective view showing the structure of a liquid crystal matrix display device to which the present invention is directed.

強誘電性液晶層10は、電極13.13’ を有する透
明基板20.20’の間に挟まれている。
The ferroelectric liquid crystal layer 10 is sandwiched between transparent substrates 20.20' having electrodes 13.13'.

上基板20および下基板20′の間にはスペーサ(図示
せず)を介在させてセル厚を保持し、かつ、基板の周辺
はシール(図示せず)され、液晶層は大気と遮断されて
いる。
A spacer (not shown) is interposed between the upper substrate 20 and the lower substrate 20' to maintain the cell thickness, the periphery of the substrate is sealed (not shown), and the liquid crystal layer is isolated from the atmosphere. There is.

前記基板20.20’ と液晶層10の界面には、上下
で液晶を配向する機能に適当な差をつけた配向手段が施
されている。
At the interface between the substrates 20, 20' and the liquid crystal layer 10, alignment means is provided which has an appropriate difference in the function of aligning the liquid crystal on the upper and lower sides.

前記液晶ノー10.電極13.13’および基板20.
20’によって構成されたセルを上下から挟むように偏
光板9,9′が設けられ、該偏光板の偏光軸11.11
’は互いにほぼ直交するように配置される。
Said LCD No. 10. Electrode 13.13' and substrate 20.
Polarizing plates 9 and 9' are provided so as to sandwich the cell constituted by 20' from above and below, and the polarizing axes 11 and 11 of the polarizing plates are
' are arranged almost orthogonally to each other.

本発明で述べる光学手段としては、第2図で示すような
偏光板9,9′以外に、液晶中に2色性色素を配合し、
1枚または2枚の偏光板を付設することによりコントラ
ストを付与する、いわゆるゲスト・ホスト方式などもあ
る。
The optical means described in the present invention includes, in addition to the polarizing plates 9 and 9' shown in FIG. 2, a dichroic dye added to the liquid crystal.
There is also a so-called guest-host method in which contrast is imparted by attaching one or two polarizing plates.

図において、上下基板に設けられた電極13゜13′は
マトリックス電極であり、該電極によって構成される画
素に対し、所定のシーケンスで電界が印加されるように
駆動回路14.14’ が接続される。
In the figure, electrodes 13 and 13' provided on the upper and lower substrates are matrix electrodes, and drive circuits 14 and 14' are connected so that an electric field is applied in a predetermined sequence to the pixels formed by the electrodes. Ru.

次に第1図により本発明の利用方法について説明する。Next, a method of using the present invention will be explained with reference to FIG.

図は液晶素子内部の上下基板間の液晶分子の自発分極(
Ps)の方向を示す模式図である。
The figure shows the spontaneous polarization (
It is a schematic diagram showing the direction of Ps).

図においてベクトル2は1分子長軸方向のベクトルを基
板間に挟持された液晶層に平行な面に射影したベクトル
(C−ダイレクタ)である、ベクトル3はベクトル2に
直交する自発分極(Ps)の方向を表わす。
In the figure, vector 2 is a vector (C-director) that is a vector in the long axis direction of one molecule projected onto a plane parallel to the liquid crystal layer sandwiched between substrates. Vector 3 is a spontaneous polarization (Ps) that is orthogonal to vector 2. represents the direction of

本発明において液晶分子は、一方の界面5において弱く
固定され、もう一方の界面6にお°いては強く固定され
ている。
In the present invention, liquid crystal molecules are weakly fixed at one interface 5 and strongly fixed at the other interface 6.

第1図(a)は、界面5の分子配向方向と、界面6の分
子配向方向がほぼ等しい場合を示す、この場合上下基板
間の全液晶分子の配向方向は一様となる。
FIG. 1(a) shows a case where the molecular orientation direction at the interface 5 is almost equal to the molecular orientation direction at the interface 6. In this case, the orientation direction of all liquid crystal molecules between the upper and lower substrates is uniform.

第1図(b)または(Q)の場合では、液晶層に一定振
幅を持ち、極性が(a)の場合とは逆の電界が印加され
ると、弱く固定されている界面5において液晶分子の自
発分極は反転し1強く固定されている界面6においては
液晶分子の自発分極は変化しない。
In the case of FIG. 1(b) or (Q), when an electric field with a constant amplitude and polarity opposite to that in FIG. 1(a) is applied to the liquid crystal layer, the liquid crystal molecules at the weakly fixed interface 5 The spontaneous polarization of the liquid crystal molecules is reversed, and at the interface 6 where 1 is strongly fixed, the spontaneous polarization of the liquid crystal molecules does not change.

前記の逆の電界の強度としては、界面5上での分子が反
転する電圧よりも高く、界面6上での分子が反転する電
圧よりも低い電圧を印加することによって得られる電界
強度で、これによって、前記(b)または(c)の状態
となる。
The strength of the above-mentioned reverse electric field is the electric field strength obtained by applying a voltage higher than the voltage at which the molecules on the interface 5 are reversed and lower than the voltage at which the molecules at the interface 6 are reversed. Accordingly, the state shown in (b) or (c) is obtained.

第1図の界面5に示すような液晶分子が弱く固定される
界面とは、例えば、ポリイミド系高分子膜からなるもの
、あるいはラビング等の処理を軽く行ない規制力を弱め
たものを云う。
The interface on which liquid crystal molecules are weakly fixed, such as the interface 5 in FIG. 1, is, for example, one made of a polyimide polymer film, or one that has been lightly treated such as rubbing to weaken the regulating force.

一方、固定界面とは、例えばポリイミド系高分子のよう
な配向制御膜を塗布し、硬化後ラビングなどのような一
軸配向処理を行なったもの、またはSiO斜方蒸着膜を
形成したもの等を云う、これらは、使用される液晶の種
類等によって異なるので、適宜選択および制御が必要で
ある。
On the other hand, a fixed interface refers to one in which an orientation control film such as a polyimide polymer is applied and a uniaxial alignment treatment such as rubbing is performed after curing, or one in which an SiO oblique evaporation film is formed. , these differ depending on the type of liquid crystal used, etc., and therefore need to be appropriately selected and controlled.

界面上で分子を固定する方法(分子長軸方向)は上下界
面上で平行または反平行の場合だけでなく、その交差角
が分子傾斜角のほぼ2倍程度であれば互いに交差させて
もよい。
The method of fixing molecules on the interface (in the direction of the long axis of the molecule) is not only when they are parallel or antiparallel on the upper and lower interfaces, but also when they intersect with each other as long as the intersection angle is approximately twice the molecule tilt angle. .

また、本発明においては、一方の基板上で分子が固定さ
れ、他方の基板上で分子がスイッチングするように界面
処理をしたセルに充填された液晶の上下界面での液晶分
子が、互いに平行、或いはほぼ平行になる場合に暗状態
となるように、前記2枚の偏光板9,9′をセットする
ことで得られる。この場合のより望ましい偏光板の配置
は、2枚の偏光板9,9′の偏光軸が互いに直角で、か
つ、一方の偏光板の偏光軸と、固定界面に於ける分子長
軸方向とが平行か直角のいずれかに設定した場合である
Furthermore, in the present invention, the liquid crystal molecules at the upper and lower interfaces of the liquid crystal filled in the cell, which has been subjected to interface treatment so that molecules are fixed on one substrate and switched on the other substrate, are parallel to each other, Alternatively, it can be obtained by setting the two polarizing plates 9, 9' so that a dark state occurs when they are substantially parallel. A more desirable arrangement of the polarizing plates in this case is that the polarizing axes of the two polarizing plates 9 and 9' are at right angles to each other, and that the polarizing axis of one polarizing plate and the long axis direction of the molecules at the fixed interface are at right angles to each other. This is the case when it is set either parallel or at right angles.

[作 用] まず1本発明において、強誘電性液晶を用い上下基板の
配向制御機能に差をつけ、一方で強く固定し、他方で弱
く固定したことによるスイッチングの作用について説明
する華 一方の基板の液晶との界面に、例えばポリイミドのよう
な配向膜を設け、ラビング等により液晶分子を一軸配向
制御する処理を施して界面上の分子を強く固定し、もう
一方の基板の液晶との界面では、例えば上記のような配
向処理を全く施さないかあるいはごく弱いラビング処理
を施して配向制御力を弱めたセルを形成する。
[Function] First, in the present invention, we will explain the switching effect caused by using ferroelectric liquid crystals to differentiate the alignment control functions of the upper and lower substrates, strongly fixing one substrate and weakly fixing the other substrate. At the interface with the liquid crystal of the other substrate, an alignment film such as polyimide is provided, and the molecules on the interface are strongly fixed by applying a treatment such as rubbing to control the uniaxial alignment of the liquid crystal molecules, and at the interface with the liquid crystal of the other substrate, For example, a cell is formed in which the above-mentioned orientation treatment is not performed at all or a very weak rubbing treatment is performed to weaken the orientation control force.

このセルに強誘電性液晶を入れて、前者の基板上での液
晶の配向方向が安定となるような電界を印加しつS徐冷
してSc宰相とすると、ラビング方向に平行な配向がよ
り安定化し、逆極性電界を印加した時に得られる配向は
相対的に不安定となる。
When a ferroelectric liquid crystal is placed in this cell, an electric field is applied to stabilize the alignment direction of the liquid crystal on the former substrate, and S is slowly cooled to form an Sc phase, the alignment parallel to the rubbing direction becomes more stable. Once stabilized, the orientation obtained when an opposite polarity electric field is applied becomes relatively unstable.

この2つの配向の安定度の違いは、上下基板の配向処理
の方法により制御できる。この上下基板の配向機能の差
を適度に制御することにより、無電界時には徐冷時の配
向状態が安定し、逆極性を印加した時に得られる配向は
不安定とる0次に。
The difference in the stability of these two orientations can be controlled by the method of orientation treatment of the upper and lower substrates. By appropriately controlling the difference in the alignment function between the upper and lower substrates, the alignment state during slow cooling is stable in the absence of an electric field, and the alignment obtained when reverse polarity is applied is unstable.

逆極性の世界を印加した後に電界を除くと、天井板上で
自発分極のベクトルの方向がほぼ逆となったスプレィ状
態に遷移する。このようなスプレィ状態はセルの厚さが
厚いほど生じやすく、かつ、安定である。
When the electric field is removed after applying a world of opposite polarity, a transition occurs to a splay state in which the direction of the spontaneous polarization vector on the ceiling board is almost the opposite. Such a spray state occurs more easily and is more stable as the cell thickness increases.

以上のような作用により第1図に示すラビング方向のほ
ぼ−様な配向状態(a)と、スプレィ状態(b)[また
は(C)〕の2つの状態が安定な液晶素子が得られる。
Due to the above-mentioned effects, a liquid crystal element is obtained which is stable in two states: the approximately --like alignment state (a) in the rubbing direction shown in FIG. 1, and the spray state (b) [or (C)].

次に、前記液晶素子の電極に、所定の電界を印加した場
合のスイッチングの作用について説明する。
Next, a description will be given of the switching effect when a predetermined electric field is applied to the electrodes of the liquid crystal element.

前記液晶素子に1弱く固定された側の界面上の液晶分子
の自発分極のみが反転し1強く固定された側の界面上の
液晶分子の自発分極は反転しないような電界を印加する
と、片側界面でのみスイッチングが生じる。
When an electric field is applied to the liquid crystal element such that only the spontaneous polarization of the liquid crystal molecules on the interface on the weakly fixed side is reversed, but the spontaneous polarization of the liquid crystal molecules on the interface on the strongly fixed side is not reversed, the one-sided interface Switching occurs only at

このように、片側界面でのみスイッチングさせることに
より、第1図に示すラビング方向とほぼ同一の配向状態
(a)と、スプレィ状態(b)〔または(C)〕の二つ
の状態のいずれかを選択できる液晶素子が得られる。
In this way, by switching only at one side of the interface, one of two states can be achieved: the orientation state (a), which is almost the same as the rubbing direction shown in Fig. 1, and the spray state (b) [or (C)]. A liquid crystal element that can be selected is obtained.

次に、前記(a)、(b)(または(C)〕特性を有す
るセルを用いると、同じ液晶材料でもそのスイッチング
速度が速くなる作用について説明する。
Next, a description will be given of the effect that when a cell having the characteristics (a), (b) (or (C)) is used, the switching speed becomes faster even with the same liquid crystal material.

前述のとおり強誘電性液晶のスイッチング時間は、自発
分極および印加電圧が大きい程速くなる。
As mentioned above, the switching time of the ferroelectric liquid crystal becomes faster as the spontaneous polarization and the applied voltage are larger.

これは、自発分極と印加電圧との相互作用で生じる液晶
分子を反転させようとするトルクが大きくなることによ
る。分子反転のトルクの大きさは、自発分極や印加電圧
の大きさだけではなく、これら2つのベクトルのなす角
度(0)によっても変わる。
This is because the torque that attempts to reverse the liquid crystal molecules generated by the interaction between the spontaneous polarization and the applied voltage increases. The magnitude of the molecular inversion torque varies not only depending on the spontaneous polarization and the magnitude of the applied voltage, but also on the angle (0) formed by these two vectors.

即ち、2つのベクトルが直交したときに最大となり、平
行あるいは反平行になったときは理論的にはゼロとなる
That is, it is maximum when the two vectors are orthogonal, and theoretically becomes zero when they are parallel or antiparallel.

従来例では、メモリ状態において自発分極が基板との界
面に対してほぼ垂直な配列をしている。
In the conventional example, the spontaneous polarization is arranged almost perpendicularly to the interface with the substrate in the memory state.

従って電界を印加したとき、自発分極と電界とのなす角
度はほぼ180度であり、理論的なトルクはゼロである
Therefore, when an electric field is applied, the angle between the spontaneous polarization and the electric field is approximately 180 degrees, and the theoretical torque is zero.

実際には層構造が基板に対して完全に直交している訳で
はなく、若干傾いていたり、配向が局部的に乱れていた
り、あるいは熱的にゆらいでいたりすることにより、ゼ
ロでないトルクが生じて反転が開始する。いったん反転
が開始すると、自発分極と電界とのなす角度も拡大して
行き、それと共にトルクも増大してスイッチングが進行
し、完了するのである。
In reality, the layer structure is not completely orthogonal to the substrate, but may be slightly tilted, its orientation locally disordered, or thermally fluctuated, resulting in non-zero torque. The inversion starts. Once the reversal begins, the angle between the spontaneous polarization and the electric field expands, and the torque increases accordingly, and switching progresses and is completed.

これに対し本発明においては、第1図(b)のスプレィ
状態では、セル中央部の自発分極の向きが基板面にほぼ
平行、即ち、印加電圧とのなす角度がほぼ90度であり
、従来に比べてトルクが初期において既に著しく大きい
、それ故に同一材料でも、応答速度が速くなるのである
On the other hand, in the present invention, in the spray state shown in FIG. The torque is already significantly larger in the initial stage compared to the previous model, so even with the same material, the response speed is faster.

以上のように、スプレィ状態(b)からユニフォーム状
態(a)へのスイッチング速度を著しく改善することが
でき、特に、液晶マトリックス表示装置をより短い時間
で駆動することができるのである。
As described above, the switching speed from the spray state (b) to the uniform state (a) can be significantly improved, and in particular, the liquid crystal matrix display device can be driven in a shorter time.

また、強誘電性液晶分子が形成する層構造は基板面に垂
直ではなく、上下にほぼ対称な“くの字型″に変形した
層構造をとっている(T、P、Riekeret al
、 Physical Review Letters
、 59. No、23(1987) pp1257〜
2661 :リーカー他、ブイジカルレピュー レター
ズ〕。従って1層内の液晶分子がいかなる配列をとって
も、素子の厚み方向の液晶分子の分布が−様なユニフォ
ーム状態になることができないために理想的な暗状態と
はならなす、コントラストも低い。
In addition, the layer structure formed by ferroelectric liquid crystal molecules is not perpendicular to the substrate surface, but has a layer structure that is almost vertically symmetrical and deformed into a dogleg shape (T, P, Riekere et al.
, Physical Review Letters
, 59. No. 23 (1987) pp1257~
2661: Rieker et al., Commercial Review Letters]. Therefore, no matter how the liquid crystal molecules in one layer are arranged, the distribution of liquid crystal molecules in the thickness direction of the device cannot be in a uniform state, resulting in an ideal dark state and low contrast.

従って、本発明の効果を十分に引き出すには。Therefore, in order to fully bring out the effects of the present invention.

スメクチック層が素子の厚さ方向にほぼ垂直で平行な層
(ブックシェルフ構造)にすることが望ましい、こうし
た、ブックシェルフ構造は、素子を作成した当初から形
成されている必要はなく、例えば、交流の比較的高い電
圧を印加することで形成することができる。スメクチッ
クA相を経由する液晶材料を用いる時には、特に上記の
操作が有効である。
It is desirable that the smectic layer be almost perpendicular and parallel to the thickness direction of the device (bookshelf structure). Such a bookshelf structure does not need to be formed from the beginning of the device. It can be formed by applying a relatively high voltage of . The above operation is particularly effective when using a liquid crystal material that passes through the smectic A phase.

本発明は、液晶の自発分極の向きをスプレィ状態にした
後に、逆の極性の電圧パルスを複数の電極線の1本ずつ
に印加することにより順次書込んで行く、スプレィ状態
からユニフォーム状態へのスイッチング速度が、従来の
表示装置の場合に比べて2倍以上速いので、全画面の書
き換え時間を大幅に短縮することができるのである。
In the present invention, after the direction of spontaneous polarization of the liquid crystal is set to the spray state, voltage pulses of opposite polarity are sequentially applied to each of a plurality of electrode lines to sequentially write data, from the spray state to the uniform state. Since the switching speed is more than twice as fast as that of conventional display devices, the time required to rewrite the entire screen can be significantly reduced.

[実施例] 次に、実施例により本発明を具体的に説明する。[Example] Next, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 酸化インジウム系透明電極を設けた2枚のガラス基板の
うち一方の基板上に、ポリイミド系配向制御膜(PIQ
ワニス、日立化成工業■製)をスピンコードし、これを
加熱硬化した後にラビング処理した。
[Example 1] A polyimide-based alignment control film (PIQ) was deposited on one of two glass substrates provided with indium oxide-based transparent electrodes.
A varnish (manufactured by Hitachi Chemical Co., Ltd.) was spin-coded, heated and cured, and then rubbed.

溝尻光学所製エリプソメータで膜厚を測定したところ、
約100人であった。2枚の基板間隔が3.2μmとな
るようにガラスファイバ粉末をスペーサとして液晶セル
を組み立て、下式で示す液晶組成物を真空封入した。
The film thickness was measured using an ellipsometer manufactured by Mizojiri Optical Co., Ltd.
There were about 100 people. A liquid crystal cell was assembled using glass fiber powder as a spacer so that the distance between the two substrates was 3.2 μm, and a liquid crystal composition represented by the following formula was vacuum sealed.

(40重量%) (40重景%) (20重景%) 上記組成物の相系列を示すと次の通りである。(40% by weight) (40 heavy view%) (20 heavy view%) The phase series of the above composition is as follows.

き角32度、粘性係数0.7Pa−8、自発分極41n
C/cm”であった。
angle of 32 degrees, viscosity coefficient 0.7Pa-8, spontaneous polarization 41n
C/cm".

本組成物を上記セルに真空封入した後に、−旦61℃以
上に加熱した後、直流電圧20Vを印加しながら、約0
.5℃/分で室温まで徐冷した。
After vacuum-sealing the present composition in the above-mentioned cell, it was heated to 61°C or higher, and then heated to about 0.0°C while applying a DC voltage of 20V.
.. It was slowly cooled to room temperature at 5°C/min.

次に、2枚の偏光板で上記の素子を挟み、一方の偏光板
の偏光軸をラビング方向にほぼ平行(傾き角の温度変化
分である約10度ずらした)にセットし、他方の偏光板
の偏光軸を前記偏向板の偏光軸に対してほぼ直角に配置
した。
Next, sandwich the above element between two polarizing plates, set the polarization axis of one polarizing plate almost parallel to the rubbing direction (shifted by about 10 degrees, which corresponds to the temperature change in the tilt angle), and use The polarization axis of the plate was arranged approximately perpendicular to the polarization axis of the polarizing plate.

これに、電圧40V、Iliτの電圧パルスを印加し、
一方の界面においてのみ分子、即ち、自発分極が反転す
る最小パルス幅τS、τUを測定した。
A voltage pulse of 40 V and Iliτ is applied to this,
The minimum pulse widths τS and τU at which the molecules, that is, the spontaneous polarization is reversed, were measured only at one interface.

上記において、τSはユニフォーム状態からスプレィ状
態への、また、τUはスプレィ状態からユニフォーム状
態へのスイッチングの最小パルス幅である。
In the above, τS is the minimum pulse width for switching from the uniform state to the splay state, and τU is the minimum pulse width for switching from the splay state to the uniform state.

その結果、τs:=200us、tu:=70μsとな
り、τUがτSに対して2倍以上高速であることが分か
る。
As a result, τs:=200us, tu:=70μs, and it can be seen that τU is more than twice as fast as τS.

なお、この組成物の室温(25℃)に於ける傾〔比較例
〕 実施例1と同じ構成の素子において、配向膜の処理のみ
上下同一とし、膜厚50人、ラビング方向は上下で反平
行とした。プラス、マイナスの電圧パルスを印加した場
合の反転に要する最小パルス幅を測定したところ、共に
220μsであった。
Incidentally, the inclination of this composition at room temperature (25° C.) [Comparative Example] In an element having the same configuration as in Example 1, only the alignment film treatment was the same on the top and bottom, the film thickness was 50, and the rubbing direction was antiparallel on the top and bottom. And so. The minimum pulse width required for reversal when applying positive and negative voltage pulses was measured, and both were 220 μs.

〔実施例2〕 実施例1と同様の構成で、電極構造のみ第3図(a)に
示すような3X3の液晶マトリクス素子に。
[Example 2] A 3×3 liquid crystal matrix element with the same configuration as Example 1 except for the electrode structure as shown in FIG. 3(a).

第3図(b)に示すような電圧波形を印加した。A voltage waveform as shown in FIG. 3(b) was applied.

ここで、まず初期化期間内17において、前画素の状態
を一様にし、走査期間18において、各走査電極V x
z e V xz y V JI3のそれぞれに時間を
割当て)、1ライン毎に信号電極V vl @ V v
s p V vsからの信号情報を乗せた波形との差の
電圧により順次書込んだ。
Here, first, in the initialization period 17, the state of the previous pixel is made uniform, and in the scanning period 18, each scanning electrode V x
z e V xz y V JI3), signal electrode V vl @ V v for each line
Sequential writing was performed using the voltage difference from the waveform carrying signal information from sp V vs.

第3図に示した駆動波形例では、スイッチングさせる際
の電圧をV、とじ、他のライン上を書込んでいるときに
加わるパルス電圧をV、/3となるように設定した。
In the drive waveform example shown in FIG. 3, the voltage during switching is set to V, and the pulse voltage applied when writing on other lines is set to V, /3.

二こでは、初期化パルス19により全画素をまずスプレ
ィ状態とする0次に、書込みパルス20の波高値をしき
い値以上となるvo、あるいはしきい値以下となるv、
/3とし、スプレィ状態を保持するか、あるいはユニフ
ォーム状態へ書き換えるかして、画素毎に適宜明暗2状
態を書込んで行く。
In the second case, the initialization pulse 19 first puts all pixels into the spray state, and then the peak value of the write pulse 20 is vo, which becomes above the threshold value, or v, which becomes below the threshold value.
/3, and the splay state is maintained or the uniform state is rewritten, and two bright and dark states are appropriately written for each pixel.

なお、初期化期間内においては、ユニフォーム状態から
スプレィ状態へのスイッチングを完了させるためには、
パルス幅を十分に広くとるか波高値を十分に高くするこ
とにより達成される。
In addition, during the initialization period, in order to complete the switching from the uniform state to the spray state,
This is achieved by making the pulse width sufficiently wide or by making the peak value sufficiently high.

[発明の効果] 本発明の利用方法によれば、同じ液晶を用いた場合でも
、スイッチング速度をより速くすることができるので、
これまで以上に画素数の多い表示素子を駆動することが
できる。
[Effects of the Invention] According to the usage method of the present invention, even when using the same liquid crystal, the switching speed can be made faster.
It is possible to drive a display element with a larger number of pixels than ever before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の液晶素子の液晶分子および自発分極の
配向状態を説明する模式図、第2図は本発明の液晶素子
構造の斜視図、第3図(a)はマトリクス構成および第
3図(b)はその駆動波形図である。 1・・・基板、2・・・液晶分子の液晶層に平行な面へ
の斜影を示すベクトル(C−ダイレクタ)、3・・・自
発分極、5・・・自由界面、6・・・固定界面、9・・
・偏光板。 lO・・・液晶セル、11・・・偏光板の偏光軸、12
・・・ラビング方向、13・・・マトリクス電極、14
・・・駆動回路、17・・・初期化期間、18・・・走
査期間。 19・・・初期化パルス、20・・・スイッチングパル
ス。 第1図 (a) (b) 12 第 2 図 1.1′・・・・・・基板 9.9′・・・・・・偏光板 10・・・・・・・・・液晶 ii、 xi’・・・偏光板の偏光軸 12・・・・・・・・・ラピ/グ方向 13.13’・・・マトリックス貴」魯14・・・・・
・・・・駆動回路 (b)
FIG. 1 is a schematic diagram illustrating the alignment state of liquid crystal molecules and spontaneous polarization of a liquid crystal device of the present invention, FIG. 2 is a perspective view of the structure of a liquid crystal device of the present invention, and FIG. Figure (b) is a diagram of the driving waveform. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Vector showing the oblique shadow of liquid crystal molecules on a plane parallel to the liquid crystal layer (C-director), 3...Spontaneous polarization, 5...Free interface, 6...Fixed Interface, 9...
·Polarizer. lO...Liquid crystal cell, 11...Polarization axis of polarizing plate, 12
...Rubbing direction, 13...Matrix electrode, 14
... Drive circuit, 17... Initialization period, 18... Scanning period. 19...Initialization pulse, 20...Switching pulse. Figure 1 (a) (b) 12 2 Figure 1.1'...Substrate 9.9'...Polarizing plate 10...Liquid crystal ii, xi '... Polarizing axis of polarizing plate 12... Rapi/g direction 13.13'... Matrix 14...
...Drive circuit (b)

Claims (1)

【特許請求の範囲】 1、電極を有し少なくとも一方が透明な一対の基板をス
ペーサを介し対向させて形成したセルと、該セル内に封
入された強誘電性液晶層と、 前記液晶分子の配向変化に対応して前記セルを透過する
光の強度を変化せしめる光学手段を有する液晶表示装置
の駆動方法において、 前記液晶表示装置内の前記液晶層と前記基板との一方の
界面における液晶分子を、他方の界面における液晶分子
よりも基板に対して弱く固定し、 書込み前に全画素に初期化パルスを印加することにより
前記液晶分子の自発分極をスプレィ状態に配向し、 次いで書込みのスイチングを行なうための印加電圧は、
弱く分子を固定した方の界面上での分子が反転する電圧
よりも高く、強く分子を固定した力の界面上での分子が
反転する電圧よりも低い電圧を、選択画素に印加するこ
とを特徴とする液晶表示装置の駆動方法。 2、マトリックス電極を有し少なくとも一方が透明な一
対の基板をスペーサを介し対向させて形成したセルと、 該セル内に封入された強誘電性液晶層と、 前記液晶分子の配向変化に対応して前記セルを透過する
光の強度を変化せしめる光学手段を有する液晶表示装置
の駆動方法において、 前記液晶表示装置内の前記液晶層と前記基板との一方の
界面における液晶分子を、他方の界面における液晶分子
よりも基板に対して弱く固定し、 書込み前にマトリックス電極により構成された全画素に
初期化パルスを印加することにより前記液晶分子の自発
分極をスプレイ状態に配向し、 次いで書込みのスイチングを行なうための印加電圧は、
弱く分子を固定した方の界面上での分子が反転する電圧
よりも高く、強く分子を固 定した方の界面上での分子
が反転する電圧より も低い電圧を、選択画素に印加す
ることを特徴 とする液晶表示装置の駆動方法。 3、請求項第2項において、所定の極性の電圧パルスを
複数の電極線に同時に印加することによ り、一方の界
面と他方の界面の液晶分子の配向 が互いに交差する状
態に初期化し、  次いで、前記所定の極性とは逆の極性の電圧 パルスを
前記複数の電極線の1本ずつに印加することにより、順
次書込むことを特徴とする液晶表示装置の利用方法。  4、基板の少なくとも液晶分子を強く固定する側に一軸
配向した液晶配向制御膜を設けたことを 特徴とする請
求項第1項、第2項または第3項 記載の液晶表示装置
の駆動方法。 
[Claims] 1. A cell formed by opposing a pair of substrates, each of which has an electrode and at least one of which is transparent, with a spacer interposed therebetween; a ferroelectric liquid crystal layer sealed within the cell; In a method for driving a liquid crystal display device having an optical means for changing the intensity of light transmitted through the cell in response to a change in orientation, the method comprises: controlling liquid crystal molecules at one interface between the liquid crystal layer and the substrate in the liquid crystal display device; , fix the liquid crystal molecules weakly to the substrate than the liquid crystal molecules at the other interface, apply an initialization pulse to all pixels before writing to orient the spontaneous polarization of the liquid crystal molecules to a spray state, and then perform switching for writing. The applied voltage for is
It is characterized by applying a voltage to the selected pixel that is higher than the voltage at which the molecules are reversed on the interface where the molecules are weakly fixed, and lower than the voltage at which the molecules are reversed at the interface where the molecules are strongly fixed. A method for driving a liquid crystal display device. 2. A cell formed by opposing a pair of substrates, at least one of which has a matrix electrode and is transparent, with a spacer interposed therebetween; a ferroelectric liquid crystal layer sealed within the cell; In the method of driving a liquid crystal display device, the liquid crystal display device includes an optical means for changing the intensity of light transmitted through the cell, the liquid crystal molecules at one interface between the liquid crystal layer and the substrate in the liquid crystal display device being controlled by the liquid crystal molecules at the other interface. The liquid crystal molecules are fixed weakly to the substrate than the liquid crystal molecules, and before writing, the spontaneous polarization of the liquid crystal molecules is oriented to a splay state by applying an initialization pulse to all pixels configured by matrix electrodes, and then the writing is switched. The applied voltage for this is
Apply a voltage to the selected pixel that is higher than the voltage at which molecules are reversed on the interface where molecules are weakly fixed, and lower than the voltage at which molecules are reversed at the interface where molecules are strongly fixed. Features: A method for driving a liquid crystal display device. 3. In claim 2, by simultaneously applying a voltage pulse of a predetermined polarity to a plurality of electrode wires, the orientations of liquid crystal molecules at one interface and the other interface are initialized to a state where they intersect with each other, A method of using a liquid crystal display device, characterized in that writing is performed sequentially by applying a voltage pulse having a polarity opposite to the predetermined polarity to each of the plurality of electrode lines one by one. 4. The method for driving a liquid crystal display device according to claim 1, 2 or 3, characterized in that a uniaxially aligned liquid crystal alignment control film is provided on at least the side of the substrate where liquid crystal molecules are strongly fixed.
JP24737589A 1989-09-22 1989-09-22 Driving method for liquid crystal display device Pending JPH03107920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24737589A JPH03107920A (en) 1989-09-22 1989-09-22 Driving method for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24737589A JPH03107920A (en) 1989-09-22 1989-09-22 Driving method for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH03107920A true JPH03107920A (en) 1991-05-08

Family

ID=17162494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24737589A Pending JPH03107920A (en) 1989-09-22 1989-09-22 Driving method for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH03107920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282617B2 (en) 2006-12-28 2012-10-09 Daio Paper Corporation Disposable diaper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8282617B2 (en) 2006-12-28 2012-10-09 Daio Paper Corporation Disposable diaper

Similar Documents

Publication Publication Date Title
US4846560A (en) Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions
JPS62280824A (en) Driving method for liquid crystal display device
JP2647828B2 (en) Liquid crystal device manufacturing method
JPH03107920A (en) Driving method for liquid crystal display device
JPH0799416B2 (en) Liquid crystal device
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JPS6256933A (en) Driving method for liquid crystal matrix display panel
JP2517549B2 (en) Optical modulator
JP2695262B2 (en) Manufacturing method of ferroelectric liquid crystal panel
JPS62160420A (en) Liquid crystal element
JPH0545929B2 (en)
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPS6256937A (en) Driving method for liquid crystal matrix display panel
KR100802306B1 (en) Liquid Crystal Display Device and Method of Fabricating the same
JP2665331B2 (en) Driving method of ferroelectric liquid crystal display device
JPH06186583A (en) Liquid crystal display device
JPH0448366B2 (en)
EP0271344A2 (en) Liquid crystal display element and method for driving same
JPS63237035A (en) Gradation method for ferroelectric liquid crystal element
JPH05297377A (en) Production of ferroelectric liquid crystal display element
JPH01161221A (en) Liquid crystal element and its driving method
KR20020028518A (en) Method for manufacturing liquid crystal display of using feroelectric liquid crystal material
JPH07120762A (en) Liquid crystal display device and its production
JPH0526174B2 (en)
JPH05216034A (en) Ferroelectric liquid crystal element