JPH01161221A - Liquid crystal element and its driving method - Google Patents

Liquid crystal element and its driving method

Info

Publication number
JPH01161221A
JPH01161221A JP31856187A JP31856187A JPH01161221A JP H01161221 A JPH01161221 A JP H01161221A JP 31856187 A JP31856187 A JP 31856187A JP 31856187 A JP31856187 A JP 31856187A JP H01161221 A JPH01161221 A JP H01161221A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
dielectric anisotropy
frequency
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31856187A
Other languages
Japanese (ja)
Inventor
Yuji Kato
裕司 加藤
Shohei Naemura
省平 苗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31856187A priority Critical patent/JPH01161221A/en
Publication of JPH01161221A publication Critical patent/JPH01161221A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain high contrast at the time of time division driving by constituting a liquid crystal substance of ferroelectric smectic liquid crystal compound (LQC) and nematic or smectic LQC whose dielectric anisotropy is positively and negatively inverted in accordance with the frequency of impressed voltage. CONSTITUTION:The ferroelectric smectic LQC and the nematic or smectic LQC having a property inverting its dielectric anisotropy positively and negatively in accordance with the frequency of impressed voltage are mixed with each other in a gap between a substrate 1. When a voltage with low frequency showing positive dielectric anisotropy is impressed in the first stage of switching, force making the major axes of molecules parallel with an electric field direction acts on liquid crystal molecules 4 and force for orientating spontaneous polarization of the molecular minor axis direction in the electric field direction acts on also to the molecules 4. At the time of the latter stage of switching and non-address, action for stabilizing the parallel state of the liquid crystal molecules with the electrode substrate 1 is superposed by impressing a high frequency voltage whose dielectric anisotropy is negative, an optically stable state can be held independently of the voltage impressed at the time of non-address, as well. Thus, the drop of contrast at the time of time division driving can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、液晶表示素子や液晶光シャッタ等に使用され
る液晶素子とその駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal element used in a liquid crystal display element, a liquid crystal optical shutter, etc., and a method for driving the same.

[従来の技術] 一般に、強誘電性スメクティック液晶を厚さが3卯程度
以下の薄いセルに封入し、電極間に印加する電界の方向
を切換えると、液晶分子配向の反転が生じる。第2図は
そのような液晶分子の配向変化を示す模式図である。こ
のようなセルを、偏光面が直交した2枚の偏光板の間に
置くことによって、複屈折モードによる光スィッチか実
現される。この原理は、[アプライド・フィツクス・レ
ターズ(Applied Physics Lette
rs)J 36巻、1980年刊、899頁にクラーク
およびラガーウオルにより開示されている。
[Prior Art] Generally, when a ferroelectric smectic liquid crystal is sealed in a thin cell with a thickness of about 3 μm or less and the direction of an electric field applied between electrodes is switched, the orientation of liquid crystal molecules is reversed. FIG. 2 is a schematic diagram showing such a change in the orientation of liquid crystal molecules. By placing such a cell between two polarizing plates whose polarization planes are perpendicular to each other, an optical switch using a birefringence mode can be realized. This principle is explained in the Applied Physics Letters.
rs) J Vol. 36, published in 1980, p. 899 by Clark and Lagerwal.

このように、印加される電界に応答して第1の光学的安
定状態と、第2の光学的安定状態のいずれかを取り、か
つ電界が印加されないときはその状態を維持する性質、
すなわちメモリー性を有し、また電界の変化に対する応
答も速やかであることから強誘電性スメクティック液晶
は高速ならびに記憶型の表示素子や光シャッタ等へ広い
利用が期待されている。
In this way, the property of taking either the first optically stable state or the second optically stable state in response to an applied electric field and maintaining that state when no electric field is applied;
That is, ferroelectric smectic liquid crystals are expected to be widely used in high-speed and memory-type display elements, optical shutters, and the like because they have memory properties and respond quickly to changes in electric fields.

[発明が解決しようとする問題点] この強誘電性スメクティック液晶を光シヤツタアレイや
表示素子に用い、時分割駆動を行う場合、個々のエレメ
ントについて考えると、アドレス時にはそのエレメント
の選択(オン)、もしくは非選択(オフ)に応じた電圧
が印加されるが、非アドレス時には、いわゆるクロスト
ーク電圧が印加され、メモリー効果が低下することで、
アドレス時のエレメントの状態が変化してしまい、その
結果、時分割駆動時におけるシャッタ等の透過光量のオ
ン/オフ比(コントラスト)の低下をきたすという欠点
があった。
[Problems to be Solved by the Invention] When this ferroelectric smectic liquid crystal is used in an optical shutter array or a display element and time-division driving is performed, considering the individual elements, it is necessary to select (turn on) or turn on the element at the time of address. A voltage corresponding to non-selection (off) is applied, but when non-addressing, a so-called crosstalk voltage is applied, reducing the memory effect.
There is a drawback that the state of the element changes during addressing, resulting in a decrease in the on/off ratio (contrast) of the amount of light transmitted by the shutter, etc. during time-division driving.

一方、誘電異方性が負の強誘電性スメクティック液晶材
料を用い、非選択時に交流波形を重畳した場合、液晶分
子が基板に平行に配列する効果のため、電界に応答して
選択された光学的安定状態が保持される効果、すなわち
メモリー効果が出現することか第11回液晶討論会、2
No、 5  (1985年〉で、羽藤らにより報告さ
れている。しかしながら、環存する強誘電性スメクティ
ック液晶は誘電異方性が正のものかほとんどであり、誘
電異方性が負の液晶材料を容易に入手することは困難で
ある。
On the other hand, when a ferroelectric smectic liquid crystal material with negative dielectric anisotropy is used and an AC waveform is superimposed when not selected, the liquid crystal molecules are aligned parallel to the substrate, so the selected optical 11th Liquid Crystal Symposium, 2
No. 5 (1985), reported by Hato et al. However, most existing ferroelectric smectic liquid crystals have positive dielectric anisotropy, and liquid crystal materials with negative dielectric anisotropy are It is difficult to obtain it easily.

本発明は、このような問題点に鑑みて創案されたもので
、時分割駆動時に高いコントラストか得られる液晶素子
とその駆動方法を提供することを目的とする。
The present invention was devised in view of these problems, and an object of the present invention is to provide a liquid crystal element that can obtain high contrast during time-division driving, and a method for driving the same.

[問題点を解決するための手段] 本発明は、板面に電極を形成され、対向する2枚の基板
の間に液晶物質の薄層を挟持してなる液晶素子において
、液晶物質が強誘電性スメクティック液晶化合物と、印
加電圧の周波数により誘電異方性が正負に反転するネマ
ティックまたはスメクティツク液晶化合物とて組成され
た液晶素子とするものであり、そのような液晶素子の素
子状態を選択する印加電圧として、スイッチングの前段
で正の誘電異方性を示す第1の周波数の電圧を印加し、
スイッチングの後段および非アドレス時には負の誘電異
方性を示す第2の周波数の電圧を印加する如き液晶素子
の駆動方法によるものとする。
[Means for Solving the Problems] The present invention provides a liquid crystal element in which electrodes are formed on the plate surfaces and a thin layer of liquid crystal material is sandwiched between two opposing substrates, in which the liquid crystal material is ferroelectric. The liquid crystal element is composed of a smectic liquid crystal compound and a nematic or smectic liquid crystal compound whose dielectric anisotropy is inverted between positive and negative depending on the frequency of applied voltage, and an application that selects the element state of such a liquid crystal element. As a voltage, a voltage of a first frequency exhibiting positive dielectric anisotropy is applied before switching,
The liquid crystal element is driven by applying a voltage of a second frequency exhibiting negative dielectric anisotropy after switching and during non-addressing.

[作用コ 本発明は、電極を備えた2枚の互いに対向する基板の間
隙に強誘電性スメクティック液晶化合物と印加電圧の周
波数によって誘電異方性が正負反転する性質を有するネ
マティックまたはスメクティック液晶化合物とを混合し
、スイッチングの前段では誘電異方性が正であるような
低周波数の電圧を印加する。その電界効果に基づいて、
液晶分子には、分子長軸を電界方向に平行とする力が働
くと同時に、分子短軸方向の自発分極が電界方向に配向
しようとする力が働く。一方、スイッチングの後段、な
らびに非アドレス時には誘電異方性か負であるような高
周波数の電圧を印加することで液晶分子か電極基板に平
行な状態を安定化する作用か重畳されるため、非アドレ
ス時の印加電圧に対しても光学的安定状態が保持される
。このため非アドレス時の印加電圧に対する光学応答に
遅れが生じ、時分割駆動時のシャッタ等の透過光量のオ
ン/オフ比(コントラスト)の低下を低減することが可
能となる。
[Function] The present invention uses a ferroelectric smectic liquid crystal compound and a nematic or smectic liquid crystal compound whose dielectric anisotropy is reversed depending on the frequency of the applied voltage in the gap between two mutually opposing substrates provided with electrodes. A low frequency voltage with positive dielectric anisotropy is applied in the pre-switching stage. Based on the electric field effect,
A force acts on the liquid crystal molecules to make the long axis of the molecules parallel to the direction of the electric field, and at the same time a force acts to orient the spontaneous polarization in the direction of the short axis of the molecules in the direction of the electric field. On the other hand, applying a high-frequency voltage that is dielectric anisotropic or negative during the post-switching stage and during non-addressing will superimpose the effect of stabilizing the state parallel to the liquid crystal molecules or the electrode substrate. An optically stable state is maintained even with respect to the voltage applied during addressing. This causes a delay in the optical response to the applied voltage during non-addressing, making it possible to reduce the reduction in the on/off ratio (contrast) of the amount of light transmitted by the shutter, etc. during time-division driving.

「実施例] 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の構造を示す構成図である
。第1図において、1はガラス基板、2は酸化インジウ
ムの透明電極、3はポ1ノイミド液晶配向膜て、2枚の
カラス基板1はその間隙に液晶物質の薄層4をスペーサ
5を介して封止し、その周囲をエポキシ接着剤6で固定
されている。この液晶物質の薄層4には、透明電極2を
介して、電源7および8によって電圧が切換えられつつ
印加される。第1の電源7によって印加される電圧は液
晶物質の薄層4の誘電異方性か正であるような周波数f
1の低周波電圧であり、第2の電源8によって印加され
る電圧は液晶物質の薄層4の誘= 6 = 電昇方性が負であるような周波数f2の高周波電圧であ
る。本実施例で用いた液晶物質は誘電異方性が正の強誘
電性スメクティック液晶C5−1014(チッソ(l木
製)および誘電分散型のスメクティツク液晶4−n−ペ
ンチルフェニル−2”−クロロ−4’−(6−n−へキ
シル−2−ナフトイルオキシ)ベンゾエートを重量比9
5.0:  5.0で混合した液晶物質であり、この液
晶物質の誘電異方性が反転する周波数は1kH2,薄層
の厚ざは2卯である。
FIG. 1 is a block diagram showing the structure of an embodiment of the present invention. In FIG. 1, 1 is a glass substrate, 2 is an indium oxide transparent electrode, 3 is a polyimide liquid crystal alignment film, and two glass substrates 1 are provided with a thin layer 4 of liquid crystal material in the gap between them through a spacer 5. It is sealed and its periphery is fixed with epoxy adhesive 6. A voltage is applied to this thin layer 4 of liquid crystal material via the transparent electrode 2 in a switched manner by power supplies 7 and 8 . The voltage applied by the first power supply 7 has a frequency f such that the dielectric anisotropy of the thin layer 4 of liquid crystal material is positive.
1 and the voltage applied by the second power source 8 is a high frequency voltage of frequency f2 such that the dielectric potential of the thin layer 4 of liquid crystal material 6 is negative. The liquid crystal materials used in this example were ferroelectric smectic liquid crystal C5-1014 (Chisso (l wood)) with positive dielectric anisotropy and dielectric dispersed smectic liquid crystal 4-n-pentylphenyl-2''-chloro-4. '-(6-n-hexyl-2-naphthoyloxy)benzoate at a weight ratio of 9
5.0: A liquid crystal material mixed at 5.0, the frequency at which the dielectric anisotropy of this liquid crystal material is reversed is 1 kHz, and the thickness of the thin layer is 2 μm.

比較の便宜上、第1図に示す実施例と同一の構造で、液
晶物質が正の誘電異方性を持つC5−1014(チッソ
0朱製)のみを注入したセルも製作した。
For convenience of comparison, a cell was also fabricated with the same structure as the example shown in FIG. 1, but in which only C5-1014 (manufactured by Chisso 0 Shu), which has a positive dielectric anisotropy, was injected as the liquid crystal material.

第1図に示す構造の液晶素子にスイッチングの前段では
誘電異方性が正でおるような低周波(f 1=100 
Hz>の電圧を第1の電源7により印加し、スイッチン
グの後段ならびに非アドレス時には誘電異方性か負であ
るような高周波数(f2=10 kH2)の電圧を第2
の電源8により印加した。
In the liquid crystal element having the structure shown in Fig. 1, the dielectric anisotropy is positive at a low frequency (f 1 = 100
Hz> is applied by the first power supply 7, and a voltage of high frequency (f2 = 10 kHz) such as dielectric anisotropy or negative is applied to the second power supply after switching and during non-addressing.
The voltage was applied by the power source 8 of .

誘電異方性が正の液晶材料の場合、電圧印加によるスイ
ッチング後の液晶分子には分子長軸を電界方向に平行に
しようとする力か働き、光学的安定状態が不安定となる
が、スイッチングの後段すなわち液晶分子が反転したと
き、ならびに非アドレス時に誘電異方性が負であるよう
な高周波f2の電圧を印加すると、液晶分子が電極基板
に平行な状態を安定化する作用か重畳されるため、スイ
ッチングの後半、ならびに非アドレス時の印加電圧に対
しても光学的安定状態か保持される。
In the case of a liquid crystal material with positive dielectric anisotropy, after switching by voltage application, a force acts on the liquid crystal molecules to make the long axis of the molecules parallel to the direction of the electric field, making the optically stable state unstable. When applying a high-frequency voltage f2 such that the dielectric anisotropy is negative in the latter stage, that is, when the liquid crystal molecules are inverted and in non-addressing, the effect of stabilizing the state in which the liquid crystal molecules are parallel to the electrode substrate is superimposed. Therefore, an optically stable state is maintained even during the latter half of switching and the applied voltage during non-addressing.

このような構造で、400 DPIの液晶光シャッタア
レイを製作し、前記シャッタアレイに強誘電性スメクテ
ィツク液晶化合物と誘電分散型のスメクティック液晶と
の混合液晶を注入したところ、178時分割駆動におい
てコントラスト6:1が得られ、従来の誘電異方性が正
の液晶材料を使って得られたコントラスト4:1よりも
大きな値が得られた。
With this structure, a 400 DPI liquid crystal optical shutter array was fabricated, and a mixed liquid crystal of a ferroelectric smectic liquid crystal compound and a dielectrically dispersed smectic liquid crystal was injected into the shutter array. :1, which is larger than the contrast of 4:1 obtained using conventional liquid crystal materials with positive dielectric anisotropy.

[発明の効果] 以上述ぺたように、本発明によれば、時分割駆動時に高
いコントラストか得られる液晶素子およびその駆動方法
を提供することかできる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a liquid crystal element that can obtain high contrast during time-division driving, and a method for driving the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は液晶分子
配向の模式図である。 1・・・ガラス基板     2・・・透明電極3・・
・液晶配向膜     4・・・液晶物質薄膜5・・・
スペーサ      6・・・接着剤7.8・・・電源
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a schematic diagram of liquid crystal molecule alignment. 1...Glass substrate 2...Transparent electrode 3...
・Liquid crystal alignment film 4...Liquid crystal substance thin film 5...
Spacer 6... Adhesive 7.8... Power supply

Claims (2)

【特許請求の範囲】[Claims] (1)板面に電極を形成され、対向する2枚の基板の間
に液晶物質の薄層を挟持してなる液晶素子において、液
晶物質が強誘電性スメクティック液晶化合物と、印加電
圧の周波数により誘電異方性が正負に反転するネマティ
ックまたはスメクティック液晶化合物とで組成されるこ
とを特徴とする液晶素子。
(1) In a liquid crystal element in which electrodes are formed on the plate surfaces and a thin layer of liquid crystal material is sandwiched between two opposing substrates, the liquid crystal material is a ferroelectric smectic liquid crystal compound and the frequency of the applied voltage is A liquid crystal element characterized by being composed of a nematic or smectic liquid crystal compound whose dielectric anisotropy is reversed between positive and negative.
(2)強誘電性スメクティック液晶化合物と、印加電圧
の周波数により誘電異方性が正負に反転するネマティッ
クまたはスメクティック液晶化合物とで組成された液晶
物質を備える液晶素子の駆動方法であって、素子状態を
選択する印加電圧として、スイッチングの前段で正の誘
電異方性を示す第1の周波数の電圧を印加し、スイッチ
ングの後段および非アドレス時には負の誘電異方性を示
す第2の周波数の電圧を印加することを特徴とする液晶
素子の駆動方法。
(2) A method for driving a liquid crystal element comprising a liquid crystal substance composed of a ferroelectric smectic liquid crystal compound and a nematic or smectic liquid crystal compound whose dielectric anisotropy is reversed between positive and negative depending on the frequency of an applied voltage, the method comprising: As the applied voltage for selecting, a voltage with a first frequency exhibiting positive dielectric anisotropy is applied before switching, and a voltage having a second frequency exhibiting negative dielectric anisotropy after switching and during non-addressing is applied. A method for driving a liquid crystal element, the method comprising: applying .
JP31856187A 1987-12-18 1987-12-18 Liquid crystal element and its driving method Pending JPH01161221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31856187A JPH01161221A (en) 1987-12-18 1987-12-18 Liquid crystal element and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31856187A JPH01161221A (en) 1987-12-18 1987-12-18 Liquid crystal element and its driving method

Publications (1)

Publication Number Publication Date
JPH01161221A true JPH01161221A (en) 1989-06-23

Family

ID=18100506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31856187A Pending JPH01161221A (en) 1987-12-18 1987-12-18 Liquid crystal element and its driving method

Country Status (1)

Country Link
JP (1) JPH01161221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798814A (en) * 1990-08-28 1998-08-25 Semiconductor Energy Laboratory Co., Ltd. Method of driving a ferroelectric liquid crystal optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798814A (en) * 1990-08-28 1998-08-25 Semiconductor Energy Laboratory Co., Ltd. Method of driving a ferroelectric liquid crystal optical device

Similar Documents

Publication Publication Date Title
JPH0812360B2 (en) Liquid crystal display device and driving method thereof
US5189535A (en) Liquid crystal display element and method for driving same
JPH01302226A (en) Ferroelectric liquid crystal element
JPH09281528A (en) Ferroelectric liquid crystal element, its production and production of liquid crystal element
JPS59214824A (en) Liquid-crystal electrooptic device
JPH1152431A (en) Liquid crystal display element
JPS62280824A (en) Driving method for liquid crystal display device
US5278684A (en) Parallel aligned chiral nematic liquid crystal display element
JPH01177016A (en) Ferroelectric liquid crystal shutter
JP2927662B2 (en) Liquid crystal display
JPH0415926B2 (en)
JPH01161221A (en) Liquid crystal element and its driving method
JPS60235121A (en) Driving method of liquid crystal element
JPH01161223A (en) Liquid crystal element
KR100412489B1 (en) ferroelectric liquid crystal display
JPS6228717A (en) Method for driving liquid crystal display device
CA1304485C (en) Liquid crystal display element and method for driving same
JP4220729B2 (en) Liquid crystal light modulator and liquid crystal display device using the same
JP3094580B2 (en) Antiferroelectric liquid crystal display
JPH0229630A (en) Liquid crystal element
JPH0274925A (en) Optical switching element for multi-electrode type high speed liquid crystal
JP3633009B2 (en) Liquid crystal material and liquid crystal element including the same
JPH0756545B2 (en) Driving method of liquid crystal matrix display panel
JP2000089195A (en) Liquid crystal display device and its driving method
JPS63186217A (en) Liquid crystal display device