JPS62160420A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS62160420A
JPS62160420A JP173086A JP173086A JPS62160420A JP S62160420 A JPS62160420 A JP S62160420A JP 173086 A JP173086 A JP 173086A JP 173086 A JP173086 A JP 173086A JP S62160420 A JPS62160420 A JP S62160420A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
state
molecules
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP173086A
Other languages
Japanese (ja)
Inventor
Hisahide Wakita
尚英 脇田
Tsuyoshi Kamimura
強 上村
Hiroyuki Onishi
博之 大西
Shiyuuko Ooba
大庭 周子
Isao Oota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP173086A priority Critical patent/JPS62160420A/en
Publication of JPS62160420A publication Critical patent/JPS62160420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve displayed gradation characteristic by inserting ferroelectric liquid crystals between confronting substrates and holding the liquid crystals at specified three conditions. CONSTITUTION:When ferroelectric liquid crystals are inserted between confronting substrates having an oblique deposited inorg. material on the surface of the substrates, the liquid crystal molecules are stabilized at an intermediate third state having a twisted structure with a different angle between the normal of the layer of molecules. Accordingly, the liquid crystals in the liquid crystal element are held at the first state where the liquid crystal molecules are almost parallel to the substrate but are inclined rightwards against the normal of the molecule layer, at the second state where the liquid crystals are inclined leftwards, and the third state where the liquid crystal molecules are in the intermediate stage, permitting sufficient display of gradation by the intermediate state. Thus, the display performance of the gradation is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶を液晶層として持つ液晶素子にお
いて、透過光量を階調制御できる液晶素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal element having a ferroelectric liquid crystal as a liquid crystal layer, which can control the gradation of the amount of transmitted light.

従来の技術 近年、応答速度が速くメモリー性のある強誘電性液晶の
報告がなされている(例えば、竹添秀夫、福田敦夫、久
世栄−:「工業材料」、第31巻、第10号、22)。
Prior Art In recent years, reports have been made on ferroelectric liquid crystals with fast response speed and memory properties (for example, Hideo Takezoe, Atsuo Fukuda, and Sakae Kuze: "Industrial Materials", Vol. 31, No. 10, 22). ).

以下、図面を用いて従来の強誘電性液晶パネルの一例に
ついて説明するう第6図は従来のスメクチック液晶パネ
ルの構造を示すものである。第6図において21はガラ
ス基板、22はITO(インジウム・錫酸化物)より成
る透明電極、24は強誘電性液晶層、26は液晶分子の
Cダイレクタ−126は双極子モーメントである。
An example of a conventional ferroelectric liquid crystal panel will be described below with reference to the drawings. FIG. 6 shows the structure of a conventional smectic liquid crystal panel. In FIG. 6, 21 is a glass substrate, 22 is a transparent electrode made of ITO (indium tin oxide), 24 is a ferroelectric liquid crystal layer, 26 is a C director of liquid crystal molecules, and 126 is a dipole moment.

強誘電性液晶は一般に分子長軸に垂直な方向に双極子モ
ーメントをもっておシ、薄膜化にょシ自発分極を持つよ
うになる。強誘電性を示すカイラルスメクチ・ツク相の
例を用いて強誘電性液晶の表記方法を第7図に示す。第
7図(IL)は分子層の法線27に対し分子長軸が+θ
度傾いた状態、第7図(′b)は−θ度傾いた状態の強
誘電性液晶の表記法である。27は層の法線、28は分
子の長軸方向n。
Ferroelectric liquid crystals generally have a dipole moment in the direction perpendicular to the long axis of the molecules, and as the film becomes thinner, they acquire spontaneous polarization. FIG. 7 shows how to describe ferroelectric liquid crystal using an example of a chiral smectoid phase exhibiting ferroelectricity. Figure 7 (IL) shows that the long axis of the molecule is +θ with respect to the normal 27 of the molecular layer.
FIG. 7('b) is a representation of a ferroelectric liquid crystal in a -θ degree tilted state. 27 is the normal to the layer, and 28 is the long axis direction n of the molecule.

29は双極子モーメントPs、30はnをxy平面上に
投影した時のCダイレクタ−C131は分子長軸の法線
に対する傾き角±θ度である。以上のような構造を持つ
強誘電性液晶パネルについて、以下その動作原理につい
て図を参照しながら説明する。
29 is the dipole moment Ps, and 30 is the C director C131 when n is projected onto the xy plane, which is the inclination angle ±θ degrees with respect to the normal to the long axis of the molecule. The operating principle of the ferroelectric liquid crystal panel having the above structure will be explained below with reference to the drawings.

第8図に従来の強誘電性液晶パネルの表示方法の原理図
を示す。32は層法線に対して分子長軸が+θ度傾いた
液晶分子、33は一〇度傾いた液晶分子、34は紙面表
方向の双極子モーメント、35は紙面裏方向の双極子モ
ーメント、36は2枚の偏光板の方向である。さて、第
8図(&)は電圧無印加の状態、第8図(b)は紙面表
から裏へ正の電圧を印加した場合、第8図(c)は紙面
裏から表へ正の電圧を印加した場合の動作原理である。
FIG. 8 shows a principle diagram of a conventional ferroelectric liquid crystal panel display method. 32 is a liquid crystal molecule whose long axis of the molecule is tilted by +θ degrees with respect to the layer normal, 33 is a liquid crystal molecule tilted by 10 degrees, 34 is a dipole moment in the direction of the front of the paper, 35 is a dipole moment in the direction of the back of the paper, 36 is the direction of the two polarizing plates. Now, Fig. 8 (&) shows the state where no voltage is applied, Fig. 8 (b) shows the case where a positive voltage is applied from the front to the back of the paper, and Fig. 8 (c) shows the case where the positive voltage is applied from the back to the front of the paper. This is the operating principle when applying .

このように電圧の印加力向によりセル全体が±θ度傾い
た2つの状態をとり、したがって、電気光学効果による
複屈折または2色性を利用すれば明暗を表すことができ
る。
In this way, the entire cell assumes two states tilted by ±θ degrees depending on the direction of applied voltage, and therefore, brightness and darkness can be expressed by utilizing birefringence or dichroism due to the electro-optic effect.

発明が解決しようとする問題点 従来は上記の2状態によシ2値表示をした報告しかなさ
れていない。中間調を表示するには絵素内で2状態の混
ざった状態を用いる方法が考えられているが、マトリッ
クスパネルで実際に表示できた例はない。これは、2状
態の混ざった状態は基板表面の影響を受は易いので極め
て制御性が悪いために、非常に均一な配向が要求される
からである。
Problems to be Solved by the Invention Until now, there have only been reports on binary display based on the above two states. A method of using a mixture of two states within a picture element has been considered to display halftones, but there is no example of this being actually possible to display on a matrix panel. This is because the mixed state of the two states is easily influenced by the substrate surface, resulting in extremely poor controllability and requires very uniform alignment.

本発明は上記問題点に鑑み、階調表示に有利な液晶素子
を提供するものである。
In view of the above problems, the present invention provides a liquid crystal element that is advantageous for gradation display.

問題点を解決するための手段 上記問題点を解決するために本発明の液晶素子は、対向
面に電極を有する一対の基板間に強誘電性液晶を挾持し
、分子が基板に概平行で分子層法線から右に傾いた第1
の状態と、基板に概平行で分子層法線から左に傾いた第
2の状態と、対向基板上で分子が分子層法線となす角度
が異なったねじれ構造をなす第3の状態により、3階調
を表すことができるものである。
Means for Solving the Problems In order to solve the above problems, the liquid crystal element of the present invention has a ferroelectric liquid crystal sandwiched between a pair of substrates having electrodes on opposing surfaces, so that the molecules are approximately parallel to the substrates. The first tilted to the right from the layer normal
, a second state that is approximately parallel to the substrate and tilted to the left from the molecular layer normal, and a third state in which the molecules form a twisted structure with different angles with the molecular layer normal on the opposing substrate. It can represent three gradations.

さらに多くの階調を出すには、上記の素子の1絵素を面
積の異なる複数の絵素を配置するか、複数回の走査を組
み合せれば、3のべき乗で階調が増えていくので、2状
態しかない場合より非常に有利である。
In order to produce even more gradations, one pixel of the above element can be arranged with multiple pixels with different areas, or by combining multiple scans, the gradations will increase as a power of 3. , which is much more advantageous than the case where there are only two states.

作用 強誘電性液晶分子は電圧を印加すると、自発分極は一様
に上または下を向き、ダイレクタ−(巨視的な分子力向
)は一様に層法線に対して傾く。
When a voltage is applied to the working ferroelectric liquid crystal molecules, the spontaneous polarization points uniformly upward or downward, and the director (macroscopic molecular force direction) uniformly tilts with respect to the layer normal.

自発分極が一様に上を向いている場合fttIU(un
iform up )、一様に下を向いている場合をU
 D (uniform down )と呼ぶことにし
、それぞれ第1図(IL)、(b)に図示する。−力、
適当な厚みと配向処理を施されたセルでは、電圧を印加
しないときは、基板表面の極性に応じて自発分極は基板
方向か基板逆方向を向くので、上下の基板の極性が同じ
ときは自発分極は上から下ヘスプレーし、グイレフター
は第1図(0)のようなねじれ構造(Tw)を示す。こ
れらの3状態はいずれも安定であり、メモリー性がある
If the spontaneous polarization points uniformly upward, fttIU(un
ifform up), if the uniformly facing downwards is U.
They will be referred to as D (uniform down) and are illustrated in FIGS. 1 (IL) and (b), respectively. -force,
In a cell with appropriate thickness and orientation treatment, when no voltage is applied, spontaneous polarization will be directed toward the substrate or in the opposite direction depending on the polarity of the substrate surface, so if the upper and lower substrates have the same polarity, spontaneous polarization will occur. The polarization spreads from top to bottom, and the gylefter exhibits a twisted structure (Tw) as shown in FIG. 1 (0). All of these three states are stable and have memory properties.

分子の層法線からの傾き角θが22.6°前後のとき、
ねじれ構造をとった時の入射光側基板上の分子に平行に
偏光子、垂直に検光子を設置し、UDのとき分子が偏光
子に平行であるとして、それぞれの状態のときの可視光
域の透過光量を計算により求めた結果を第3図に示す。
When the inclination angle θ of the molecule from the layer normal is around 22.6°,
A polarizer is installed parallel to the molecule on the incident light side substrate when the twisted structure is taken, and an analyzer is installed perpendicularly to the molecule. Assuming that the molecule is parallel to the polarizer during UD, the visible light range in each state is determined. FIG. 3 shows the calculated amount of transmitted light.

横軸は液晶の屈折率異方性Δnと基板間距離dの積Δn
odで、縦軸は透過光の入射光に対する割合である。U
Dでは常に暗状態なのは明らかで、UTJでは複屈折効
果を表す式(1)を用い、ねじれ状態ではねじれ構造を
光が通るときの透過光量を表す式(2)を用いて計算し
ている。
The horizontal axis is the product Δn of the refractive index anisotropy Δn of the liquid crystal and the distance d between the substrates.
od, the vertical axis is the ratio of transmitted light to incident light. U
It is clear that in D, it is always in a dark state, and in UTJ, equation (1) expressing the birefringence effect is used, and in the twisted state, equation (2) is used to express the amount of transmitted light when light passes through the twisted structure.

T = 5in2(4θ) 5in2(πΔnl/λ)
・・・・・・式(1)T = 5=n2(20町〒〒u
” )/(1+ u2)  ・・・一式@)但し、U=
π・Δnd/2θλ 図よりΔn@1が0.3および0.8付近ではねじれ状
態により中間調を表せることが分る。
T = 5in2 (4θ) 5in2 (πΔnl/λ)
...Formula (1) T = 5 = n2 (20 towns〒〒u
” )/(1+ u2) ... complete set @) However, U=
π·Δnd/2θλ From the figure, it can be seen that when Δn@1 is around 0.3 and 0.8, halftones can be expressed by the twisted state.

実施例 以下に実施例を示す。Example Examples are shown below.

筆者の実験では、非常に圧力を低くしてラビングするか
、あるいは基板表面に無機物を斜方蒸着することにより
強誘電性液晶を配向させると、ねじれ構造が非常に出現
しやすく、かつ安定であることが分った。第2図(b)
はエステル系の強誘電性液晶をSiOを斜方蒸着により
配向させた時の電圧対透過光量の特性を、第2図(IL
)のような波形により、第1のパルスで暗状態にリセ・
フトし、第2のパルス電圧値を変化させて調べたもので
ある。
In my experiments, when ferroelectric liquid crystals are aligned by rubbing at a very low pressure or by obliquely depositing an inorganic material on the substrate surface, a twisted structure is very likely to appear and is stable. I found out. Figure 2(b)
Figure 2 (IL
), the first pulse resets the dark state.
The results were investigated by changing the second pulse voltage value.

0から6ボルトでは暗状態、6から8ボルトでは中間状
態、9ボルト以上では明状態を示した。観察により、中
間状態は分子が絵素全面に渡ってねじれ構造をとること
により実現されていることが分った。但し、このときの
基板間距離は3.2μmであった。
At 0 to 6 volts it was in the dark state, at 6 to 8 volts it was in the intermediate state, and at 9 volts and above it was in the bright state. Observations revealed that the intermediate state is realized by the molecules adopting a twisted structure over the entire surface of the pixel. However, the distance between the substrates at this time was 3.2 μm.

次に、上記の液晶および配向法を用いてマトリックスパ
ネルを作成し第4図のようなマトリックス駆動波形を印
加し九ところ、3階調とも均一な表示が得られた。これ
は、第2図(b)に示し九ようにねじれ状態をとる電圧
に約2ボルトの幅があるため、従来の明暗が混ざった状
態のように表面状態や基板間距離のむらの影響を受けに
くいためであると考えられる。第4図の駆動波形は非選
択期間にリセットパルスを走査電極に印加して暗状態に
しておき、選択期間の電圧値で階調を制御している。こ
の場合、階調はパルス幅をかえて制御することもできる
。リセットパルスを加えるタイミングを変えれば単位時
間の透過光量を調節できるので、リセットパルスの加わ
るタイミングをかえた複数のフレームによりさらに多く
の階調を表示できる。また、1絵素を面積が1.1 /
 3 、1 /32と異なる電極で構成することでも多
階調を表すことができる。
Next, a matrix panel was prepared using the above-mentioned liquid crystal and alignment method, and a matrix drive waveform as shown in FIG. 4 was applied, and a uniform display was obtained in all three gradations. This is because there is a width of about 2 volts in the voltage that creates the twisted state as shown in Figure 2 (b), so it is not affected by the unevenness of the surface condition or the distance between the substrates, like the conventional mixed light and dark state. This is thought to be because it is difficult. In the drive waveform shown in FIG. 4, a reset pulse is applied to the scanning electrode during the non-selection period to keep it in a dark state, and the gradation is controlled by the voltage value during the selection period. In this case, the gradation can also be controlled by changing the pulse width. Since the amount of transmitted light per unit time can be adjusted by changing the timing at which the reset pulse is applied, more gradations can be displayed by using multiple frames in which the timing at which the reset pulse is applied is changed. Also, the area of 1 pixel is 1.1 /
Multiple gradations can also be expressed by configuring with electrodes different from 3 and 1/32.

また、駆動波形として、第6図のような1選択期間を4
つのパルスで構成し几マトリックス駆動法も有効であっ
た。
In addition, as a drive waveform, one selection period as shown in Fig. 6 is set to 4.
A matrix driving method consisting of two pulses was also effective.

発明の効果 本発明の液晶素子は、適切な厚みと配向法によ。Effect of the invention The liquid crystal element of the present invention can be manufactured using an appropriate thickness and alignment method.

す、ねじれ構造が安定なパネルを作り、従来のねじれて
いない明暗2階調の他に、ねじれ状態による中間調をむ
らなく実現できるものである。
The twisted structure creates a stable panel, and in addition to the conventional untwisted two gradations of light and dark, it is possible to evenly realize halftones due to the twisted state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例における本発明の液晶素子の各階調での
分子の状態を示す状態図、第2図は前記液晶素子の印加
電圧−透過光量特性図、第3図は計算により求めに各分
子状態での透過光量を示す特性図、第4図から第6図は
実施例における÷トリックス駆動波形を表す波形図、第
6図は強誘電性液晶パネルの断面図、第7図はカイラル
スメクテ・ツクC液晶の表記法を示す模式図、第8図は
従来の強誘電性液晶パネルの表示の原理を示す原理図で
ある。 21・・・・・・ガラス基板、22・・・・・・透明電
極、23・・・・・・配向膜、24・・・・・・強誘電
性液晶層、25・・・・・・液晶分子のCダイレクタ−
126・・・・・・双極子モーメント、27・・・・・
・層の法線、28・・・・・・分子の長軸方向n129
・・・・・・双極子モーメント、30・・・・・・Cダ
イレクタ−131・・・・・・分子長軸の層法線に対す
る傾き角±θ度、32・・・・・・層法線に対して分子
長軸が+θ度傾いた液晶素子、33・・・・・・−θ度
傾いた液晶素子、34・・・・・・紙面表方向の双極子
モーメント、36・・・・・・紙面裏方向の双極子モー
メント、36・・・・・・2枚の偏光板の方向。 代理人の氏名 弁理士 中 尾 敏 男 はが1名/−
−−上萎雁J彌酉細 2−−一下  。 (α)    (し)(C) 第2図 600/”1566 第3図      1O−UtJ 11−−一梓し″着(択隨。 0  0.2 0.4 06  0δf   1.2 
1.4 1コ乙ル゛4 第4図      (0−)−L:1tJL(bルー 
侶″5tL 2収やちL \ト (0〜
FIG. 1 is a state diagram showing the state of molecules at each gradation of the liquid crystal element of the present invention in the example, FIG. 2 is a characteristic diagram of the applied voltage versus transmitted light amount of the liquid crystal element, and FIG. Characteristic diagrams showing the amount of transmitted light in the molecular state, Figures 4 to 6 are waveform diagrams representing the ÷trix driving waveform in the example, Figure 6 is a cross-sectional view of the ferroelectric liquid crystal panel, and Figure 7 is the chiral smecte. FIG. 8 is a schematic diagram showing the notation of TsukuC liquid crystal, and FIG. 8 is a principle diagram showing the display principle of a conventional ferroelectric liquid crystal panel. 21... Glass substrate, 22... Transparent electrode, 23... Alignment film, 24... Ferroelectric liquid crystal layer, 25... C director of liquid crystal molecules
126...Dipole moment, 27...
・Normal to the layer, 28... Long axis direction of the molecule n129
......Dipole moment, 30...C director-131...Tilting angle of the long axis of the molecule ±θ degrees with respect to the layer normal, 32...Layer method Liquid crystal element whose long axis of the molecule is tilted by +θ degrees with respect to the line, 33...Liquid crystal element tilted by -θ degrees, 34...Dipole moment in the direction of the surface of the paper, 36... ...Dipole moment toward the back of the paper, 36...Direction of the two polarizing plates. Name of agent: Patent attorney Toshio Nakao, 1 person/-
--Kamidougan J Yatori Hoso 2--Ikushita. (α) (shi) (C) Fig. 2 600/"1566 Fig. 3 1O-UtJ 11--Ichizusa" arrival (optional) 0 0.2 0.4 06 0δf 1.2
1.4 1 koru ゛4 Fig. 4 (0-)-L: 1tJL (b rou
``5tL 2 YachiL \(0~

Claims (9)

【特許請求の範囲】[Claims] (1)対向面に電極を有する一対の基板間に強誘電性液
晶を挾持し、分子が基板に概平行で分子層法線から右に
傾いた第1の状態と、基板に概平行で分子層法線から左
に傾いた第2の状態と、対向基板上で分子が分子層法線
となす角度が異なったねじれ構造をなす第3の状態によ
り、3階調を表せることを特徴とする液晶素子。
(1) A ferroelectric liquid crystal is sandwiched between a pair of substrates having electrodes on opposing surfaces, and a first state in which the molecules are approximately parallel to the substrates and tilted to the right from the molecular layer normal, and a first state in which the molecules are approximately parallel to the substrates and tilted to the right from the molecular layer normal. The second state is tilted to the left from the layer normal, and the third state is a twisted structure in which the angle between the molecules and the molecular layer normal on the opposing substrate is different, allowing three gradations to be expressed. liquid crystal element.
(2)強誘電性液晶の分子層法線からの分子の傾き角が
22.5前後であることを特徴とする特許請求の範囲第
(1)項記載の液晶素子。
(2) The liquid crystal element according to claim (1), wherein the angle of inclination of the molecules from the normal to the molecular layer of the ferroelectric liquid crystal is approximately 22.5.
(3)1絵素を面積の異なる複数の絵素を配置して多階
調を表すことのできる特許請求の範囲第(1)項または
第(2)項記載の液晶素子。
(3) A liquid crystal element according to claim (1) or (2), which is capable of expressing multiple gradations by arranging a plurality of picture elements having different areas in one picture element.
(4)走査電極の非選択期間内にリセットパルスを印加
し3つの状態のいずれか一定の状態に素子をリセットし
、選択期間にはパルス幅もしくは電圧を変化させた交流
の階調信号をパネルに印加できる駆動回路を具備した特
許請求の範囲第(1)項から第(3)項のいずれかに記
載の液晶素子。
(4) Apply a reset pulse during the non-selection period of the scanning electrode to reset the element to one of three constant states, and during the selection period, apply an AC grayscale signal with varying pulse width or voltage to the panel. A liquid crystal element according to any one of claims (1) to (3), comprising a drive circuit capable of applying a voltage to the liquid crystal element.
(5)リセットパルスのタイミングを変えた複数の走査
により多階調を表すことのできる特許請求の範囲第(1
)項から第(3)項のいずれかに記載の液晶素子。
(5) Claim No. 1 in which multiple gradations can be expressed by multiple scans with different timings of reset pulses.
) to (3).
(6)ラビングにより配向させた特許請求の範囲第(1
)項記載の液晶素子。
(6) Claim No. 1 (1) oriented by rubbing
) The liquid crystal element described in item 2.
(7)基板表面に無機物を斜方蒸着することにより配向
させた特許請求の範囲第(1)項記載の液晶素子。
(7) A liquid crystal element according to claim (1), wherein an inorganic substance is oriented by obliquely vapor-depositing it on the surface of the substrate.
(8)走査電極の1選択期間に4つのパルスを印加する
ような駆動回路を具備した特許請求の範囲第(1)項記
載の液晶素子。
(8) A liquid crystal element according to claim (1), comprising a drive circuit that applies four pulses during one selection period of the scanning electrode.
(9)強誘電性液晶の屈折率異方性と基板距離の積が0
.1から0.45もしくは0.7から0.96の特許請
求の範囲第(1)項記載の液晶素子。
(9) The product of the refractive index anisotropy of the ferroelectric liquid crystal and the substrate distance is 0
.. 1 to 0.45 or 0.7 to 0.96. The liquid crystal element according to claim (1).
JP173086A 1986-01-08 1986-01-08 Liquid crystal element Pending JPS62160420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP173086A JPS62160420A (en) 1986-01-08 1986-01-08 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP173086A JPS62160420A (en) 1986-01-08 1986-01-08 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPS62160420A true JPS62160420A (en) 1987-07-16

Family

ID=11509676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP173086A Pending JPS62160420A (en) 1986-01-08 1986-01-08 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS62160420A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306427A (en) * 1987-06-08 1988-12-14 Seiko Epson Corp Display device
JPH01152430A (en) * 1987-09-18 1989-06-14 F Hoffmann La Roche Ag Chiral additive for liquid crystal mixture and use thereof
US5046823A (en) * 1988-03-24 1991-09-10 Nippondenso Co., Ltd. Ferroelectric liquid crystal electro-optic apparatus and manufacturing method thereof
US5676880A (en) * 1987-09-18 1997-10-14 Rolic Ag Ferroelectric liquid crystal cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63306427A (en) * 1987-06-08 1988-12-14 Seiko Epson Corp Display device
JPH01152430A (en) * 1987-09-18 1989-06-14 F Hoffmann La Roche Ag Chiral additive for liquid crystal mixture and use thereof
US5676880A (en) * 1987-09-18 1997-10-14 Rolic Ag Ferroelectric liquid crystal cell
US5770109A (en) * 1987-09-18 1998-06-23 Rolic Ag Ferroelectric liquid crystal cell
US6671028B1 (en) 1987-09-18 2003-12-30 Rolic Ag Distorted helix ferroelectric liquid crystal cell
US5046823A (en) * 1988-03-24 1991-09-10 Nippondenso Co., Ltd. Ferroelectric liquid crystal electro-optic apparatus and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6320563B1 (en) Dual frequency cholesteric display and drive scheme
US5026144A (en) Liquid crystal device, alignment control method therefor and driving method therefor
JP3535769B2 (en) Liquid crystal display device and method of driving the liquid crystal display device
JPH02176625A (en) Liquid crystal display device
US4846560A (en) Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions
US5278684A (en) Parallel aligned chiral nematic liquid crystal display element
US7123330B2 (en) Liquid crystal panel substrate having alignment film and method for forming alignment film by varied evaporation angle
JPS62160420A (en) Liquid crystal element
JP3526996B2 (en) Driving method of liquid crystal display device
JP2507784B2 (en) Liquid crystal device and driving method thereof
JPH0194316A (en) Liquid crystal display element
EP0271344B1 (en) Liquid crystal display element and method for driving same
JPS63155034A (en) Liquid crystal display element
WO1993013450A1 (en) Ferroelectric liquid crystal display device
JP3466635B2 (en) Liquid crystal display
JP2665331B2 (en) Driving method of ferroelectric liquid crystal display device
JPS6256937A (en) Driving method for liquid crystal matrix display panel
JP2001125146A (en) Liquid crystal device and method of producing that liquid crystal device
JPH01121819A (en) Liquid crystal element
JPH02204721A (en) Liquid crystal display element
JP2001281631A (en) Liquid crystal device
JP2000275685A (en) Liquid crystal element and liquid crystal device equipped with the same
JPS63133121A (en) Liquid crystal element and its production
JP2000275617A (en) Liquid crystal element
JPS63213817A (en) Liquid crystal element and its production