JPH01121819A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPH01121819A
JPH01121819A JP28125787A JP28125787A JPH01121819A JP H01121819 A JPH01121819 A JP H01121819A JP 28125787 A JP28125787 A JP 28125787A JP 28125787 A JP28125787 A JP 28125787A JP H01121819 A JPH01121819 A JP H01121819A
Authority
JP
Japan
Prior art keywords
liquid crystal
spacers
pressing
crystal element
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28125787A
Other languages
Japanese (ja)
Inventor
Hisahide Wakita
尚英 脇田
Yoshio Iwai
義夫 岩井
Tsuyoshi Kamimura
強 上村
Hiroyuki Onishi
博之 大西
Kazuhiro Jiyouten
一浩 上天
Isao Ota
勲夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28125787A priority Critical patent/JPH01121819A/en
Publication of JPH01121819A publication Critical patent/JPH01121819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To enable uniform and stable gradation control even with any picture elements by forming regular ruggedness and spacers by pressing so that distributions are provided to the spacings between picture element electrodes. CONSTITUTION:Regular grooves 3 and the pacers 2 are formed on at least one face of a pair of substrates 1, 4 consisting of glass or resin by pressing said surface with a heated casting mold. Since the spacers 2 are simultaneously formed by pressing, the positions of the spacers 2 can be confined and the specified distribution of the inter-substrate spacing is maintained in the cell. The cell provided with the specific distribution in the spacings between the opposed picture element electrodes is, therefore, easily formed by the simple method. Gradients are thereby given to the electric fields impressed thereto and the medium contrast is uniformly produced even with the many picture elements or the elements.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電性液晶を液晶層として持つ液晶素子にお
いて、透過光量を階調制御できる液晶素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid crystal element having a ferroelectric liquid crystal as a liquid crystal layer, which can control the gradation of the amount of transmitted light.

従来の技術 近年、応答速度が速くメモリー性のある強誘電性液晶の
報告がなされている(例えば、竹添秀夫、福田敦夫、久
世栄−;「工業材料」、第31巻、第1θ号、22)。
Conventional technology In recent years, reports have been made on ferroelectric liquid crystals with fast response speed and memory properties (for example, Hideo Takezoe, Atsuo Fukuda, Hideo Kuze; "Industrial Materials", Vol. 31, No. 1θ, 22 ).

以下、図面を用いて従来の強誘電性液晶パネルの一例に
ついて説明する。第4図は従来のスメクチック液晶パネ
ルの構造を示すものである。第4図において21はガラ
ス基板、22はITO(インジウム・錫酸化物)より成
る透明電極、24は強誘電性液晶層、25は液晶分子の
Cダイレクタ−126は双極子モーメントである。
An example of a conventional ferroelectric liquid crystal panel will be described below with reference to the drawings. FIG. 4 shows the structure of a conventional smectic liquid crystal panel. In FIG. 4, 21 is a glass substrate, 22 is a transparent electrode made of ITO (indium tin oxide), 24 is a ferroelectric liquid crystal layer, 25 is a C director of liquid crystal molecules, and 126 is a dipole moment.

強誘電性液晶は一般に分子長軸に垂直な方向に双極子モ
ーメントをもっており、薄膜化により自発分極を持つよ
うになる。強誘電性を示すカイラルスメクチック相の例
を用いて強誘電性液晶の表記方法を第5図に示す。第5
図fa)は分子層の法線27に対し分子長軸が+θ度傾
いた状態、第5図(b)は−θ度傾いた状態の強誘電性
液晶の表記法である。27は層の法線、28は分子の長
軸方向n129は双極子モーメントPS、30はnをx
y平面上に投影したときのCダイレクタ−C131は分
子長軸の法線に対する傾き角±θ度である。以上のよう
な構造を持つ強誘電性液晶パネルについて、以下その動
作原理について図を参照しながら説明する。
Ferroelectric liquid crystals generally have a dipole moment in the direction perpendicular to the long axis of the molecules, and as they become thinner, they come to have spontaneous polarization. FIG. 5 shows how to describe ferroelectric liquid crystal using an example of a chiral smectic phase exhibiting ferroelectricity. Fifth
Figure fa) shows a state in which the long axis of the molecules is tilted by +θ degrees with respect to the normal 27 of the molecular layer, and FIG. 27 is the normal to the layer, 28 is the long axis direction of the molecule n129 is the dipole moment PS, and 30 is n x
The C director -C131 when projected onto the y-plane is an inclination angle of ±θ degrees with respect to the normal to the long axis of the molecule. The operating principle of the ferroelectric liquid crystal panel having the above structure will be explained below with reference to the drawings.

第6図に従来の強誘電性液晶パネルの表示方法の原理図
を示す、32は層法線に対して分子長軸が±θ度傾いた
液晶分子、33は一θ度傾いた液晶分子、34は紙面表
方向の双極子モーメント、35は紙面裏方向の双極子モ
ーメント、36は2枚の偏光板の方向である。さて、第
6図(a)は電圧無印加の状態、第6図(b)は紙面表
から裏へ正の電圧を印加した場合、第6図(C)は紙面
裏から表へ正の電圧を印加した場合の動作原理である。
FIG. 6 shows a diagram of the principle of the display method of a conventional ferroelectric liquid crystal panel. 32 is a liquid crystal molecule whose long axis of the molecule is tilted by ±θ degrees with respect to the layer normal; 33 is a liquid crystal molecule whose molecular axis is tilted by 1θ degree; 34 is a dipole moment in the front direction of the paper, 35 is a dipole moment in the back direction of the paper, and 36 is the direction of the two polarizing plates. Now, Fig. 6 (a) shows a state in which no voltage is applied, Fig. 6 (b) shows a case in which a positive voltage is applied from the front to the back of the paper, and Fig. 6 (C) shows a state in which a positive voltage is applied from the back to the front of the paper. This is the operating principle when applying .

こめように電圧の印加方法によりセル全体が±θ度傾い
た2つの状態をとり、したがって、電気光学効果による
複屈折または2色性を利用すれば明暗を表すことができ
る。
Depending on the voltage application method, the entire cell takes on two states tilted by ±θ degrees, and therefore brightness and darkness can be expressed by using birefringence or dichroism due to the electro-optic effect.

以上のように強誘電性液晶は微視的にみると2つの状態
しか取り得ないので、中間調を出すには第6図山)から
第6図(C)、或いは第6図(0)から第6図(b)へ
の移行期に得られる第6図(a)のような2つの状態の
混ざった状態をもちいるか、或いは2状態の出現時間の
比率を変化させる方法が考えられている(例えば、クラ
ーク、ラガバール、ウオールニューロデイスプレィ ′
84ダイジェスト1984年、73頁(N、A、C1a
rk、  S、T、Lagerwall  and  
J。
As mentioned above, ferroelectric liquid crystals can take only two states when viewed microscopically, so to create halftones, choose from Figure 6 (mountain) to Figure 6 (C), or Figure 6 (0) to Consideration has been given to using a mixed state of the two states as shown in Figure 6(a), which is obtained during the transition period to Figure 6(b), or to changing the ratio of the appearance times of the two states. (e.g. Clark, Lagabar, Wall Neurodisplay
84 Digest 1984, p. 73 (N, A, C1a
rk, S., T., Lagerwall and
J.

WahL  :  Eurodisplay  ’84
  ロigest(1984)  p、73))。
WahL: Eurodisplay '84
(1984) p. 73)).

発明が解決しようとする問題点 しかしながら、通常の平面状の電極上で上記の2状態が
混ざった状態を多くの絵素について均一に出現させるこ
とは極めて困難である。さらに2状態の出現時間比率を
変化させる方法については、大規模素子に向くマトリッ
クス駆動については詳しい検討が成されていない。
Problems to be Solved by the Invention However, it is extremely difficult to uniformly cause a mixture of the above two states to appear in many picture elements on a normal planar electrode. Furthermore, regarding the method of changing the appearance time ratio of two states, no detailed study has been made regarding matrix driving suitable for large-scale devices.

本発明は上記問題点に鑑み、光透過量を階調制御できる
強誘電性液晶を用いた液晶素子を提供するものである。
In view of the above-mentioned problems, the present invention provides a liquid crystal element using ferroelectric liquid crystal that can control the gradation of light transmission.

問題点を解決するための手段 上記問題点を解決するために本発明の液晶素子は、ガラ
スもしくは樹脂からなる一対の基板の少なくとも一方の
表面をプレスすることにより規則的な凹凸とスペーサー
を設け、前記電極間に強誘電性液晶を挟持することによ
り階調制御が容易に行えるものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the liquid crystal element of the present invention is provided by pressing the surface of at least one of a pair of substrates made of glass or resin to form regular irregularities and spacers. Gradation control can be easily performed by sandwiching the ferroelectric liquid crystal between the electrodes.

作用 従来の均一な電極上では、閾値電圧以上の”電圧が強誘
電性液晶素子に印加されると、電極上の液晶分子はほと
んど同時に自発分極が電場方向に向くように反転する。
Operation On a conventional uniform electrode, when a voltage equal to or higher than the threshold voltage is applied to a ferroelectric liquid crystal element, the liquid crystal molecules on the electrode almost simultaneously reverse their spontaneous polarization so that they are oriented in the direction of the electric field.

そこで、前記の闇値電圧よりわずかに電圧が低いかパル
ス幅が短いパルス電圧を印加すれば、まだらな状態を出
現させることはできるが、この場合、電極表面の微細な
凹凸や液晶層の欠陥や配向状態等の制御の困難な微妙な
因子の影響を受は易いため、絵素または素子により明暗
の分布はまちまちである。そこで本発明の液晶素子では
プレスにより規則的な凹凸とスペーサーを形成して、絵
素電極間の間隙に分布を持たせ、その結果1つの絵素内
に電界分布ができるようにして、どの絵素でも均一で安
定した階調制御ができるものである。
Therefore, by applying a pulse voltage that is slightly lower than the dark value voltage or has a short pulse width, it is possible to make a mottled state appear. The brightness distribution varies depending on the picture element or element because it is easily influenced by subtle factors that are difficult to control, such as orientation and orientation state. Therefore, in the liquid crystal element of the present invention, regular irregularities and spacers are formed by pressing to give a distribution in the gap between the picture element electrodes, and as a result, an electric field distribution is created within one picture element. Uniform and stable gradation control is possible even when the color is blank.

実施例 以下に本発明の一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の液晶素子の構成図の1例である。ガ
ラス基板を加熱した鋳型によりプレスして第1図の1の
ような溝と、2のようなスペーサーを付けた。溝の深さ
dは0.6μmで、スペーサーの高さは2.0μmであ
る。従来、液晶素子ではガラスまたは樹脂の微粒子を散
布することによりスペーサーとしていたが、この方法は
、スペーサーの位置を制御できないので、基板面に凹凸
がある場合は有効でない。本発明ではプレスにより、ス
ペーサーも1発成型したので、スペーサーの位置を規定
でき、基板間隔の分布をセル内で一定にでき、また工法
も簡略化される。スペーサ一部をポリビニルアルコール
に浸すことによりスペーサ一部にのみ被膜を形成し、そ
の上から酸化インジウム錫を蒸着した後、水洗によりポ
リビニルアルコールを剥離することにより、傾斜面にの
み透明電極を残し、ストライプパターンの電極を形成し
た。第1図の基板2には平坦な硝子基板上に通常の方法
によりストライプ電極を設けであるが、基板2も基板1
と同様の形状でもよい。いずれの電極も0.3mピッチ
とした。基板20周辺に接着材を塗布し、基板1と貼り
合すことにより基板間隔は2.0μmから2.6μmに
保たれている。この間隔は15cm角のパネルで±0.
05μmの誤差に抑えることが出来た。基板上にポリイ
ミド膜を塗布しラビング処理を行った後、エステル系の
強誘電性液晶の混合物を等吉相まで加熱して注入してか
ら徐冷したところ均一な配向が得られた。このパネルを
第3図のような波形により駆動してみた。第3図fa)
は走査電極と信号電極に印加する波形を表し、第3図(
b)はその時絵素に印加される電圧を表す。
FIG. 1 is an example of a configuration diagram of a liquid crystal element of the present invention. A glass substrate was pressed using a heated mold to form grooves as 1 in FIG. 1 and spacers as 2. The depth d of the groove is 0.6 μm, and the height of the spacer is 2.0 μm. Conventionally, spacers have been used in liquid crystal devices by scattering fine particles of glass or resin, but this method is not effective when the substrate surface has irregularities because the position of the spacer cannot be controlled. In the present invention, since the spacer is also molded in one press, the position of the spacer can be defined, the distribution of substrate spacing can be made constant within the cell, and the construction method is also simplified. By immersing a part of the spacer in polyvinyl alcohol, a film is formed only on a part of the spacer, and after indium tin oxide is deposited on the film, the polyvinyl alcohol is peeled off by washing with water, leaving a transparent electrode only on the inclined surface. A striped pattern of electrodes was formed. The substrate 2 in FIG. 1 has stripe electrodes provided on a flat glass substrate by the usual method.
It may have a similar shape. All electrodes had a pitch of 0.3 m. By applying an adhesive around the substrate 20 and bonding it to the substrate 1, the distance between the substrates is maintained at 2.0 μm to 2.6 μm. This spacing is ±0.0 for a 15cm square panel.
The error could be suppressed to 0.05 μm. After coating a polyimide film on a substrate and performing a rubbing treatment, a mixture of ester-based ferroelectric liquid crystals was heated to the isotokish phase and injected, and then slowly cooled, resulting in uniform orientation. I tried driving this panel with the waveform shown in Figure 3. Figure 3 fa)
represents the waveform applied to the scanning electrode and the signal electrode, and is shown in Figure 3 (
b) represents the voltage applied to the picture element at that time.

選択期間の負のパルスで絵素は黒にリセットされ、最後
に加わるパルスのオン電圧vo  (17ボルト)の印
加されるパルス幅Pw  (0〜400μ秒)を変化さ
せることにより階調を制御し、非選択期間のパルスでは
輝度はほとんど変らない。実験の結果、本発明の液晶素
子ではすべての絵素について4階調を均一に表示できる
ことが分った。従来の電極上が平面の液晶素子では、同
様の駆動法で均一に表示できるのは2値だけであったこ
とから、本発明の液晶素子がより多くの階調を均一に表
示する効果があることが分った。駆動法については、階
調により信号電圧値を変えるアナログ変調でも良い。
The pixel is reset to black by a negative pulse during the selection period, and the gradation is controlled by changing the pulse width Pw (0 to 400 μsec) of the on-voltage vo (17 volts) of the last pulse applied. , the brightness hardly changes during the non-selection period pulses. As a result of experiments, it was found that the liquid crystal element of the present invention can uniformly display four gradations for all picture elements. Conventional liquid crystal elements with flat electrodes could only display two levels uniformly using the same driving method, but the liquid crystal element of the present invention has the effect of uniformly displaying more gradations. I found out. As for the driving method, analog modulation that changes the signal voltage value depending on the gradation may be used.

また、本実施例では基板間距離に0.6μmの差をつけ
たが、この基板間距離の差は、液晶材料、配向性、絵素
サイズ、駆動法等に応じて必要な階調を得るための最適
な値を選ぶべきである。
In addition, in this example, a difference of 0.6 μm was made in the distance between the substrates, but this difference in the distance between the substrates can obtain the necessary gradation depending on the liquid crystal material, orientation, pixel size, driving method, etc. The optimal value for should be chosen.

また、勾配のある溝の替りに、第2図のような階段状の
溝を設けることも、効果があった。
Furthermore, it was also effective to provide step-shaped grooves as shown in FIG. 2 instead of grooves with slopes.

以上の実施例では、ガラス基板をプレスしたが、この他
に樹脂基板あるいは、ガラス上に樹脂を塗布した基板の
表面をプレスした場合も、同様の効果があった。
In the above embodiments, a glass substrate was pressed, but the same effect could be obtained by pressing a resin substrate or the surface of a substrate coated with resin on glass.

発明の効果 本発明の液晶素子は、少なくとも一方の基板にプレスに
より規則的な凹凸とスペーサーを設けることにより、対
向する絵素電極間の間隙に特定の分布を持たせたセルを
簡単な工法で均一に作成でき、これにより印加電界の勾
配をつけて、中間調を多数の絵素または素子において均
一に現出させることができる。
Effects of the Invention In the liquid crystal element of the present invention, by providing regular irregularities and spacers on at least one substrate by pressing, a cell with a specific distribution in the gap between opposing picture element electrodes can be created using a simple construction method. It can be made uniformly, and by applying a gradient to the applied electric field, it is possible to uniformly produce halftones in a large number of picture elements or elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、本発明の液晶素子の一実施例の構成
図、第3図は実施例におけるマトリクス駆動波形を表す
波形図、第4図は従来の強誘電性液晶パネルの断面図、
第5図はカイラルスメクチ・ツクC液晶の表記法を示す
模式図、第6図は従来の強誘電性液晶パネルの表示の原
理を示す平面図である。 1・・・・・・下基板、2・・・・・・スペーサ一部、
3・・・・・・溝部、4・・・・・・上基板、5・・・
・・・透明電極、6・・・・・・配向膜、7・・・・・
・シール材。 代理人の氏名 弁理士 中尾敏男 はか1名叡尭鹸1)
シh饋川 El−−ガラス纂楓 22−ITOt極 第6図
1 and 2 are block diagrams of one embodiment of the liquid crystal element of the present invention, FIG. 3 is a waveform diagram showing matrix drive waveforms in the embodiment, and FIG. 4 is a cross section of a conventional ferroelectric liquid crystal panel. figure,
FIG. 5 is a schematic diagram showing the notation method of chiral smect C liquid crystal, and FIG. 6 is a plan view showing the principle of display of a conventional ferroelectric liquid crystal panel. 1...Lower board, 2...Part of spacer,
3...Groove portion, 4...Upper substrate, 5...
...Transparent electrode, 6...Alignment film, 7...
・Seal material. Name of agent: Patent attorney Toshio Nakao (1 name) Ken Eitaka (1)
Shih Shigawa El--Glass Kaede 22-ITOt Polar Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)ガラスもしくは樹脂からなる一対の基板の少なく
とも一方の表面をプレスすることにより規則的な凹凸と
スペーサーを設け、前記基板間に強誘電性液晶を挟持す
ることを特徴とする液晶素子。
(1) A liquid crystal element characterized in that regular irregularities and spacers are provided by pressing the surface of at least one of a pair of substrates made of glass or resin, and a ferroelectric liquid crystal is sandwiched between the substrates.
(2)規則的な凹凸として、勾配のある溝をストライプ
状に形成することを特徴とする特許請求の範囲第(1)
項記載の液晶素子。
(2) Claim (1) characterized in that the regular unevenness is formed by forming grooves with a slope in a stripe shape.
The liquid crystal element described in .
(3)規則的な凹凸として、階段状の溝をストライプ状
に形成することを特徴とする特許請求の範囲第(1)項
記載の液晶素子。
(3) A liquid crystal element according to claim (1), characterized in that step-like grooves are formed in a stripe shape as the regular irregularities.
JP28125787A 1987-11-06 1987-11-06 Liquid crystal element Pending JPH01121819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28125787A JPH01121819A (en) 1987-11-06 1987-11-06 Liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28125787A JPH01121819A (en) 1987-11-06 1987-11-06 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPH01121819A true JPH01121819A (en) 1989-05-15

Family

ID=17636551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28125787A Pending JPH01121819A (en) 1987-11-06 1987-11-06 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPH01121819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261177A (en) * 1994-02-18 1995-10-13 Minnesota Mining & Mfg Co <3M> Method for applying thin film on lower surface of two-stage base material
CN101957519A (en) * 2009-07-14 2011-01-26 索尼公司 The manufacture method of liquid crystal indicator, liquid crystal indicator and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07261177A (en) * 1994-02-18 1995-10-13 Minnesota Mining & Mfg Co <3M> Method for applying thin film on lower surface of two-stage base material
CN101957519A (en) * 2009-07-14 2011-01-26 索尼公司 The manufacture method of liquid crystal indicator, liquid crystal indicator and electronic equipment

Similar Documents

Publication Publication Date Title
US4712873A (en) Liquid crystal optical device
US4796980A (en) Ferroelectric liquid crystal optical modulation device with regions within pixels to initiate nucleation and inversion
US5026144A (en) Liquid crystal device, alignment control method therefor and driving method therefor
US6317111B1 (en) Passive matrix addressed LCD pulse modulated drive method with pixel area and/or time integration method to produce covay scale
KR0138157B1 (en) Liquid crystal display device and liquid crystal optical device
US4846560A (en) Liquid crystal device with ferroelectric liquid crystal oriented at non-pixel portions
US5812230A (en) Liquid crystal display and manufacturing method thereof with isotropic microstructural elements between smectic layers
US5264954A (en) Liquid crystal device having a plural stripe-shaped ribs on one substrate for providing gradation display
JPH01121819A (en) Liquid crystal element
US5568299A (en) Ferroelectric liquid crystal with pitch 1-2 times layer thickness and graduation by bistable/monostable ratio
JPH0799416B2 (en) Liquid crystal device
US6118512A (en) Manufacturing method of a liquid crystal display element
JPH0194316A (en) Liquid crystal display element
JPS6031121A (en) Driving method of optical modulating element
JPS62160420A (en) Liquid crystal element
JPS63133121A (en) Liquid crystal element and its production
JPS63213817A (en) Liquid crystal element and its production
JP2984496B2 (en) Liquid crystal display device
JPH06194623A (en) Driving method of antiferroelectric liquid crystal display element
JPH02204721A (en) Liquid crystal display element
JPS62231940A (en) Optical modulation element
JP2665331B2 (en) Driving method of ferroelectric liquid crystal display device
JP2505744B2 (en) Method for manufacturing electrode substrate and optical modulation element
JP2620635B2 (en) Liquid crystal electro-optical device manufacturing method
JPS6256936A (en) Driving method for liquid crystal matrix display panel