JPH03107585A - Piezoelectric pump - Google Patents

Piezoelectric pump

Info

Publication number
JPH03107585A
JPH03107585A JP24606189A JP24606189A JPH03107585A JP H03107585 A JPH03107585 A JP H03107585A JP 24606189 A JP24606189 A JP 24606189A JP 24606189 A JP24606189 A JP 24606189A JP H03107585 A JPH03107585 A JP H03107585A
Authority
JP
Japan
Prior art keywords
fluid
piezoelectric
discharge pipe
pair
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24606189A
Other languages
Japanese (ja)
Inventor
Toru Kimihira
徹 公平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24606189A priority Critical patent/JPH03107585A/en
Publication of JPH03107585A publication Critical patent/JPH03107585A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fill or drop a very small amount of fluid continuously and accurately at high speed by arranging a pair of piezoelectric elements in a face-to-face relation on each outer side surface of a pair of counter-arranged elastic members arranged in a face-to-face relation, from a fluid inlet pipe to a fluid discharge pipe. CONSTITUTION:On each outer side surface of a pair of first elastic plates 1, 2 from a fluid inlet pipe 5 to a fluid discharge pipe 6, piezoelectric devices 3, 4 are arranged in a face-to-face relation in a zigzag way, and so as for a part thereof to be overlapped, and second elastic plates 7, 8 are arranged on the surface thereof, whereby piezoelectric elastic bodies 9, 10 are formed. A circumference of each piezoelectric elastic body 9, 10 is sealed air-tight with a frame body 11. To each piezoelectric device 3, 4, each voltage cable group is connected, respectively. By applying voltage to each piezoelectric device 3, 4 in turn, so as to alternately deform it, each piezoelectric elastic body 9, 10 is stretched and contracted, whereby fluid is taken in and discharged.

Description

【発明の詳細な説明】 〔概 要] 圧電素子を駆動源として比較的微量な流体(気体、液体
等)を連続的に正確、かつ高速に注入、滴下させる圧電
ポンプに関し、 流体押し出し駆1)1部を工夫して、流体収容容量を制
限することなく、微量な流体の注入量、或いは滴下量を
容易に可変制御でき、しかも微量な流体を連続的に正確
、かつ高速に注2い滴下することを可能にすることを目
的とし、 −・対の弾性部材を対向配置し、その周囲を気密に封止
すると共に、一方の側に流体吸入パイプ、他方の側に流
体吐出パイプを備え、該各弾性部材の外側の面に、流体
吸入パイプ側より流体吐出パイプ側に向かってそれぞれ
複数の圧電素子をジグザグ状に対向するように配列して
なり、その一部がオーハラツブ関係で対向する各圧電素
子に流体吸入パイプ側より流体吐出パイプ側に向かって
順次伸びと縮みとを交互に繰り返えす信号を供給して、
対向する各圧電素子間の一対の弾性部材の一部を互いに
離間及び接近する方向に交互に撓ませることにより、前
記流体吸入パイプより吸入された流体を順次流体吐出パ
イプ側−\移送して該流体吐出パイプより吐出するよう
に構成する。
[Detailed Description of the Invention] [Summary] This invention relates to a piezoelectric pump that uses a piezoelectric element as a driving source to continuously inject and drop a relatively small amount of fluid (gas, liquid, etc.) accurately and at high speed. By devising one part, the amount of injection or dripping of a minute amount of fluid can be easily and variably controlled without limiting the fluid storage capacity, and moreover, the minute amount of fluid can be dripped continuously, accurately, and at high speed. - A pair of elastic members are disposed facing each other, the periphery thereof is hermetically sealed, and a fluid suction pipe is provided on one side and a fluid discharge pipe is provided on the other side, A plurality of piezoelectric elements are arranged on the outer surface of each elastic member so as to face each other in a zigzag pattern from the fluid suction pipe side to the fluid discharge pipe side, and some of the piezoelectric elements are arranged in a zigzag manner to face each other in an Oharab relationship. By supplying a signal to the piezoelectric element that causes it to alternately expand and contract from the fluid suction pipe side to the fluid discharge pipe side,
By alternately bending a portion of the pair of elastic members between the opposing piezoelectric elements in the directions of separating and approaching each other, the fluid sucked from the fluid suction pipe is sequentially transferred to the fluid discharge pipe side. The fluid is configured to be discharged from a fluid discharge pipe.

〔産業上の利用分野〕[Industrial application field]

本発明は圧電素子を駆動源として比較的微量な流体(気
体、液体等)を連続的に正確、かつ高速に注入、滴下さ
せる圧電ポンプに関するものである。
The present invention relates to a piezoelectric pump that uses a piezoelectric element as a driving source to continuously inject and drop a relatively small amount of fluid (gas, liquid, etc.) accurately and at high speed.

医学、化学工業、或いは化学分析等の分野においては、
比較的微量な気体、または薬品等の流体を注入、或いは
滴下する種々の機器が広く用いられているが、前記微量
な流体の注入量、或いは滴下量を容易に可変制御でき、
該微量な流体を連続的に正確、かつ高速に注入、滴下さ
せることができるWFZ構成が必要とされている。
In fields such as medicine, chemical industry, or chemical analysis,
Various devices for injecting or dropping relatively small amounts of fluid such as gas or chemicals are widely used, and the amount of injection or dropping of the small amount of fluid can be easily variably controlled.
There is a need for a WFZ configuration that can continuously and accurately inject and drop small amounts of fluid at high speed.

〔従来の技術〕 従来、化学物質、或いは化学薬品等の微量な流体の注入
、または滴下筒には、マイクロシリンダなどが用いられ
ている。
[Prior Art] Conventionally, a micro cylinder or the like has been used for injecting or dropping a small amount of chemical substances or fluids such as chemicals.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで上記したようなマイクロシリンダにおいては、
流体を収容するシリンダ容量に自ずと制約があり、該シ
リンダ容量以上の量の流体を注入、または滴下すること
が必要な場合には、流体が空になったマイクロシリンダ
に再び流体を供給し、引き続き流体の注入、または摘ド
を行わなければならず、またこのような流体供給動作に
より流体の注入、滴トー操作が中断されるごとに8固し
て注入、または滴下の量が不正確になったり、また化学
反応が異常に変化する等の問題があり、信頼性の低下を
招いていた。
By the way, in the micro cylinder as mentioned above,
The capacity of a cylinder that accommodates fluid is naturally limited, and if it is necessary to inject or drop an amount of fluid that exceeds the capacity of the cylinder, resupply the emptied microcylinder with fluid and continue. Fluid must be injected or dispensed, and such fluid delivery operations may result in incorrect injected or dispensed amounts each time the fluid inject or dispense operation is interrupted. There were also problems such as chemical reactions changing abnormally, leading to a decrease in reliability.

本発明は上記した従来の実状に鑑み、流体押し出し駆動
部を工夫して、流体収容容量を制限することなく、微量
な流体の注入量、或いは滴下量を容易に可変制御でき、
しかも微量な流体を連続的に正確、かつ高速に注入、滴
下することが可能な新規な圧電ポンプを提供することを
目的とするものである。
In view of the above-mentioned conventional situation, the present invention devises the fluid extrusion drive unit so that the amount of injection or dripping of a small amount of fluid can be easily and variably controlled without limiting the fluid storage capacity.
Moreover, it is an object of the present invention to provide a novel piezoelectric pump capable of continuously injecting and dropping small amounts of fluid accurately and at high speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記した目的を達成するため、一対の弾性部材
を対向配置し、その周囲を気密に封止すると共に、一方
の側に流体吸入パイプ、他方の側に流体吐出パイプを備
え、該各弾性部材の外側の面に、流体吸入パイプ側より
流体吐出パイプ側に向かってそれぞれ複数の圧電素子を
ジグザグ状に対向するように配列してなり、その一部が
オーハラツブ関係で対向する各圧電素子に流体吸入パイ
プ側より流体吐出パイプ側に向かって順次伸びと縮みと
を交互に繰り返えす信号を供給して、対向する各圧電素
子間の一対の弾性部材の一部を互いに離間及び接近する
方向に交互に撓ませることにより、前記流体吸入パイプ
より吸入された流体を順次流体吐出パイプ側へ移送して
該流体吐出パイプより吐出するように構成する。
In order to achieve the above-mentioned object, the present invention arranges a pair of elastic members facing each other, airtightly seals the periphery thereof, and has a fluid suction pipe on one side and a fluid discharge pipe on the other side, and each A plurality of piezoelectric elements are arranged on the outer surface of the elastic member in a zigzag pattern facing each other from the fluid suction pipe side to the fluid discharge pipe side, and some of the piezoelectric elements face each other in an Ohara-tube relationship. A signal that alternately expands and contracts sequentially from the fluid suction pipe side to the fluid discharge pipe side is supplied to the piezoelectric element to separate and approach a portion of the pair of elastic members between the opposing piezoelectric elements. By alternately bending in the directions, the fluid sucked in from the fluid suction pipe is sequentially transferred to the fluid discharge pipe side and discharged from the fluid discharge pipe.

〔作 用〕[For production]

本発明の構成では、対向する一対の弾性部材の外側の面
にジグザグ状に対向するように配列し、ぞの一部がオー
ハラツブする関係で対向する複数の圧電素子に、流体吸
入パイプ側より流体吐出パイプ側に向かって順次伸びと
縮みとによる歪みを交互に繰り返すように発生させる電
圧信号を供給して、対向する各圧電素子間の一対の弾性
部材の一部をn゛いに離間と接近する方向に交互に撓ま
せる。
In the configuration of the present invention, a plurality of piezoelectric elements are arranged in a zigzag manner to face each other on the outer surfaces of a pair of opposing elastic members, and a plurality of piezoelectric elements are arranged in a zigzag-like manner so that a portion of the piezoelectric elements overlap with each other, and a plurality of piezoelectric elements are provided with fluid from the fluid suction pipe side. By supplying a voltage signal that generates a strain that alternately repeats expansion and contraction toward the discharge pipe side, parts of the pair of elastic members between the opposing piezoelectric elements are moved apart and brought closer together. Alternately bend in the direction you want.

この撓み現象を流体吸入パイプ側より流体吐出パイプ側
へ移動させるごとにより、流体吸入パイプより撓みによ
り生じた離間部に吸入された微量単位の流体が順次流体
吐出パイプ側へ移送されて該流体吐出パイプより流出さ
せることができる。
Each time this bending phenomenon is moved from the fluid suction pipe side to the fluid discharge pipe side, the small amount of fluid sucked from the fluid suction pipe into the spaced part caused by the bending is sequentially transferred to the fluid discharge pipe side, and the fluid is discharged. It can be drained from the pipe.

前記対向する各圧電素子間の弾性部材の対応面を互いに
離間と接近する方向に交nに撓ませる速度及び撓み量は
、該対応する各圧電素子へ印加する電圧信号の周波数、
或いは圧電素子への電圧信号の印加方法等を外部制御回
路などにより制御することにより実現できる。
The speed and amount of deflection at which the corresponding surfaces of the elastic members between the opposing piezoelectric elements are deflected in the directions n in which they move away from and approach each other are determined by the frequency of the voltage signal applied to each of the corresponding piezoelectric elements;
Alternatively, it can be realized by controlling the method of applying a voltage signal to the piezoelectric element using an external control circuit or the like.

また対応する各圧電素子への電圧印加及び各圧電素子の
伸び、縮みによる−・対の弾性部材の撓み発生等の応答
は極めて速く、流体吸入パイプより吸入した流体を流体
吐出パイプ側へ高速で移送することができるので、微量
単位の流体を高速に注入、或いは滴下することが可能と
なる。
In addition, responses such as voltage application to the corresponding piezoelectric element and expansion and contraction of each piezoelectric element, and deflection of the pair of elastic members, are extremely fast, and the fluid sucked from the fluid suction pipe is transferred to the fluid discharge pipe at high speed. Since it can be transported, it becomes possible to inject or drop a small amount of fluid at high speed.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る圧電ポンプの一実施例の構成を示
す斜視図、第2図は第1図に示すA−A切断線に沿った
断面図である。
FIG. 1 is a perspective view showing the structure of an embodiment of a piezoelectric pump according to the present invention, and FIG. 2 is a sectional view taken along the line A--A shown in FIG.

これら両図において、1及び2は硬質ゴl、等からなる
一対の弾性板であり、その一対の第1弾性板1及び2の
外側の面には流体吸入パイプ5側より流体吐出バイブロ
側に向かってそれぞれ複数の圧電素子3,4がジグザグ
状に、また一部がオーハラツブする関係で対向するよう
に2層に貼着配列され、その表面にそれぞれ第2弾性板
7.8が貼り合わされて圧電弾性体9.10を構成して
いる。
In both of these figures, 1 and 2 are a pair of elastic plates made of hard rubber, etc., and the outer surfaces of the pair of first elastic plates 1 and 2 are arranged so that the side is closer to the fluid discharge vibro than the fluid suction pipe 5 side. A plurality of piezoelectric elements 3 and 4 are arranged in two layers facing each other in a zigzag pattern, with some overlapping, and a second elastic plate 7.8 is bonded to the surface of each piezoelectric element 3, 4. It constitutes a piezoelectric elastic body 9.10.

その一対の圧電弾性体9.10は図示のように対向配置
され、その周囲は枠体11により気密に封止されると共
に、該一対の圧電弾性体9.10がUいに押し付は合う
ように予圧が付加されている。
The pair of piezoelectric elastic bodies 9.10 are arranged facing each other as shown in the figure, and the periphery thereof is hermetically sealed by the frame 11, and the pair of piezoelectric elastic bodies 9.10 are pressed against each other in a U-shape. A preload is applied as shown.

またその一方の側に流体吸入パイプ5と他方の側に流体
吐出バイブロとが前記対向する一対の圧電弾性体9,1
0間と連通ずるように配設されている。
Further, the pair of piezoelectric elastic bodies 9 and 1 facing each other have a fluid suction pipe 5 on one side and a fluid discharge vibro on the other side.
It is arranged so that it communicates with 0.

]2.13は前記一対の圧電弾性体9.10中に埋設さ
れた各複数の圧電素子3,4に電圧を印加するするだめ
の電圧ケーブル群である。
] 2.13 is a group of voltage cables for applying voltage to each of the plurality of piezoelectric elements 3 and 4 embedded in the pair of piezoelectric elastic bodies 9.10.

そしてこのような構造におけるii記一対の圧電弾性体
9,10中に埋設された各複数の圧電素子34に、流体
吸入パイプ5側から順に電圧を印加して各対応する圧電
素子3.4に順次伸びと縮みによる歪みを交互に繰り返
させることにより、第3図(alに示すように対向する
一対の圧電弾性体9゜]0の対応面が、部分的に互いに
外方へ膨らむ撓みとて内方へ凹む撓みとが交互に繰り返
して発生し、前記流体吸入パイプ5より部分的に外方へ
膨らむ撓みにより形成された離間部alに吸入された微
量単位の流体は、第3図(blに示すように該離間部d
1がl)2+ al・・・と移動されるに伴って順次流
体吐出バイブロ側へ移送されて該流体吐出バイブロより
吐出させるさせることが可能となる。
In such a structure, a voltage is sequentially applied to each of the plurality of piezoelectric elements 34 embedded in the pair of piezoelectric elastic bodies 9 and 10 described in ii from the fluid suction pipe 5 side, and the corresponding piezoelectric elements 3.4 are By sequentially repeating the distortion due to expansion and contraction, the corresponding surfaces of the pair of piezoelectric elastic bodies 9 0 facing each other as shown in FIG. The minute amount of fluid sucked into the spaced part al formed by the deflection that concaves inward and the deflection that partially expands outward from the fluid suction pipe 5 is generated as shown in FIG. As shown in the separation part d
As 1 is moved as l)2+ al..., it is sequentially transferred to the fluid ejection vibro side and can be ejected from the fluid ejection vibro.

なお、前記一対の圧電弾性体9.10中にそれぞれ埋設
された複数の圧電素子は、必ずしも2層構成に限らす1
層構成でもよいが、本実施例で示したように1層状に配
置した複数の圧電素子−ヒの歪みの位相をずらした位置
に、更に複数の圧電素子を層状に配置して2層構成とす
ることにより、前記離間部の移動が連続してスムーズに
行うことができる。
Note that the plurality of piezoelectric elements embedded in the pair of piezoelectric elastic bodies 9 and 10 are not necessarily limited to a two-layer structure.
Although a layered structure may be used, as shown in this example, a two-layer structure can be obtained by arranging a plurality of piezoelectric elements arranged in a single layer at positions where the strain phase of the piezoelectric elements is shifted from each other in a layered manner. By doing so, the separation portion can be moved continuously and smoothly.

また、前記流体吐出バイブロから微量に吐出させる流体
の単位吐出量は、層状に配置する圧電素子の大きさ、電
圧の印加方法等により精度良(制御することができる。
Further, the unit discharge amount of the small amount of fluid discharged from the fluid discharge vibro can be controlled with high precision by adjusting the size of the piezoelectric elements arranged in layers, the voltage application method, etc.

更に、電圧印加により対応する各圧電素子の伸び、縮み
による一対の弾性部材の撓み発生等の応答は極めて速く
、前記流体吐出バイブロの他端を大型の気体、或いは液
体等の流体が充填された供給タンクと接続し、該流体を
当該圧電ポンプへ供給し駆動するようにすれば、流体吸
入パイプ5より吸入された流体を連続的に流体吐出パイ
プ側へ高速で移送することができるので、微量単位の流
体を必要部分に高速で注入、或いは滴下することが容易
となる。
Furthermore, the response such as the deflection of the pair of elastic members due to the expansion and contraction of each piezoelectric element corresponding to the application of voltage is extremely fast, and the other end of the fluid discharge vibro is filled with a large fluid such as gas or liquid. By connecting it to a supply tank and supplying the fluid to the piezoelectric pump to drive it, the fluid sucked from the fluid suction pipe 5 can be continuously transferred at high speed to the fluid discharge pipe side, so that a trace amount of fluid can be transferred to the fluid discharge pipe side. It becomes easy to inject or drop a unit of fluid into a required area at high speed.

なお、この圧電ポンプは小型化が容易であり、流体注入
先端部、或いは流体滴ド先端部を直結する構造とするこ
とにより、その間の体積が必要最小限となるので内部の
流体の無駄も減らすことができる。
Furthermore, this piezoelectric pump can be easily miniaturized, and by having a structure in which the fluid injection tip or the fluid droplet tip is directly connected, the volume between them is minimized, reducing waste of internal fluid. be able to.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る圧電ポン
プによれば、微量な流体の吐出量を容易に可変制御でき
、しかも微量な流体を連続的に、かつ高速に注入、滴下
すること力輸J能なる優れた 0 利点を有し、化学工業、医学研究等の分野における気体
、または医薬品などの液体からなる微量単位の流体を連
続的、かつ高速に注入、滴下する小型機器に適用して実
用上、顕著なる効果を奏する。
As is clear from the above description, according to the piezoelectric pump according to the present invention, it is possible to easily and variably control the discharge amount of a minute amount of fluid, and it is possible to continuously inject and drop a minute amount of fluid at high speed. It has an excellent advantage of being able to transport fluids, and can be applied to small devices that continuously and rapidly inject or drop small amounts of fluids consisting of gases or liquids such as pharmaceuticals in fields such as the chemical industry and medical research. It has a remarkable effect in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る圧電ポンプの一実施例の構成を示
す斜視図、 第2図は第1図に示すA−A“切断線に沿った断面図、 第3図(al、 (blは本発明に係る圧電ポンプの動
作の一実施例を説明するための概念図で ある。 第1図〜第3図(al、 (blにおいて、1.2は第
1弾性板、3,4は圧電素子、5は流体吸入バイブ、6
は流体吐出パイプ、7,8は第二弾性板、9.10は圧
電弾性体、11は枠体、12.13は電圧ケーブル、a
l+a2+a3は離間部をそれぞれ示す。 1
FIG. 1 is a perspective view showing the configuration of an embodiment of a piezoelectric pump according to the present invention, FIG. 2 is a sectional view taken along the cutting line A-A shown in FIG. 1, and FIG. 1 is a conceptual diagram for explaining an example of the operation of a piezoelectric pump according to the present invention. In FIGS. 1 to 3 (al, (bl), 1.2 is a first elastic plate, 3 and 4 are Piezoelectric element, 5 is a fluid suction vibrator, 6
is a fluid discharge pipe, 7 and 8 are second elastic plates, 9.10 is a piezoelectric elastic body, 11 is a frame body, 12.13 is a voltage cable, a
l+a2+a3 respectively indicate the separation parts. 1

Claims (1)

【特許請求の範囲】[Claims] 一対の弾性部材(1、2)を対向配置し、その周囲を気
密に封止すると共に、一方の側に流体吸入パイプ(5)
、他方の側に流体吐出パイプ(6)を備え、該各弾性部
材(1、2)の外側の面に、流体吸入パイプ(5)側よ
り流体吐出パイプ(6)側に向かってそれぞれ複数の圧
電素子(3、4)をジグザグ状に対向するように配列し
てなり、その一部がオーバラップ関係で対向する各圧電
素子(3)に流体吸入パイプ(5)側より流体吐出パイ
プ(6)側に向かって順次伸びと縮みとを交互に繰り返
えす信号を供給して、対向する各圧電素子間の一対の弾
性部材(1、2)の一部を互いに離間及び接近する方向
に交互に撓ませることにより、前記流体吸入パイプ(5
)より吸入された流体を順次流体吐出パイプ(6)側へ
移送して該流体吐出パイプ(6)より吐出するようにし
たことを特徴とする圧電ポンプ。
A pair of elastic members (1, 2) are arranged facing each other, the periphery thereof is hermetically sealed, and a fluid suction pipe (5) is provided on one side.
, a fluid discharge pipe (6) is provided on the other side, and a plurality of grooves are provided on the outer surface of each of the elastic members (1, 2) from the fluid suction pipe (5) side to the fluid discharge pipe (6) side. Piezoelectric elements (3, 4) are arranged to face each other in a zigzag pattern, and a fluid discharge pipe (6) is connected to each piezoelectric element (3) facing each other in a partially overlapping relationship from the fluid suction pipe (5) side. ) side, a portion of the pair of elastic members (1, 2) between the opposing piezoelectric elements is alternately moved away from and toward each other. By bending the fluid suction pipe (5
) A piezoelectric pump characterized in that the fluid sucked from the fluid discharge pipe (6) is sequentially transferred to the fluid discharge pipe (6) and discharged from the fluid discharge pipe (6).
JP24606189A 1989-09-20 1989-09-20 Piezoelectric pump Pending JPH03107585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24606189A JPH03107585A (en) 1989-09-20 1989-09-20 Piezoelectric pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24606189A JPH03107585A (en) 1989-09-20 1989-09-20 Piezoelectric pump

Publications (1)

Publication Number Publication Date
JPH03107585A true JPH03107585A (en) 1991-05-07

Family

ID=17142889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24606189A Pending JPH03107585A (en) 1989-09-20 1989-09-20 Piezoelectric pump

Country Status (1)

Country Link
JP (1) JPH03107585A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202857A (en) * 1992-01-28 1993-08-10 Nec Corp Piezoelectric pump
EP0639717A1 (en) * 1993-07-23 1995-02-22 Holzapfel, Martin Pyroelectrical container
WO1997042412A1 (en) * 1996-05-06 1997-11-13 Pumping Systems Technologies Pty. Limited Pseudo static peristaltic pump
WO2003027503A1 (en) * 2001-09-24 2003-04-03 Digipump Ltd. Piezoelectric pump
JP2010196660A (en) * 2009-02-26 2010-09-09 Univ Of Yamanashi Traveling-wave pump by resonant drive, traveling-wave carrier device
WO2013041703A1 (en) * 2011-09-21 2013-03-28 Sanofi-Aventis Deutschland Gmbh Peristaltic pump and method of transporting material with a peristaltic pump
WO2014148017A1 (en) * 2013-03-18 2014-09-25 国立大学法人広島大学 Polymer actuator and artificial lung device provided with same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05202857A (en) * 1992-01-28 1993-08-10 Nec Corp Piezoelectric pump
EP0639717A1 (en) * 1993-07-23 1995-02-22 Holzapfel, Martin Pyroelectrical container
WO1997042412A1 (en) * 1996-05-06 1997-11-13 Pumping Systems Technologies Pty. Limited Pseudo static peristaltic pump
WO2003027503A1 (en) * 2001-09-24 2003-04-03 Digipump Ltd. Piezoelectric pump
JP2010196660A (en) * 2009-02-26 2010-09-09 Univ Of Yamanashi Traveling-wave pump by resonant drive, traveling-wave carrier device
WO2013041703A1 (en) * 2011-09-21 2013-03-28 Sanofi-Aventis Deutschland Gmbh Peristaltic pump and method of transporting material with a peristaltic pump
WO2014148017A1 (en) * 2013-03-18 2014-09-25 国立大学法人広島大学 Polymer actuator and artificial lung device provided with same

Similar Documents

Publication Publication Date Title
US7588322B2 (en) Liquid drop discharge piezoelectric device
KR0119362B1 (en) Micro-miniaturized, electrostatically driven diaphragm micropump
JP4806548B2 (en) Microchannel fluid control structure, method for manufacturing microchannel fluid control structure, and closing member operating device
US8308452B2 (en) Dual chamber valveless MEMS micropump
EP1212532B1 (en) Dual diaphragm pump
US6752601B2 (en) Micropump
US20030012666A1 (en) Pump
WO2004003384A1 (en) Piezoelectric micropump with diaphragm and valves
US20090129952A1 (en) Microfluidic Device
CN101354030B (en) Micro-fluid pump with active control capability
JPH03107585A (en) Piezoelectric pump
JP4221184B2 (en) Micro chemical chip
CN103997254B (en) Piezoelectric driving type software displacement driver
WO2003027503A1 (en) Piezoelectric pump
US7671960B2 (en) Method for producing a device defining a volume for retaining a fluid or a sensitive material
JP2004116327A (en) Microdispenser
WO1989007199A1 (en) Pump
CN105089993B (en) Piezoelectric pump based on secondary resonance
JPS6357900A (en) Surface wave pump
JPH0381585A (en) Piezoelectric pump
US20150322932A1 (en) Micropump
JP2007100573A (en) Micro pump
KR101535922B1 (en) Apparatus for dispensing liquid material and dispensing and Method for dispensing liquid material
JP2004084584A (en) Piezoelectric micropump and its fluid transfer method
JPH05202857A (en) Piezoelectric pump