JPH03107417A - Production of supermicrocrystalline soft magnetic alloy - Google Patents

Production of supermicrocrystalline soft magnetic alloy

Info

Publication number
JPH03107417A
JPH03107417A JP1245551A JP24555189A JPH03107417A JP H03107417 A JPH03107417 A JP H03107417A JP 1245551 A JP1245551 A JP 1245551A JP 24555189 A JP24555189 A JP 24555189A JP H03107417 A JPH03107417 A JP H03107417A
Authority
JP
Japan
Prior art keywords
heat treatment
magnetic field
alloy
ultrafine
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1245551A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Yoshio Bizen
嘉雄 備前
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1245551A priority Critical patent/JPH03107417A/en
Publication of JPH03107417A publication Critical patent/JPH03107417A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce the supermicrocrystalline soft magnetic alloy which exhibits a low loss or high pulse inductivity by subjecting an amorphous alloy contg. Fe, Cu and Nb, etc., to a heat treatment at a Curie temp. or above, then to heat treatment in a magnetic field at the above-mentioned heat treatment temp. or below. CONSTITUTION:The alloy if the compsn. contg. Fe, Cu and M (M is at least one kind of Nb, W, Ta, Zr, Ht, Ti, and Mo) as its essential components is treated by a liquid rapid cooling method, such as single roll method or gaseous phase rapid cooling method, etc., such as sputtering method, to obtain the amorphous alloy. This alloy is heated to form the supermicrocrystal grains. The alloy is subjected to the heat treatment at the Curie temp. of the crystal phase to te formed or above at this time. The above-mentioned alloy is thereafter subjected to the heat treatment in the magnetic field while the magnetic field is impressed thereto at the temp. below the above-mentioned heat treatment temp. The first heat treatment may otherwise be executed in the rotating magnetic field at the Curie temp. or below and the next heat treatment may be executed by the heat treatment in the magnetic field while the magnetic field is impressed to the alloy in a specific direction at the Curie temp.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、高角形比で特に低損失、あるいは低角形比で
特に高いパルス透磁率を示す超微結晶軟磁性合金の製造
方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an ultrafine crystalline soft magnetic alloy that exhibits particularly low loss at a high squareness ratio, or particularly high pulse permeability at a low squareness ratio. be.

[従来の技術] 従来、高角形比の特性が必要な可飽和リアクトル用合金
としては50wt%Niパーマロイ合金、80wt%N
iパーマロイ合金やCO基アモルファス合金が主に用い
られていた。しかし、50wt%パーマロイは高周波に
おける磁心損失が大きく高周波特に20kllzを越え
る周波数での発熱が大きくなり使用が困難な問題がある
。80wt%Niパーマロイは角形性が十分でない問題
や100kHzを越える周波数帯で制御磁化特性が十分
でなくなる問題がある。CO基アモルファス合金は高角
形比で低損失の特性が得られるため高周波の用途に適す
るが、飽和磁束密度が十分高くないため、動作磁束密度
を十分大きくできない問題がある。
[Prior art] Conventionally, 50 wt% Ni permalloy alloy and 80 wt% N have been used as alloys for saturable reactors that require characteristics of high squareness ratio.
i-permalloy alloys and CO-based amorphous alloys were mainly used. However, 50wt% permalloy has a problem in that it has a large magnetic core loss at high frequencies and generates a large amount of heat at high frequencies, particularly at frequencies exceeding 20kllz, making it difficult to use. 80wt% Ni permalloy has problems such as insufficient squareness and insufficient controlled magnetization characteristics in a frequency band exceeding 100kHz. CO-based amorphous alloys are suitable for high frequency applications because they have a high squareness ratio and low loss characteristics, but they have a problem that the operating magnetic flux density cannot be sufficiently increased because the saturation magnetic flux density is not high enough.

一方、コモンモードチョークやカレントトランス等に適
する低角形比の合金としてはイソパーム合金、フ、エラ
イト、垂直方向の磁場中熱処理を行ったCo基アモルフ
ァス合金等が知られている。
On the other hand, as alloys with a low squareness ratio suitable for common mode chokes, current transformers, etc., are isoperm alloys, fluorite, elite, Co-based amorphous alloys heat-treated in a vertical magnetic field, etc. are known.

しかし、イソパーム合金、フェライトはパルス透磁率が
十分でない問題、Co基アモルファス合金の場合は、経
時変化が大きく、飽和磁束密度が低い等の問題があり部
品の小型化や高性能化には限界がある。
However, isoperm alloys and ferrites have problems such as insufficient pulse permeability, and Co-based amorphous alloys have problems such as large changes over time and low saturation magnetic flux density, which limits the ability to make parts smaller and improve performance. be.

このような欠点を解決できるものとして本発明者らは先
にFe基の超微結晶合金がこれらの用途に適することを
報告している。(特開平01−79342号等参照)。
The present inventors have previously reported that Fe-based ultrafine-crystalline alloys are suitable for these uses as a solution to these drawbacks. (Refer to JP-A No. 01-79342, etc.).

また、これらの用途に適する特性を示す超微結晶軟磁性
合金の製造方法として超微細な結晶粒を形成する熱処理
の後磁場を印加しながら磁場中熱処理をする方法を出願
している。
Furthermore, as a method for manufacturing an ultrafine crystalline soft magnetic alloy that exhibits characteristics suitable for these uses, we have applied for a method in which heat treatment to form ultrafine crystal grains is followed by heat treatment in a magnetic field while applying a magnetic field.

[発明(考案)が解決しようとする問題点]しかしなが
ら、上記超微結晶軟磁性合金を用い3 た部品を高周波領域において更に小型高性能化するため
にはより一層の特性改善すなわち高角形比でより低損失
の特性、低角形比でより高パルス透磁率の特性が必要で
ある。ところが、従来の製造法では高角形比を維持しか
つ、磁心損失を下げようとした場合、どうしても角形比
が下がる場合が多く安定した製造が困難であった、また
、低角形比でより高透磁率の特性を得ようとする場合も
、従来の製造方法では、特に高透磁率を得ようとすると
角形比が大きくなる場合が多かった。このように従来の
製造方法では安定して高角形比で低磁心損失をえるのは
困難であった。
[Problems to be solved by the invention] However, in order to make parts using the above-mentioned ultrafine-crystalline soft magnetic alloy more compact and high-performance in the high frequency range, it is necessary to further improve the characteristics, that is, to increase the squareness ratio. Characteristics of lower loss, lower squareness ratio and higher pulse permeability are required. However, with conventional manufacturing methods, when attempting to maintain a high squareness ratio and reduce core loss, the squareness ratio inevitably decreases, making stable production difficult. When trying to obtain magnetic properties, conventional manufacturing methods often result in a large squareness ratio, especially when trying to obtain high magnetic permeability. As described above, it has been difficult to stably obtain a high squareness ratio and low core loss using conventional manufacturing methods.

[問題点を解決するための手段] 上記目的を達成するために鋭意検討の結果、本発明者等
は、Fe 、CuおよびM(ただしNはNb、JTa、
Zr。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have determined that Fe, Cu and M (where N is Nb, JTa,
Zr.

Hf、Ti及びMoからなる群から選ばれた少なくとも
一種の元素)を必須元素として含み、組織の少なくとも
50%が微細な結晶粒からなる超微結晶軟磁性合金の製
造方法において、前記組成の非晶質合金を作製し、これ
を加熱し超微細な結晶粒を形成4− するための熱処理を、形成する結晶相のキュリー温度以
上で行った後、更に前記熱処理温度以下の温度で磁場を
印加しながら磁場中熱処理を行う製造方法により、不要
な誘導磁気異方性が生じるのを防ぎ、誘導磁気異方性を
特定方向にだけ形成することが可能となり、かつその大
きさを制御できるため、高角形比で特に低損失の合金や
、低角形比で特にパルス透磁率の高い合金が得られその
ばらつきも小さくできることを見いだし本発明に想到し
た。
A method for producing an ultrafine crystalline soft magnetic alloy containing at least one element selected from the group consisting of Hf, Ti, and Mo as an essential element and in which at least 50% of the structure consists of fine crystal grains, After producing a crystalline alloy and performing heat treatment to form ultrafine crystal grains by heating it at a temperature higher than the Curie temperature of the crystal phase to be formed, a magnetic field is further applied at a temperature lower than the heat treatment temperature. By using a manufacturing method that performs heat treatment in a magnetic field, it is possible to prevent unnecessary induced magnetic anisotropy from occurring, to form induced magnetic anisotropy only in a specific direction, and to control its magnitude. The inventors have discovered that it is possible to obtain an alloy with a particularly low loss at a high squareness ratio, and an alloy with a particularly high pulse permeability at a low squareness ratio, and to reduce the variation thereof, and have conceived the present invention.

もう一つの本発明はFe 、CuおよびM(ただしHは
Nb、W、Ta、Zr、Hf 、Ti及びMoからなる
群から選ばれた少なくとも一種の元素)を必須元素とし
て含み、組織の少なくとも50%が微細な結晶粒からな
る超微結晶軟磁性合金の製造方法において、前記組成の
非晶質合金を作製し、これを加熱し超微細な結晶粒を形
成するための熱処理を形成する結晶相のキュリー温度以
下の温度でかつ回転磁場中で行った後、更に結晶相のキ
ュリー温度以下の温度で特定方向に磁場を印加しながら
磁場中熱処理することを特徴とする超微結晶軟磁性合金
の製造方法であり、前述の製造方法と同様な優れた磁気
特性を示す合金を容易に得ることができる。
Another aspect of the present invention includes Fe, Cu, and M (where H is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo) as essential elements, and contains at least 50% of the structure. % of ultrafine crystalline soft magnetic alloys, in which an amorphous alloy having the above composition is prepared, and the crystalline phase is heated to form ultrafine crystal grains. An ultrafine-crystalline soft magnetic alloy characterized in that it is heat-treated in a rotating magnetic field at a temperature below the Curie temperature of the crystal phase, and then further heat-treated in a magnetic field while applying a magnetic field in a specific direction at a temperature below the Curie temperature of the crystalline phase. This is a manufacturing method, and it is possible to easily obtain an alloy that exhibits the same excellent magnetic properties as the aforementioned manufacturing method.

微細な結晶を形成するための熱処理の後行う磁場中熱処
理は、冷却過程だけでも良いし、無磁場で冷却の後再度
磁場を印加しながら加熱し行ってもよい。また、結晶化
の熱処理に引続き行っても良いが、冷却過程に磁場を印
加し磁場中熱処理した方がより好ましい結果が得られる
。磁場の印加方向が磁心の磁路方向の場合は高角形比で
低磁心損失の特性が得られる。一方、磁場印加方向が磁
路と垂直方向の場合は、低角形比で高透磁率の特性が得
られる。微細な結晶粒を形成するための熱処理を形成す
る結晶相のキュリー温度以上で行った方がよい理由は、
キュリー温度以上で熱処理を行うことにより、磁場中熱
処理の前に好ましくない方向に局部的に誘導磁気異方性
が生じるのを防ぎ、磁場中熱処理後、磁場印加方向だけ
に誘導磁気異方性が付き易くなるためであると考えられ
る。
The heat treatment in a magnetic field performed after the heat treatment for forming fine crystals may be performed by just a cooling process, or may be performed by cooling without a magnetic field and then heating while applying a magnetic field again. Further, although the heat treatment for crystallization may be performed subsequently, more preferable results can be obtained by applying a magnetic field during the cooling process and performing the heat treatment in the magnetic field. When the direction of application of the magnetic field is in the direction of the magnetic path of the magnetic core, a high squareness ratio and low core loss characteristics can be obtained. On the other hand, when the magnetic field application direction is perpendicular to the magnetic path, characteristics of high magnetic permeability with a low squareness ratio can be obtained. The reason why it is better to perform heat treatment to form fine crystal grains at a temperature higher than the Curie temperature of the crystal phase forming it is as follows.
By performing heat treatment above the Curie temperature, induced magnetic anisotropy is prevented from occurring locally in undesirable directions before heat treatment in a magnetic field, and induced magnetic anisotropy is prevented only in the direction of application of the magnetic field after heat treatment in a magnetic field. This is thought to be because it makes it easier to attach.

このため、磁場中熱処理により僅かな異方性が生じただ
けで高角形比や低角形比の特性が得られ、かつ誘導磁気
異方性が小さい状態が実現できるため、高角形比低磁心
損失や低角形比高パルス透磁率の特性が実現できると考
えられる。微細な結晶粒を形成するための熱処理を回転
磁場中で行った後、特定方向に磁場を印加し熱処理する
場合も同様な理由で、高角形比で低磁心損失、低角形比
で高パルス透磁率の特性が得られると考えられる。
Therefore, high squareness ratio and low squareness ratio characteristics can be obtained with only a slight anisotropy caused by heat treatment in a magnetic field, and a state with small induced magnetic anisotropy can be achieved, resulting in high squareness ratio and low core loss. It is thought that characteristics of low squareness ratio and high pulse permeability can be realized. For the same reason, when heat treatment is performed in a rotating magnetic field to form fine crystal grains and then a magnetic field is applied in a specific direction, a high squareness ratio results in low core loss and a low squareness ratio results in high pulse transmission. It is thought that magnetic properties can be obtained.

ここで、回転磁場中熱処理とは、被熱処理物を磁界の方
向に対して時時刻刻と変化させ熱処理する方法であり、
これは、一定方向に固定した磁場中で、被熱処理物を回
転したり、磁場の方を回転させながら熱処理することに
より行うことができる。このように、本発明の製造方法
では、結晶化のための熱処理の際局部的に好ましくない
誘導磁気異方性が形成するのを防ぐことができるため、
ばらつきも減少する。本発明により製造される合金とし
ては、本発明者らが先に出j頭した、一般式: %式% () Auから選ばれる少なくとも一種の元素、X゛はNb、
W。
Here, the heat treatment in a rotating magnetic field is a method of heat treating the object to be heat treated by changing the direction of the magnetic field with time.
This can be done by rotating the object to be heat treated in a magnetic field fixed in a fixed direction, or by performing heat treatment while rotating the magnetic field. As described above, in the manufacturing method of the present invention, it is possible to prevent the formation of locally undesirable induced magnetic anisotropy during heat treatment for crystallization.
Variability is also reduced. The alloy produced according to the present invention has the following general formula: % formula % () At least one element selected from Au, X' is Nb,
W.

Ta、Zr、Iff 、Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M”はV、Cr、Mn、
AI、白金族元素。
At least one element selected from the group consisting of Ta, Zr, Iff, Ti, and Mo; M'' is V, Cr, Mn,
AI, platinum group element.

Sc、Y、Zn、Sn、Reからなる群から選ばれた少
なくとも1種の元素、XはC,Ge、P、Ga、Sb、
In、Be、Asからなる群から選ばれた少なくとも1
種の元素であり、a。
At least one element selected from the group consisting of Sc, Y, Zn, Sn, Re, X is C, Ge, P, Ga, Sb,
At least one selected from the group consisting of In, Be, and As
It is a species element, a.

x、y、z、 a 、β及びγはそれぞれO≦a≦0.
5,0.1≦x≦3,0≦y≦30,0≦Z≦25,5
≦y+z≦30.0.1≦α≦30゜0≦β≦10,0
≦γ≦10を満たす。)により表される組成を有する合
金が好ましい結果が得やすい。なお、本発明に係わる非
晶質合金は、単ロール法、双ロール法等の液体急冷法や
スパッタ法、蒸着法等の気相急冷法等いろいろな方法で
作製できる。
x, y, z, a, β and γ each satisfy O≦a≦0.
5, 0.1≦x≦3, 0≦y≦30, 0≦Z≦25,5
≦y+z≦30.0.1≦α≦30゜0≦β≦10,0
≦γ≦10 is satisfied. ) It is easy to obtain preferable results with an alloy having a composition represented by: The amorphous alloy according to the present invention can be produced by various methods such as a liquid quenching method such as a single roll method or a twin roll method, or a vapor phase quenching method such as a sputtering method or a vapor deposition method.

[実施例コ 以下、本発明を実施例に従って説明するが、本発明はこ
れらに限定されるものではない。
[Example] The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1 原子%でCu1%、Nb4%、5i13.5%、B9%
残部実質的− にFeからなる組成の合金溶湯を単ロール法により急冷
し、幅10mm厚さ17μmの非晶質合金薄帯を作製し
た。次にこの合金薄帯を外径19mm、内径15mmに
巻回し、トロイダル磁心を作製後節1図、第2図に示す
熱処理パターンで熱処理を行った。第1図は本発明に係
わる熱処理パターン例、第2図は従来の熱処理パターン
例である。熱処理後の合金はX線回折及び透過電子顕微
鏡による組織観察の結果粒径100〜200人の超微細
な結晶粒組織からなることが確認された。熱処理後の合
金の100eに於ける磁束密度BIO1角形比Br/B
IO1100kHz、 Bm=2kGに於けるパルス磁
心損失、パルス幅100μs1 八B=2kGに於ける
パルス透磁率μpを測定した。熱処理後の合金の磁気特
性を第1表に示す。
Example 1 Cu1%, Nb4%, 5i13.5%, B9% in atomic%
A molten alloy having a composition in which the remainder substantially consisted of Fe was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a width of 10 mm and a thickness of 17 μm. Next, this alloy ribbon was wound to have an outer diameter of 19 mm and an inner diameter of 15 mm, and heat treatment was performed in accordance with the heat treatment pattern shown in Figures 1 and 2 in the section after preparing a toroidal magnetic core. FIG. 1 shows an example of a heat treatment pattern according to the present invention, and FIG. 2 shows an example of a conventional heat treatment pattern. As a result of structural observation using X-ray diffraction and transmission electron microscopy, it was confirmed that the alloy after heat treatment consisted of an ultrafine crystal grain structure with a grain size of 100 to 200 grains. Magnetic flux density BIO1 squareness ratio Br/B of alloy after heat treatment at 100e
The pulse magnetic core loss at IO 1100 kHz, Bm = 2 kG, and the pulse magnetic permeability μp at pulse width 100 μs1 and B = 2 kG were measured. The magnetic properties of the alloy after heat treatment are shown in Table 1.

本発明に係わる熱処理パターンを適用し、磁路方向に磁
場印加した場合は角形比が高〈従来の方法より低磁心損
失の特性となり、磁路と垂直な方向に磁場印加した場合
は低角形比で従来の方法より高いパルス透磁率μpが得
られる。
When the heat treatment pattern according to the present invention is applied and a magnetic field is applied in the direction of the magnetic path, the squareness ratio is high (lower magnetic core loss than the conventional method), and when the magnetic field is applied in the direction perpendicular to the magnetic path, the squareness ratio is high. With this method, a pulse permeability μp higher than that of the conventional method can be obtained.

第 1 表 実施例2 原子%でCu1.2%、Nb3%、5i13.8%、8
8.8%残部実質的にFeからなる組成の合金溶湯を単
ロール法により急冷し、幅5mm厚さ16μmの非晶質
合金薄帯を作製し、第3図(本発明)および第4図(比
較例)の熱処理パターンで熱処理を行い磁気特性を測定
した。回転磁場中熱処理後の磁場中熱処理の際印加する
磁場の方向は薄帯長手方向とした。熱処理後の合金の組
織は実施例1と同様粒径100〜200人の微細な結晶
粒からなっていた。
Table 1 Example 2 Cu1.2%, Nb3%, 5i13.8%, 8 in atomic %
A molten alloy having a composition essentially consisting of 8.8% Fe was rapidly cooled by a single roll method to produce an amorphous alloy ribbon having a width of 5 mm and a thickness of 16 μm. Heat treatment was performed using the heat treatment pattern of (Comparative Example), and the magnetic properties were measured. The direction of the magnetic field applied during the heat treatment in the magnetic field after the heat treatment in the rotating magnetic field was the longitudinal direction of the ribbon. The structure of the alloy after heat treatment consisted of fine crystal grains with a grain size of 100 to 200 grains, similar to Example 1.

本発明の製造方法の場合はBr/B10=95%、磁心
損失360mW/ccが得られ本発明より劣っている。
In the case of the manufacturing method of the present invention, Br/B10=95% and a core loss of 360 mW/cc were obtained, which is inferior to the present invention.

一方、従来の方法では、Br/BlO・90%、磁心損
失560mW/ccが得られ、本発明方法が高角形比低
磁心損失化に有効であることがわかる。
On the other hand, with the conventional method, Br/BlO 90% and a core loss of 560 mW/cc were obtained, indicating that the method of the present invention is effective in achieving a high squareness ratio and low core loss.

実施例3 第2表に示す組成の合金溶湯を単ロール法により急冷し
、第3図及び第4図の熱処理パターンで熱処理を行った
。回転磁場中熱処理の後の磁場の印加方向は薄帯幅方向
とした。
Example 3 A molten alloy having the composition shown in Table 2 was rapidly cooled by a single roll method, and heat treated according to the heat treatment pattern shown in FIGS. 3 and 4. After the heat treatment in the rotating magnetic field, the direction of application of the magnetic field was in the width direction of the ribbon.

11− 第 表 12− 熱処理後の合金は実施例1と同様のミクロ組織であった
11-Table 12- The alloy after heat treatment had the same microstructure as Example 1.

熱処理後に測定した各条件10個の磁気特性ばらつき範
囲を第2表に示す。
Table 2 shows the range of variation in magnetic properties under each of the 10 conditions measured after heat treatment.

本発明で製造した方が高いパルス透磁率が得易く、かつ
角形比も低いものが得やすく、ばらつきも小さくなり好
ましいことがわかる。
It can be seen that manufacturing according to the present invention is preferable because it is easier to obtain a high pulse permeability and a low squareness ratio, and the variation is small.

[発明・考案の効果] 本発明によれば、従来より高角形比で低損失あるいは低
角形比で高パルス透磁率の超微結晶軟磁性合金を製造で
き、かつばらつきを低減できるためその効果は著しいも
のがある。
[Effects of the Invention and Ideas] According to the present invention, it is possible to produce an ultrafine crystalline soft magnetic alloy with a higher squareness ratio and lower loss or a lower squareness ratio and higher pulse permeability than before, and the variation can be reduced. There are some notable ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる熱処理パターン例を示した図、
第2図は従来の熱処理パターン例を示した図、第3図は
本発明に係わる熱処理パターンの別の例を示した図、第
4図は従来の熱処理パターンの別の例を示した図である
。 第 1 時間 (a) 時 間 (C) (b) 時 間 (e) 時 間 (a) 第 図 時 間 図 時間 (b) 第 図 時 間
FIG. 1 is a diagram showing an example of a heat treatment pattern according to the present invention;
FIG. 2 is a diagram showing an example of a conventional heat treatment pattern, FIG. 3 is a diagram showing another example of a heat treatment pattern according to the present invention, and FIG. 4 is a diagram showing another example of a conventional heat treatment pattern. be. 1st Time (a) Time (C) (b) Time (e) Time (a) Diagram time diagram Time (b) Diagram time

Claims (4)

【特許請求の範囲】[Claims] (1)Fe,CuおよびM(ただしMはNb,W,Ta
,Zr,Hf,Ti及びMoからなる群から選ばれた少
なくとも一種の元素)を必須元素として含み、組織の少
なくとも50%が微細な結晶粒からなる超微結晶軟磁性
合金の製造方法において、前記組成の非晶質合金を作製
し、これを加熱し超微細な結晶粒を形成するための熱処
理を、形成する結晶相のキユリー温度以上で行った後、
更に前記熱処理温度以下の温度で磁場を印加しながら磁
場中熱処理を行うことを特徴とする超微結晶軟磁性合金
の製造方法。
(1) Fe, Cu and M (where M is Nb, W, Ta
, Zr, Hf, Ti and Mo) as an essential element, and at least 50% of the structure consists of fine crystal grains. After producing an amorphous alloy with the same composition and performing heat treatment to form ultrafine crystal grains at a temperature higher than the Curie temperature of the crystal phase to be formed,
A method for producing an ultrafine-crystalline soft magnetic alloy, further comprising performing heat treatment in a magnetic field while applying a magnetic field at a temperature below the heat treatment temperature.
(2)Fe,CuおよびM(ただしMはNb,W,Ta
,Zr,Hf,Ti及びMoからなる群から選ばれた少
なくとも一種の元素)を必須元素として含み、組織の少
なくとも50%が微細な結晶粒からなる超微結晶軟磁性
合金の製造方法において、前記組成の非晶質合金を作製
し、これを加熱し超微細な結晶粒を形成するための熱処
理を形成する結晶相のキユリー温度以下の温度でかつ回
転磁場中で行った後、更に結晶相のキユリー温度以下の
温度で特定方向に磁場を印加しながら磁場中熱処理する
ことを特徴とする超微結晶軟磁性合金の製造方法。
(2) Fe, Cu and M (where M is Nb, W, Ta
, Zr, Hf, Ti and Mo) as an essential element, and at least 50% of the structure consists of fine crystal grains. After producing an amorphous alloy with the same composition and performing a heat treatment to form ultrafine crystal grains at a temperature below the Curie temperature of the crystalline phase and in a rotating magnetic field, the crystalline phase is further heated. A method for producing an ultrafine-crystalline soft magnetic alloy, which comprises performing heat treatment in a magnetic field while applying a magnetic field in a specific direction at a temperature below the Curie temperature.
(3)熱処理の冷却過程だけ磁場を印加し磁場中熱処理
することを特徴とする請求項1に記載の超微結晶軟磁性
合金の製造方法。
(3) The method for producing an ultrafine-crystalline soft magnetic alloy according to claim 1, characterized in that the heat treatment in the magnetic field is performed by applying a magnetic field only during the cooling process of the heat treatment.
(4)前記合金が、一般式: (Fel−aMa)100−x−y−z−α−β−γA
xSiyBzM’αM”βXγ(at%) (但し、MはCo及び/またはNiであり、AはCu、
Ag、Auから選ばれる少なくとも一種の元素、M’は
Nb,W,Ta,Zr,Hf,Ti及びMoからなる群
から選ばれた少なくとも1種の元素、M”はV,Cr,
Mn,Al,白金族元素,Sc,Y,Zn,Sn,Re
からなる群から選ばれた少なくとも1種の元素、xはC
,Ge,P,Ga,Sb,In,Be,Asからなる群
から選ばれた少なくとも1種の元素であり、a,x,y
,z,α,β及びγはそれぞれ0≦a≦0.5,0.1
≦x≦3,0≦y≦30,0≦z≦25,5≦y+z≦
30,0.1≦α≦30,0≦β≦10,0≦γ≦10
を満たす。)により表される組成を有することを特徴と
する請求項1乃至3に記載の超微結晶軟磁性合金の製造
方法。
(4) The alloy has the general formula: (Fel-aMa)100-x-y-z-α-β-γA
xSiyBzM'αM''βXγ(at%) (However, M is Co and/or Ni, A is Cu,
At least one element selected from Ag, Au, M' is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, and Mo, M'' is V, Cr,
Mn, Al, platinum group elements, Sc, Y, Zn, Sn, Re
at least one element selected from the group consisting of, x is C
, Ge, P, Ga, Sb, In, Be, As, at least one element selected from the group consisting of a, x, y
, z, α, β and γ are 0≦a≦0.5, 0.1, respectively
≦x≦3, 0≦y≦30, 0≦z≦25, 5≦y+z≦
30, 0.1≦α≦30, 0≦β≦10, 0≦γ≦10
satisfy. ) The method for producing an ultrafine-crystalline soft magnetic alloy according to any one of claims 1 to 3, characterized in that it has a composition represented by:
JP1245551A 1989-09-21 1989-09-21 Production of supermicrocrystalline soft magnetic alloy Pending JPH03107417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245551A JPH03107417A (en) 1989-09-21 1989-09-21 Production of supermicrocrystalline soft magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245551A JPH03107417A (en) 1989-09-21 1989-09-21 Production of supermicrocrystalline soft magnetic alloy

Publications (1)

Publication Number Publication Date
JPH03107417A true JPH03107417A (en) 1991-05-07

Family

ID=17135382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245551A Pending JPH03107417A (en) 1989-09-21 1989-09-21 Production of supermicrocrystalline soft magnetic alloy

Country Status (1)

Country Link
JP (1) JPH03107417A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256284A (en) * 1998-03-13 1999-09-21 Nisshin Steel Co Ltd Ferritic stainless steel excellent in antibacterial characteristic
JP2002134329A (en) * 2000-10-24 2002-05-10 Hitachi Metals Ltd Magnetic parts for suppressing common mode lightning surge current of signal link
CN105719826A (en) * 2016-01-22 2016-06-29 东南大学 Magnetic-field heat treatment method of nanocrystal magnetic core
WO2018062310A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
WO2018155514A1 (en) 2017-02-22 2018-08-30 日立金属株式会社 Magnetic core unit, current transformer, and method for manufacturing same
WO2020232809A1 (en) * 2019-05-17 2020-11-26 山东电亮亮信息科技有限公司 High-productivity nanocrystalline ribbon production system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256284A (en) * 1998-03-13 1999-09-21 Nisshin Steel Co Ltd Ferritic stainless steel excellent in antibacterial characteristic
JP2002134329A (en) * 2000-10-24 2002-05-10 Hitachi Metals Ltd Magnetic parts for suppressing common mode lightning surge current of signal link
CN105719826A (en) * 2016-01-22 2016-06-29 东南大学 Magnetic-field heat treatment method of nanocrystal magnetic core
WO2018062310A1 (en) * 2016-09-29 2018-04-05 日立金属株式会社 Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
CN109716463A (en) * 2016-09-29 2019-05-03 日立金属株式会社 The manufacturing method of nanometer crystal alloy magnetic core, core assembly and nanometer crystal alloy magnetic core
JPWO2018062310A1 (en) * 2016-09-29 2019-06-24 日立金属株式会社 Nanocrystal alloy core, magnetic core unit and method of manufacturing nanocrystal alloy core
JP2019201215A (en) * 2016-09-29 2019-11-21 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
JP2021002663A (en) * 2016-09-29 2021-01-07 日立金属株式会社 Method for manufacturing nanocrystal alloy magnetic core
CN109716463B (en) * 2016-09-29 2021-04-09 日立金属株式会社 Nanocrystalline alloy magnetic core, magnetic core assembly, and method for manufacturing nanocrystalline alloy magnetic core
WO2018155514A1 (en) 2017-02-22 2018-08-30 日立金属株式会社 Magnetic core unit, current transformer, and method for manufacturing same
JPWO2018155514A1 (en) * 2017-02-22 2020-01-23 日立金属株式会社 Magnetic core unit, current transformer, and manufacturing method thereof
WO2020232809A1 (en) * 2019-05-17 2020-11-26 山东电亮亮信息科技有限公司 High-productivity nanocrystalline ribbon production system

Similar Documents

Publication Publication Date Title
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JPH03219009A (en) Production of fe-base soft-magnetic alloy
JPH01242755A (en) Fe-based magnetic alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP2710949B2 (en) Manufacturing method of ultra-microcrystalline soft magnetic alloy
JP4257629B2 (en) Fe-based amorphous alloy ribbon and magnetic component for nanocrystalline soft magnetic alloy
JPH03107417A (en) Production of supermicrocrystalline soft magnetic alloy
JPH01290744A (en) Fe-base soft-magnetic alloy
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JP3055722B2 (en) Method for manufacturing wound core having high squareness ratio at high frequency and wound core
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2005187917A (en) Soft magnetic alloy, and magnetic component
JPH0718388A (en) Nanocrystal alloy thin strip improved in asymmetry of b-h loop, magnetic core and production of nanocrystal alloy thin strip
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP2934471B2 (en) Ultra-microcrystalline magnetic alloy and its manufacturing method
JPH0570901A (en) Fe base soft magnetic alloy
JP2621151B2 (en) Magnetic material and method of manufacturing the same
JPH03271346A (en) Soft magnetic alloy
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPH01156452A (en) Fe-based magnetic alloy
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPS6229105A (en) Co radical amorphous wound magnetic core
JPH0499253A (en) Iron-based soft magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy