JPH03106545A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH03106545A
JPH03106545A JP24276789A JP24276789A JPH03106545A JP H03106545 A JPH03106545 A JP H03106545A JP 24276789 A JP24276789 A JP 24276789A JP 24276789 A JP24276789 A JP 24276789A JP H03106545 A JPH03106545 A JP H03106545A
Authority
JP
Japan
Prior art keywords
mold
flux
continuous casting
molten metal
connecting nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24276789A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshihara
正裕 吉原
Michio Ohashi
大橋 通男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24276789A priority Critical patent/JPH03106545A/en
Publication of JPH03106545A publication Critical patent/JPH03106545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To cast a cast slab having good surface characteristic by forming annular gap between outer circumferential wall part of a connecting nozzle set between a tundish and a mold and circumferential wall part in the mold and supplying powdery oxide becoming molten state. CONSTITUTION:The connecting nozzle 9 is set between the water cooled copper mold 2 and the tundish 1. The connecting nozzle 9 is set with a gap of distance D between the outer circumferential part at downstream side and part in the connecting nozzle 9 and the inner circumferential wall face in the mold 2. The gap D is pressurized with a pressure tank 11 so as to supply the powdery flux from a flux supplying tank 10 at the fixed velocity. The flux is brought into contact with molten metal 3 and easily melted to become molten layer 12 of the flux, and on this, the powder layer 13 exists and this is melted in order according to consumption of the molten layer 12. The molten metal 3 flows calmly and the cast slab having good surface characteristic can be cast with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面性状の良好な鋳片を高能率で鋳造できる
連続鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a continuous casting method capable of casting slabs with good surface quality with high efficiency.

(従来の技術及びその課題) 溶融金属を連続的に鋳造する方法としては、第3図に示
すような垂直型連続鋳造方法や、第4図に示すような水
平型連続鋳造方法が広く採用されている。
(Prior art and its problems) As methods for continuously casting molten metal, the vertical continuous casting method as shown in Figure 3 and the horizontal continuous casting method as shown in Figure 4 are widely adopted. ing.

このうち垂直型連続鋳造方法では、タンディシュ1から
鋳型2への溶融金属3の供給は浸漬ノズル4を介して行
われるのが通常であり、タンディシュlと鋳型2とは機
械的に分離されている。
In the vertical continuous casting method, the molten metal 3 is normally supplied from the tundish 1 to the mold 2 through a submerged nozzle 4, and the tundish 1 and the mold 2 are mechanically separated. .

なお第3図中、5はタンディシュlに溶融金属3を供給
する取鍋、6は鋳型2で冷却されてその外周部が凝固し
た凝固シェル、7は凝固シエル6を案内するガイドロー
ルを示す。
In FIG. 3, reference numeral 5 indicates a ladle for supplying the molten metal 3 to the tundish 1, 6 indicates a solidified shell whose outer peripheral portion is solidified after being cooled in the mold 2, and 7 indicates a guide roll for guiding the solidified shell 6.

この垂直型連続鋳造方法の場合、第5図に示すように、
鋳型2内の溶融金属3は自由表面を有し、この溶融金属
3の自由表面は酸化物を主体とするいわゆるパウダー8
で被覆されている。このパウダー8は溶融金属3の酸化
防止及び放熱防止並びに溶融金属3と接した部分で溶融
し、鋳型2のオシレーションと鋳片の下方へ引抜きによ
り、鋳型2と鋳片間に流入して鋳片と鋳型2間の潤滑を
行っている。
In the case of this vertical continuous casting method, as shown in Figure 5,
The molten metal 3 in the mold 2 has a free surface, and the free surface of the molten metal 3 contains so-called powder 8 mainly composed of oxides.
covered with. This powder 8 prevents oxidation and heat dissipation of the molten metal 3, melts at the part in contact with the molten metal 3, flows into the space between the mold 2 and the slab due to the oscillation of the mold 2 and pulls the slab downward, and is cast. It provides lubrication between the piece and mold 2.

ところで、タンディシュ1から鋳型2に供給される溶融
金属3は鋳型lの断面積と比較してはるかに小さな断面
積を有するノズル孔4゜を通して行われるため、小径の
ノズル孔4゜からの溶融金属3の吐出流速はかなり高速
となり、この吐出流によってメニスカス近くで生戒した
凝固シェルを再溶解し、鋳片表面割れの原因となる。加
えて、鋳型2内の自由表面の変動要因ともなり、鋳片表
面にパウダー8の巻込みに起因する鋳片疵を生じること
にもなる。
By the way, since the molten metal 3 is supplied from the tundish 1 to the mold 2 through the nozzle hole 4°, which has a much smaller cross-sectional area than the cross-sectional area of the mold 1, the molten metal 3 is supplied from the small-diameter nozzle hole 4°. The discharge flow rate in No. 3 is quite high, and this discharge flow re-melts the solidified shell that has survived near the meniscus, causing cracks on the surface of the slab. In addition, it becomes a factor in the fluctuation of the free surface inside the mold 2, and causes defects in the slab due to the entrainment of the powder 8 on the surface of the slab.

一方、水平型連続鋳造方法の場合は、第4図に示すよう
に、タンディシュlと鋳型2は接続ノズル9によって機
械的に接続されている。
On the other hand, in the case of the horizontal continuous casting method, the tundish l and the mold 2 are mechanically connected by a connecting nozzle 9, as shown in FIG.

すなわち、この鋳造方法においては、鋳型2と接続ノズ
ル9は密着された状態に保持され、鋳型2と接続ノズル
9間への溶融金属3の差し込みを防止している。
That is, in this casting method, the mold 2 and the connecting nozzle 9 are held in close contact with each other, thereby preventing the molten metal 3 from being inserted between the mold 2 and the connecting nozzle 9.

このような水平型連続鋳造方法では、第4図に示すよう
に、溶融金属3の自由表面はタンディシュl内にあり、
常時鋳片として引き抜かれた量の溶融金属3が接続ノズ
ル9を通して鋳型2内に供給される。更にこの鋳造方法
の場合には、接続ノズル9の断面積は鋳型2の断面積と
略同じであるため供給流は静かであり、垂直型連続鋳造
方法のようなこの供給流に起因する鋳片疵を発生するこ
とがない。
In such a horizontal continuous casting method, as shown in FIG. 4, the free surface of the molten metal 3 is within the tundish l;
The amount of molten metal 3 that is constantly drawn out as a slab is supplied into the mold 2 through the connection nozzle 9. Furthermore, in the case of this casting method, the cross-sectional area of the connecting nozzle 9 is approximately the same as the cross-sectional area of the mold 2, so the supply flow is quiet, and the slabs caused by this supply flow, as in the vertical continuous casting method, are No defects occur.

しかし、水平型連続鋳造方法では、鋳型2と接続ノズル
9が密着しているために鋳型2と鋳片の間に潤滑材を供
給することが困難であり、鋳造時の引抜き抵抗を大きく
している。更に、接続ノズル9が鋳型2によって冷却さ
れるため、接続ノズル9の下流側端面に、第6図に示す
ように、凝固シエル6が生或・付着し、鋳造の不安定原
因及び表面疵の原因となる。
However, in the horizontal continuous casting method, since the mold 2 and the connecting nozzle 9 are in close contact with each other, it is difficult to supply lubricant between the mold 2 and the slab, which increases the pulling resistance during casting. There is. Furthermore, since the connecting nozzle 9 is cooled by the mold 2, a solidified shell 6 is formed or adhered to the downstream end face of the connecting nozzle 9, as shown in FIG. 6, which causes unstable casting and causes surface flaws. Cause.

鋳型と鋳片間への潤滑剤の供給については特開昭53−
40629号公報に開示されている方法があるが、この
方法は鋳片が水平であるために鋳片上下間でわずかに溶
融金属の静圧に差があり、安定して潤滑剤を供給するこ
とが困難である。加えて、接続ノズル前面の凝固シェル
の付着力を低減することもできないため上記した問題点
を解決することもできない。更に、接続ノズル上の凝固
シェルの生成により、通常引抜きマークと呼ばれる表面
疵が現れ、製品化のためには表面切削が必要である。
Regarding the supply of lubricant between the mold and the slab, see JP-A-53-
There is a method disclosed in Publication No. 40629, but in this method, since the slab is horizontal, there is a slight difference in the static pressure of the molten metal between the top and bottom of the slab, and it is difficult to supply lubricant stably. is difficult. In addition, it is not possible to reduce the adhesion force of the solidified shell on the front surface of the connecting nozzle, and therefore the above-mentioned problems cannot be solved. Furthermore, the formation of a solidified shell on the connecting nozzle results in surface defects, commonly called pull-out marks, which require surface cutting for commercialization.

本発明は上記したような問題点を解決できる連続鋳造方
法を提供することを目的としている。
An object of the present invention is to provide a continuous casting method that can solve the above-mentioned problems.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る連続鋳造方法
は、タンディシュと鋳型が垂直方向にかつ機械的に接続
された連続鋳造装置を用いて連続鋳造するに際し、前記
タンディシュと鋳型間に介設されその下流側端部が鋳型
内に挿入された接続ノズルの、下流側端部外周壁部と鋳
型内周壁部間に所要の環状空隙を形成せしめ、この環状
空隙に溶融金属と接触して容易に溶融状となる粉末状の
酸化物を所要の圧力で連続的に供給しつつ鋳造すること
としているのである。
(Means for Solving the Problems) In order to achieve the above object, the continuous casting method according to the present invention provides a method for continuous casting using a continuous casting device in which a tundish and a mold are vertically and mechanically connected. , a required annular gap is formed between the outer peripheral wall of the downstream end of the connecting nozzle, which is interposed between the tundish and the mold, and the downstream end thereof is inserted into the mold, and the inner peripheral wall of the mold; Casting is carried out by continuously supplying powdered oxide, which easily becomes molten when it comes into contact with molten metal, into the void at a required pressure.

本発明では、垂直型連続鋳造方法と水平型連続鋳造方法
にみられる欠点を補完することにより、表面品質の良好
な鋳片を安定して鋳造することが可能となるのである. すなわち、垂直型連続鋳造方法で、水平型連続鋳造方法
のタンディシュと鋳型の機械的接続技術を適用すること
により、大断面の給湯が可能となり、給湯流に起因する
鋳片の表面疵が防止できるのである。また、垂直方向に
鋳造することにより接続ノズル部での同一断面で溶融金
属の静圧が同一となるため、接続ノズルと鋳型と鋳片の
接合部へ潤滑剤を安定して供給できる。
The present invention makes it possible to stably cast slabs with good surface quality by compensating for the drawbacks of vertical continuous casting methods and horizontal continuous casting methods. In other words, by applying the mechanical connection technology between the tundish and mold of the horizontal continuous casting method to the vertical continuous casting method, it is possible to supply hot water with a large cross section, and it is possible to prevent surface flaws on the slab caused by the flow of hot water. It is. Further, by vertically casting, the static pressure of the molten metal is the same in the same cross section at the connection nozzle, so lubricant can be stably supplied to the joint between the connection nozzle, the mold, and the slab.

(実 施 例) 以上本発明方法を第1図及び第2図に示す一実施例に基
づいて説明する。
(Example) The method of the present invention will be explained based on an example shown in FIGS. 1 and 2.

第1図は本発明の概念図、第2図は接続ノズル、鋳型及
び鋳片の接合部の詳細を示す図面である。
FIG. 1 is a conceptual diagram of the present invention, and FIG. 2 is a drawing showing details of a connection nozzle, a mold, and a joint portion of a slab.

これら第1図及び第2図において第3図〜第6図と同一
番号は同一部分あるいは相当部分を示す。
In these FIGS. 1 and 2, the same numbers as in FIGS. 3 to 6 indicate the same or corresponding parts.

先ず本発明方法に使用する連続鋳造装置の構威を第1図
に基づいて説明する。
First, the structure of the continuous casting apparatus used in the method of the present invention will be explained based on FIG.

9で示す接続ノズルは、水冷銅鋳型2とタンディシュ1
間に介設され、タンディシュlとは密着状と成されてい
る。また、この接続ノズル9は例えばSi3N4を主体
とする耐火物で構或されており、その下流側端部外周部
と鋳型2の内周壁面とは距離Dだけ離して設置されてい
る。
The connecting nozzle indicated by 9 connects the water-cooled copper mold 2 and the tundish 1.
It is interposed between them and is in close contact with the tundish l. The connection nozzle 9 is made of a refractory material mainly composed of Si3N4, for example, and the downstream end outer circumference of the connection nozzle 9 is placed a distance D apart from the inner circumference wall surface of the mold 2.

そして、この間隙Dには鋳型2の外側適宜位置に設けら
れたフランクス供給タンク10から粉末状のフラ・ンク
スが一定速度で供給されるように成されている。また、
このフラ・ンクスは圧力タンクllより供給される例え
ばN2などの加圧ガスによって溶融金属3の静圧(高さ
Lに相当する)に相当する圧力で供給され、溶融金属3
の間隙への差し込みを防止するようになっている。
Powdered Franx is supplied to this gap D from a Franx supply tank 10 provided at an appropriate position outside the mold 2 at a constant speed. Also,
This flanx is supplied with a pressure corresponding to the static pressure (corresponding to the height L) of the molten metal 3 by a pressurized gas such as N2 supplied from a pressure tank 11, and the molten metal 3 is
This prevents it from being inserted into the gap.

なお、タンディシュ1より供給された溶融金属3は鋳型
2及び図示しないピンチロールによって下方に引き抜か
れる。
The molten metal 3 supplied from the tundish 1 is pulled downward by the mold 2 and pinch rolls (not shown).

次に第2図に基づいてフランクスを添加することによる
機能について説明する。
Next, the function of adding Franks will be explained based on FIG.

溶融金属3は接続ノズル9の下流側端部で溶融金属3の
静圧とフラックスのガス圧とでバランスして保持されて
いる。
The molten metal 3 is held at the downstream end of the connection nozzle 9 in a balance between the static pressure of the molten metal 3 and the gas pressure of the flux.

ところで接続ノズル9と鋳型2の間隙には先に説明した
ようにフラックスが供給されるが、このフランクスは溶
融金属3に接触して容易に融解する。そして、このフラ
ックスの溶融層12の上にフランクスの粉末層13が形
成され、このフラックスの粉末層l3は溶融層12の消
費量に伴って順次融解する。
By the way, flux is supplied to the gap between the connection nozzle 9 and the mold 2 as described above, but this flux comes into contact with the molten metal 3 and easily melts. Then, a Franks powder layer 13 is formed on this molten layer 12 of flux, and this powder layer 13 of flux is sequentially melted as the amount of molten layer 12 is consumed.

一方、溶融金属3は鋳型2によって冷却されて凝固シェ
ル6を形成する。
Meanwhile, the molten metal 3 is cooled by the mold 2 to form a solidified shell 6.

従って、この場合に凝固シエル6の先端が接続ノズル9
の下流側端部外周面に及ばない程度に間隙Dを確保して
おく必要がある。本発明者らの実験結果によれば、この
間隙Dは5am以上は必要であった。この間隙Dを設け
ることによって凝固シェル6の先端部はフラックスの溶
融層12と接触することになるため、鋳片引抜き時の抵
抗となることはない。更にフラックスの溶融層l2は鋳
片の引抜きに応じて凝固シェル6と鋳型2の間に流入し
、凝固シェル6と鋳片間の潤滑作用をはたす。
Therefore, in this case, the tip of the coagulation shell 6 is connected to the connection nozzle 9.
It is necessary to ensure a gap D that does not extend to the outer circumferential surface of the downstream end. According to the experimental results of the present inventors, this gap D was required to be 5 am or more. By providing this gap D, the tip of the solidified shell 6 comes into contact with the molten layer 12 of flux, so that it does not become a resistance during drawing of the slab. Further, the molten layer l2 of flux flows between the solidified shell 6 and the mold 2 as the slab is drawn out, and performs a lubricating action between the solidified shell 6 and the slab.

なおガス圧力は、溶融層12の前記隙間への流人を助け
る作用をはたす。また本発明では、第2図に示すように
、接続ノズル9が鋳型2と接触していないため、接続ノ
ズル9の下流側端部の冷却がなく、接続ノズル9に凝固
シェルが生或することもない。
Note that the gas pressure acts to help the molten layer 12 flow into the gap. Further, in the present invention, as shown in FIG. 2, since the connecting nozzle 9 is not in contact with the mold 2, there is no cooling of the downstream end of the connecting nozzle 9, and a solidified shell is formed in the connecting nozzle 9. Nor.

ところで、間隙は冷却防止の観点からは大きい方が有利
であるが、大きすぎると接続ノズル9の内周面側断面積
が小さくなって鋳型2の断面積との差が大きくなるため
、給湯流によって鋳型2内の溶融金属が乱れ、鋳片の表
面性状を劣化させる.本発明者らの鋳造結果では間隙D
は5Mあれば十分にその冷却を防止できることが確認さ
れている.次に本発明方法の効果を確認するために下記
第1表に示す条件で実験を行った結果について説明する
Incidentally, a larger gap is advantageous from the viewpoint of preventing cooling, but if it is too large, the cross-sectional area on the inner circumference side of the connecting nozzle 9 becomes small and the difference with the cross-sectional area of the mold 2 becomes large, which reduces the flow of hot water. This disturbs the molten metal in the mold 2 and deteriorates the surface quality of the slab. In the casting results of the present inventors, the gap D
It has been confirmed that 5M is sufficient to prevent the cooling. Next, in order to confirm the effects of the method of the present invention, the results of experiments conducted under the conditions shown in Table 1 below will be explained.

第1表 第l表に示す条件で鋳造テストを行った結果、フラック
スを使用しない従来の場合に比べて、鋳片表面性状は極
めて円滑であり、引抜きマークの深さもl/3以下に低
減し、鋳片表面を切削することなく、圧延製品を得るこ
とができた。
As a result of a casting test conducted under the conditions shown in Table 1, the surface quality of the slab was extremely smooth and the depth of the pull-out mark was reduced to less than 1/3 compared to the conventional case where no flux was used. , it was possible to obtain a rolled product without cutting the surface of the slab.

また操業上においても、全く問題は認められず、容易に
完了することができた。
In addition, no problems were observed during operation, and the project was completed easily.

なお、本鋳造実験では、フラックスの消費量は幅500
 miの鋳型を使用した場合で約150g/鋳片m、幅
1000mmの鋳型の場合で約200g/鋳片mであっ
た。
In addition, in this casting experiment, the amount of flux consumed was 500 mm.
The amount was approximately 150 g/m of slab when using a mold with a width of 1,000 mm, and approximately 200 g/m of slab when a mold with a width of 1,000 mm was used.

(発明の効果) 以上説明したように本発明方法によれば、従来の垂直型
連続鋳造方法や水平型連続鋳造方法にあった欠点を解決
でき、表面性状の良好な鋳片を高能率で鋳造できるとい
う大なる効果を有する。
(Effects of the Invention) As explained above, according to the method of the present invention, the drawbacks of the conventional vertical continuous casting method and horizontal continuous casting method can be solved, and slabs with good surface properties can be cast with high efficiency. It has the great effect of being able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法に使用する連続鋳造装置の構成を示
す概略図、第2図は接続ノズル部近傍の詳細図、第3図
〜第6図は従来方法の説明図で、第3図は垂直型連続鋳
造方法の説明図、第5図はその要部拡大図、第4図は水
平型連続鋳造方法の説明図、第6図はその要部拡大図で
ある。 1はタンディシュ、2は鋳型、3は溶融金属、9は接続
ノズル、l1は圧力タンク、l2はフラックスの溶融層
、l3はフラックスの粉末層。 第1図
Fig. 1 is a schematic diagram showing the configuration of the continuous casting apparatus used in the method of the present invention, Fig. 2 is a detailed view of the vicinity of the connecting nozzle, Figs. 3 to 6 are explanatory diagrams of the conventional method, and Fig. 3 5 is an explanatory view of the vertical continuous casting method, FIG. 5 is an enlarged view of the main parts thereof, FIG. 4 is an explanatory view of the horizontal continuous casting method, and FIG. 6 is an enlarged view of the main parts thereof. 1 is a tundish, 2 is a mold, 3 is a molten metal, 9 is a connecting nozzle, 11 is a pressure tank, 12 is a molten layer of flux, and 13 is a powder layer of flux. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)タンディシュと鋳型が垂直方向にかつ機械的に接
続された連続鋳造装置を用いて連続鋳造するに際し、前
記タンディシュと鋳型間に介設されその下流側端部が鋳
型内に挿入された接続ノズルの、下流側端部外周壁部と
鋳型内周壁部間に所要の環状空隙を形成せしめ、この環
状空隙に溶融金属と接触して容易に溶融状となる粉末状
の酸化物を所要の圧力で連続的に供給しつつ鋳造するこ
とを特徴とする連続鋳造方法。
(1) When performing continuous casting using a continuous casting device in which a tundish and a mold are vertically and mechanically connected, a connection that is interposed between the tundish and the mold and whose downstream end is inserted into the mold. A required annular gap is formed between the outer circumferential wall of the downstream end of the nozzle and the inner circumferential wall of the mold, and powdered oxide, which easily becomes molten when it comes into contact with molten metal, is applied to this annular gap under the required pressure. A continuous casting method characterized by casting while continuously supplying.
JP24276789A 1989-09-18 1989-09-18 Continuous casting method Pending JPH03106545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24276789A JPH03106545A (en) 1989-09-18 1989-09-18 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24276789A JPH03106545A (en) 1989-09-18 1989-09-18 Continuous casting method

Publications (1)

Publication Number Publication Date
JPH03106545A true JPH03106545A (en) 1991-05-07

Family

ID=17093975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24276789A Pending JPH03106545A (en) 1989-09-18 1989-09-18 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH03106545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299627A (en) * 1992-03-03 1994-04-05 Kawasaki Steel Corporation Continuous casting method
US5622218A (en) * 1995-05-15 1997-04-22 Hylsa S.A. De C.V. Method and apparatus for continuous casting of steel materials
KR100554735B1 (en) * 2001-08-30 2006-02-24 주식회사 포스코 Method for strip casting with superior productivity by controlling surface tension of slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299627A (en) * 1992-03-03 1994-04-05 Kawasaki Steel Corporation Continuous casting method
US5622218A (en) * 1995-05-15 1997-04-22 Hylsa S.A. De C.V. Method and apparatus for continuous casting of steel materials
KR100554735B1 (en) * 2001-08-30 2006-02-24 주식회사 포스코 Method for strip casting with superior productivity by controlling surface tension of slag

Similar Documents

Publication Publication Date Title
KR101109450B1 (en) Method for estimating clogging degree of submerged entry nozzle and method for estimating time of changing submerged entry nozzle
JPH03106545A (en) Continuous casting method
JP2797829B2 (en) Tundish infusion tube
JPH0910897A (en) Method for continuously casting thin cast strip
JP4815821B2 (en) Continuous casting method of aluminum killed steel
US4482003A (en) Method for continuous casting of steel
KR101193850B1 (en) Method for detecting dropping alien substance of submerged entry nozzle and continuous casting method using the same
JPWO2019044292A1 (en) Steel continuous casting method and thin steel plate manufacturing method
KR20120001823A (en) Slab corner cutting system and method for scarfing corner of slab using the same
KR20130099331A (en) Collrctor nozzle for ladle
KR101175629B1 (en) Apparatus for mounting shroud nozzle
JPH0422538A (en) Method for continuously casting beam blank
KR101159598B1 (en) Method for estimating mold powder's viscosity
KR101140610B1 (en) Submerged entry nozzle assembly for tundish and method for the same
KR101159612B1 (en) Mortar for forming submerged entry nozzle assembly and method for forming submerged entry nozzle assembly using the same
JPS5931415B2 (en) Hollow tube manufacturing method and device
JPS61132248A (en) Method and device for continuous production of clad material
KR101193875B1 (en) Method for maintaining shroud nozzle and apparatus for maintaining shroud nozzle
JPS63212052A (en) Production of complex material by continuous casting
KR20120001094A (en) Gasket for sealing gap between collector nozzle and shroud nozzle and method for manufacturing the same
NEMOTO Development of Continuous Casting Operation
JPS60191642A (en) Horizontal and continuous casting method of metal
JPS6227315Y2 (en)
KR20110109316A (en) Apparatus for preventing clogging of submerged entry nozzle in continuous casting and method using the same
JPS62148060A (en) Thin slab continuous casting equipment