JPH031059A - Refrigerating apparatus - Google Patents

Refrigerating apparatus

Info

Publication number
JPH031059A
JPH031059A JP13405989A JP13405989A JPH031059A JP H031059 A JPH031059 A JP H031059A JP 13405989 A JP13405989 A JP 13405989A JP 13405989 A JP13405989 A JP 13405989A JP H031059 A JPH031059 A JP H031059A
Authority
JP
Japan
Prior art keywords
compressor
way valve
inlet
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13405989A
Other languages
Japanese (ja)
Other versions
JPH076715B2 (en
Inventor
Hirokuni Tamai
玉井 浩邦
Yoshiaki Takano
善昭 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13405989A priority Critical patent/JPH076715B2/en
Publication of JPH031059A publication Critical patent/JPH031059A/en
Publication of JPH076715B2 publication Critical patent/JPH076715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To certainly provide a pressure difference between two outlets of a four-way valve and allow refrigerant flow paths to be changed over by the four-way valve even when a compressor is stopped, by a method wherein one of the inlets of the four-way valve, by which the refrigerant flow paths are changed over corresponding to the pressure difference during cooling and defrosting operation, is connected to the upstream side of a third check valve, i.e., to the outlet side of an evaporator. CONSTITUTION:When the temperature in a space being cooled drops below the specific temperature during cooling operation, a solenoid valve 36 is opened at the same time when a compressor 2 is stopped, and a pressure equalizing circuit is brought in action to gradually equalize the pressures at the suction and delivery sides. As a timer periodically issues change-over instructions to a four-way valve 3 to change the refrigerant flow path from the cooling side to the defrosting side, the flow toward an evaporator 13 side is blocked by a third check valve even if the pressures at the delivery and suction sides of the compressor 2 reaches the equilibrium state and becomes higher than the previous suction side pressure before the compressor is stopped. As a result, a pressure difference can be surely provided between one inlet 31 and the other inlet 34 of the four-way valve 3. Therefore, the four-way valve 3 can bechanged over regardless of operation or stop of the compressor 2 to which a defrosting instruction has been issued, and a controller which halts the change-over action of the four-way valve 3 during stop of the compressor 2 is not necessary to provide.

Description

【発明の詳細な説明】 〔発明の目的〕 産業上の利用分野 本発明は、冷凍装置における冷媒回路の改良に関する。[Detailed description of the invention] [Purpose of the invention] Industrial applications The present invention relates to improvements in refrigerant circuits in refrigeration equipment.

従来の技術 圧縮機、凝縮器、減圧装置、蒸発器を有した冷媒回路に
おいて、冷却運転と除霜運転とにおける冷媒流路を切り
替えるための流路切替弁を備えたものが一般的に知られ
ており、特公昭61−51227号公報もその一例であ
る。該公報にあっては、除霜時にホットガスを通過させ
るホットガスバイパス管(流路切替弁と蒸発器の冷媒入
口・側との間に配設されている管)に蒸発器直下の露受
皿に接触する熱交換部を形成するとともに、熱交換部の
冷媒流れ方向における下流側に絞り装置を設けたもので
ある。尚、流路切替弁として四方弁を採用し、四方弁と
凝縮器との間、及びバイパス管にはそれぞれ逆止弁が配
設されている。
Conventional technology It is generally known that a refrigerant circuit having a compressor, a condenser, a pressure reducing device, and an evaporator is equipped with a flow path switching valve for switching the refrigerant flow path between cooling operation and defrosting operation. Japanese Patent Publication No. 61-51227 is one example. In this publication, a hot gas bypass pipe (a pipe installed between the flow path switching valve and the refrigerant inlet/side of the evaporator) through which hot gas passes during defrosting is provided with a dew pan directly below the evaporator. A heat exchanger is formed in contact with the refrigerant, and a throttle device is provided on the downstream side of the heat exchanger in the refrigerant flow direction. A four-way valve is used as the flow path switching valve, and check valves are provided between the four-way valve and the condenser and in the bypass pipe.

発明が解決しようとする課題 前記冷媒回路に対して、圧縮機の冷媒吐出側と冷媒吸込
側との間に電磁弁を有した連結管を配設して、圧縮機の
停止時に電磁弁を開いて圧縮機の吐出・吸込間の圧力を
平衡させておき、圧縮機始動時の起動トルクを低減する
ものに対応させるにあたっては、圧力差を利用して流路
を切り替える四方弁の低圧管を圧縮機の吸込側に連結し
ている関係上、圧縮機の停止期間中に四方弁による流路
切替えを行なおうとしても圧縮機の吐出側と吸込側とが
圧力平衡回路によって圧力平衡しているため、所望の圧
力差を得ることができず四方弁を動かすことができない
という不具合が生じてしまう、このため、圧縮機の停止
中には四方弁による流路切替えができないこととなり、
圧縮機の運転停止中には冷却から除霜への流路切替えを
行なわないようにするためにタイマー等によって除霜指
令が出されたときには四方弁の切替信号を停止中待機さ
せるような制御装置が必要であや、前述の冷媒回路だけ
では使用できないものであった。
Problem to be Solved by the Invention In the refrigerant circuit, a connecting pipe having a solenoid valve is provided between the refrigerant discharge side and the refrigerant suction side of the compressor, and the solenoid valve is opened when the compressor is stopped. In order to balance the pressure between the discharge and suction of the compressor and reduce the starting torque when starting the compressor, the low pressure pipe of the four-way valve that switches the flow path using the pressure difference is compressed. Because it is connected to the suction side of the compressor, even if you try to switch the flow path using a four-way valve while the compressor is stopped, the pressure on the discharge side and suction side of the compressor will be balanced by the pressure equalization circuit. As a result, the desired pressure difference cannot be obtained and the four-way valve cannot be moved, resulting in a problem.For this reason, the four-way valve cannot switch the flow path while the compressor is stopped.
A control device that makes the four-way valve switching signal standby when a defrost command is issued by a timer or the like to prevent the flow path from cooling to defrosting from being switched while the compressor is stopped. The refrigerant circuit described above cannot be used alone.

そこで本発明は、圧縮機の運転停止中に圧縮機の吐出側
吸込側間の圧力を平衡させる圧力平衡回路を設けたもの
において、四方弁の切替動作が確実に行なえるようにす
ることをその課題とする。
Therefore, the present invention aims to ensure that the four-way valve switching operation can be performed reliably in a pressure balancing circuit that balances the pressure between the discharge and suction sides of the compressor while the compressor is stopped. Take it as a challenge.

〔発明の構成〕[Structure of the invention]

課題を解決するための手段 本発明は上述の課題を解決するため冷媒圧縮機、第1の
逆止弁、凝縮器、第2の逆止弁、減圧装置、蒸発器、第
3の逆止弁にて冷媒回路を形成し、圧縮機の吐出側と吸
込側との間に圧縮機の停止時に開放する電磁弁を有した
圧力平衡管を有する冷凍装置を提供するもので、圧縮機
の吐出側に圧力差により流路を切り替える四方弁を配設
し、四方弁の一方の入口を圧縮機の吐出側に、他方の入
口を蒸発器の出口と第3の逆止弁の入口との間に接続さ
れる流路切替用低圧管に、一方の出口を第1の逆止弁に
、他方の出口をバイパス管にそれぞれ連結し、バイパス
管はその他端を蒸発器の入口側に接続するとともにその
途中に熱交換部及び第4の逆止弁を備え、四方弁は冷却
運転時に一方の入口と一方の出口とを連結して、除霜運
転時に一方の入口と他方の出口を、他方の出口と一方の
出口とをそれぞれ連結するように動作させるものである
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a refrigerant compressor, a first check valve, a condenser, a second check valve, a pressure reducing device, an evaporator, and a third check valve. This provides a refrigeration system having a pressure equalization pipe with a solenoid valve that opens when the compressor is stopped between the discharge side and the suction side of the compressor, forming a refrigerant circuit at the discharge side of the compressor. A four-way valve is installed to switch the flow path based on the pressure difference, and one inlet of the four-way valve is connected to the discharge side of the compressor, and the other inlet is connected between the outlet of the evaporator and the inlet of the third check valve. One outlet is connected to the first check valve and the other outlet is connected to the bypass pipe, and the other end of the bypass pipe is connected to the inlet side of the evaporator. A heat exchange part and a fourth check valve are provided in the middle, and the four-way valve connects one inlet and one outlet during cooling operation, and connects one inlet and the other outlet during defrosting operation. and one outlet are connected to each other.

作用 一端が四方弁の他方の入口に接続される管(詳しくは流
路切替用低圧管)の他端を第3の逆止弁より上流側の蒸
発器出口側に接続しているため、圧縮機の吐出側と吸込
側との圧力が圧力平衡管によって圧力平衡した場合でも
、第3の逆止弁によってこの平衡圧力と蒸発器出口側の
圧力とがさらに平衡されることは阻Iヒされる関係上、
圧縮機の停止時にあっても、第3の逆止弁が四方弁の一
方の入口と他方の入口とに圧力差を確保するように作用
して、四方弁の切り替え動作を妨げないようにしている
One working end is connected to the other inlet of the four-way valve, and the other end of the pipe (specifically, the low-pressure pipe for flow path switching) is connected to the evaporator outlet side upstream from the third check valve, so the compression Even if the pressures on the discharge side and suction side of the machine are balanced by the pressure balancing pipe, the third check valve prevents this balanced pressure from being further balanced with the pressure on the evaporator outlet side. Due to the
Even when the compressor is stopped, the third check valve acts to ensure a pressure difference between one inlet of the four-way valve and the other inlet of the four-way valve, so as not to interfere with the switching operation of the four-way valve. There is.

実施例 本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described with reference to the drawings.

1は冷凍装置における冷媒回路であって、冷媒圧縮機2
、流路切替弁3、第1の逆止弁4、送風機5を備えた空
冷式凝縮器6、乾燥器7、受液器8、第2の逆止弁9、
過冷却コイル10、膨張弁等の減圧装置(以下膨張弁と
称す)11、送風機12を備えた空冷式蒸発器13、第
3の逆止弁14、及び気液分離器15を高圧ガス管A1
高圧液管B、低圧液管C及び低圧ガス管りによって環状
接続して第1図実線矢印に示すような冷凍サイクルを構
成するとともに、流路切替弁3と低圧液管Cとの間にホ
ットガスバイパス管20を接続して第2図実線矢印に示
すような除霜サイクルを構成する。
1 is a refrigerant circuit in a refrigeration system, and a refrigerant compressor 2
, a flow path switching valve 3, a first check valve 4, an air-cooled condenser 6 equipped with a blower 5, a dryer 7, a liquid receiver 8, a second check valve 9,
A supercooling coil 10, a pressure reducing device such as an expansion valve (hereinafter referred to as an expansion valve) 11, an air-cooled evaporator 13 equipped with a blower 12, a third check valve 14, and a gas-liquid separator 15 are connected to the high-pressure gas pipe A1.
The high-pressure liquid pipe B, the low-pressure liquid pipe C, and the low-pressure gas pipe are connected in a ring to form a refrigeration cycle as shown by the solid arrow in Figure 1. By connecting the gas bypass pipe 20, a defrosting cycle as shown by the solid arrow in FIG. 2 is constructed.

ホットガスバイパス管20は蒸発器13の直下に位置さ
せる金属製の露受皿に接するように蛇行状の熱交換部(
以下ホットガスコイルと称す)21を形成するとともに
このホットガスコイル21の下流側に第4の逆止弁22
を備えている。
The hot gas bypass pipe 20 has a meandering heat exchange section (
21 (hereinafter referred to as a hot gas coil), and a fourth check valve 22 is provided downstream of this hot gas coil 21.
It is equipped with

25は流路切替弁3と蒸発器13の冷媒出口側とを接続
する流路切替用低圧管である。流路切替弁3としては電
磁パイロット切換弁と称される四方弁を三方弁として使
用するものであって、その一方の入口31は圧縮機2の
吐出側に接m−aれ、出口32.33及び他方の入口3
4にはそれぞれ高圧ガス管A1ホットガスバイパス管2
0、及び波路切替用低圧管25が接続きれている。そし
て、この四方弁3は、一方の入口31の圧力と他方の入
口34の圧力とに一定の圧力差がある場合に限って切り
替え動作を行なうものである。
Reference numeral 25 denotes a low-pressure pipe for flow path switching that connects the flow path switching valve 3 and the refrigerant outlet side of the evaporator 13. As the flow path switching valve 3, a four-way valve called an electromagnetic pilot switching valve is used as a three-way valve, one of which has an inlet 31 in contact with the discharge side of the compressor 2, and an outlet 32. 33 and the other entrance 3
4 has high pressure gas pipe A1 and hot gas bypass pipe 2, respectively.
0, and the wave path switching low pressure pipe 25 are disconnected. The four-way valve 3 performs a switching operation only when there is a certain pressure difference between the pressure at one inlet 31 and the pressure at the other inlet 34.

また、35は圧縮機2の吐出側と気液分離器15の入口
側とを接続する圧力平衡回路としての圧力平衡管であっ
て、途中に圧縮機2の停止時に開放し圧縮flA2の運
転時に閉じる電磁弁36と、この電磁弁36の下流側に
圧縮機2の低圧側へ高圧ガス冷媒が急激に導入されるの
を防ぐ減圧装置としてのキャピラリーチューブ37とが
接続されている。
Moreover, 35 is a pressure balance pipe as a pressure balance circuit connecting the discharge side of the compressor 2 and the inlet side of the gas-liquid separator 15, and is opened when the compressor 2 is stopped and is opened when the compression flA2 is operated. A solenoid valve 36 that closes is connected to the downstream side of the solenoid valve 36 to a capillary tube 37 serving as a pressure reducing device that prevents high-pressure gas refrigerant from being rapidly introduced to the low-pressure side of the compressor 2.

以上の構成に基づき冷却運転と除霜運転の各運転中の冷
媒流路について説明する。
Based on the above configuration, the refrigerant flow path during each operation of cooling operation and defrosting operation will be explained.

まず、冷却運転を行なうにあたっては、その運転スイッ
チ(図示せず)からの指令により、圧縮機2が駆動する
とともに、四方弁3が冷却運転側すなわち一方の入口3
1と一方の出口32とを連通させ他方の出口33と他方
の入口34を連通するように動作する。これにより圧縮
機2で圧縮された冷媒ガスは、四方弁3を介して凝縮器
6に入り冷却液化され、膨張弁11で減圧されて蒸発器
13に入り加熱気化されて再び圧縮機2に吸入される周
知の冷却サイクルをとる(第1図参照)。
First, when performing cooling operation, the compressor 2 is driven by a command from the operation switch (not shown), and the four-way valve 3 is set to the cooling operation side, that is, one inlet 3.
1 and one outlet 32, and the other outlet 33 and the other inlet 34. As a result, the refrigerant gas compressed by the compressor 2 enters the condenser 6 via the four-way valve 3, is cooled and liquefied, is depressurized by the expansion valve 11, enters the evaporator 13, is heated and vaporized, and is sucked into the compressor 2 again. A well-known cooling cycle is used (see Figure 1).

冷媒が蒸発器13を通ることで加熱気化されるときに、
蒸発器周囲の空気の熱を奪うため周囲空気を冷却するこ
とになり、所望の冷却を行なうのであるが、前述の冷却
運転が継続されると蒸発器13への着霜が進行して成長
し蒸発器表面に周囲空気が触れにくくなり、冷却性能が
低下してくるので、蒸発器13の除霜を行なう必要が生
じてくる。
When the refrigerant is heated and vaporized by passing through the evaporator 13,
The surrounding air is cooled to remove heat from the air around the evaporator, and the desired cooling is achieved, but if the cooling operation described above continues, frost builds up on the evaporator 13 and grows. Since it becomes difficult for ambient air to come into contact with the surface of the evaporator and the cooling performance decreases, it becomes necessary to defrost the evaporator 13.

このため、四方弁3にて流路を除霜運転側に切り替える
すなわち一方の入口31と他方の出口33とを連通させ
、一方の出口32と他方の入口34とを連通するように
タイマー装置によって定期的に除霜指令を出して四方弁
内部を切り替え動作させると、圧縮機2で圧縮された高
温高圧のガス冷媒は四方弁3を介してホットガスバイパ
ス管20に入り、ホットガスコイル21及び第4の逆止
弁22を経て蒸発器13へ入り液化され、気液分離器1
5を通してガス状の冷媒として圧縮機へ戻る。蒸発器1
3を通るガス冷媒は、冷却運転中に冷却移れた蒸発器1
3の管及びフィンを加熱するので、管及びフィンの表面
に付着した霜を急激に加熱し表面に付着した霜を融解剥
離するとともに、露受皿に堆積した霜を融解することで
、液化される。また、冷却運転中に凝縮器6へ導びかれ
た冷媒は冷却運転中に高圧となっており、ホットガスバ
イパス管20の出口側の圧力よりも高いため(特に除霜
運転初期においては)、この凝縮器6から膨張弁11を
介して蒸発器13へ流れ込む、尚、除霜運転の継続に伴
ない凝縮器6には冷媒が送り込まれていないことから、
凝縮器周囲の空気によってその空気温度に基づく平衡圧
力まで圧力が低下するとともにホットガスバイパス管2
Oの出口側圧力が上昇してくるため、その圧力差がなく
なるまでの間だけ、上述の凝縮器側から蒸発器13へ向
けて冷媒は流れるものである。
Therefore, the four-way valve 3 switches the flow path to the defrosting operation side, that is, one inlet 31 and the other outlet 33 are made to communicate with each other, and one outlet 32 and the other inlet 34 are made to communicate with each other by a timer device. When a defrosting command is issued periodically to switch the inside of the four-way valve, the high-temperature, high-pressure gas refrigerant compressed by the compressor 2 enters the hot gas bypass pipe 20 via the four-way valve 3, and flows through the hot gas coil 21 and It enters the evaporator 13 through the fourth check valve 22 and is liquefied, and the gas-liquid separator 1
5 and returns to the compressor as gaseous refrigerant. Evaporator 1
The gas refrigerant passing through evaporator 1 is cooled during cooling operation.
Since the pipes and fins in step 3 are heated, the frost adhering to the surfaces of the pipes and fins is rapidly heated to melt and peel off the frost adhering to the surfaces, and the frost deposited on the dew pan is melted and liquefied. . In addition, since the refrigerant guided to the condenser 6 during the cooling operation is at a high pressure during the cooling operation, and is higher than the pressure on the outlet side of the hot gas bypass pipe 20 (especially at the beginning of the defrosting operation), The refrigerant flows from the condenser 6 to the evaporator 13 via the expansion valve 11. However, as the defrosting operation continues, no refrigerant is sent to the condenser 6.
The air around the condenser reduces the pressure to the equilibrium pressure based on the air temperature, and the hot gas bypass pipe 2
Since the O outlet side pressure increases, the refrigerant flows from the condenser side to the evaporator 13 only until the pressure difference disappears.

一方、冷却運転中に冷却空間の温度が所定温度以下にな
ったときには、圧縮機2の運転が停止するようになって
いるが、この圧縮機2の停止とともに電磁弁36が開放
され、圧力平衡回路が作動する(第1図−点鎖線矢印参
照)、すなわち、圧縮機2の吐出側の高圧冷媒が圧力平
衡管35を経て圧縮機2の吸込側へ導びかれ、吐出側と
吸込側との圧力を徐々に平衡化させる。
On the other hand, when the temperature of the cooling space falls below a predetermined temperature during cooling operation, the operation of the compressor 2 is stopped, and when the compressor 2 stops, the solenoid valve 36 is opened and the pressure is balanced. The circuit is activated (see the dotted chain arrow in Figure 1), that is, the high-pressure refrigerant on the discharge side of the compressor 2 is guided to the suction side of the compressor 2 through the pressure equalization pipe 35, and the discharge side and suction side are Gradually equilibrate the pressure.

四方弁3の冷却側から除霜側への切り替えの指令は、タ
イマーによって定期的に出ているため、この圧縮機2の
停止中に指令が出され、四方弁3を除霜運転側2に切り
替える場合も出てくるが、仮に圧縮機2の吐出側と吸込
側とが圧力平衡し圧縮機停止前の吸込側圧力より上昇し
ていたとしても、第3の逆止弁によって蒸発器側への流
れは阻止されるものであり、圧力平衡回路の影響を受け
ず蒸発器13の出口側の圧力は圧縮機停止前の低圧のま
ま維持できる。このため、四方弁3の一方の入口31と
他方の入口34との間には必ず圧力差を設けることがで
き、四方弁3の切り替えを行なう条件としての圧力差を
確保することができ、四方弁3の切り替えを行なうこと
ができる。したがって、除霜指令が出されたとき圧縮機
の駆動・停止に関係なく四方弁3の切り替えができ、圧
縮機2の停止中には四方弁3の切り替えを待機させるた
めの制御装置は不要となる。
Since the command to switch the four-way valve 3 from the cooling side to the defrosting side is issued periodically by a timer, the command is issued while the compressor 2 is stopped, and the four-way valve 3 is switched to the defrosting operation side 2. There may be cases where the pressure is switched, but even if the pressure on the discharge side and suction side of the compressor 2 is in equilibrium and the pressure on the suction side is higher than the pressure on the suction side before the compressor is stopped, the third check valve will cause the pressure to be switched to the evaporator side. The flow is blocked, and the pressure on the outlet side of the evaporator 13 can be maintained at the low pressure before the compressor is stopped without being affected by the pressure balance circuit. Therefore, a pressure difference can always be provided between one inlet 31 and the other inlet 34 of the four-way valve 3, and the pressure difference as a condition for switching the four-way valve 3 can be ensured. Valve 3 can be switched. Therefore, when a defrosting command is issued, the four-way valve 3 can be switched regardless of whether the compressor is running or stopped, and there is no need for a control device to wait for switching the four-way valve 3 while the compressor 2 is stopped. Become.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、圧縮機の停止時に
吐出側と吸込側との圧力を平衡させる圧力平衡管を設け
た冷凍装置において、冷却運転と除霜運転における冷媒
流路を圧力差でもって切り替える四方弁の他方の入口を
第3の逆止弁の上流側すなわち蒸発器の出口側に接続し
ているため、圧縮機の停止時に吐出側と吸込側との圧力
が平衡した場合にあっても、吐出側の圧力は停止直前の
吸込側圧力よりは確実に高くなっている関係上、四方弁
の一方の入口と他方の入口との間には確実に圧力差を設
けることができ、圧縮機の停止時においても四方弁によ
る流路切り替えを行なうことが可能となる。したがって
圧縮機の停止中に四方弁の切り替え動作を行なわないよ
うにする機構及び制御装置を設ける必要はない。
As described in detail above, according to the present invention, in a refrigeration system equipped with a pressure equalization pipe that balances the pressure on the discharge side and the suction side when the compressor is stopped, the refrigerant flow path during the cooling operation and the defrosting operation is Since the other inlet of the four-way valve that switches with a difference is connected to the upstream side of the third check valve, that is, the outlet side of the evaporator, when the pressures on the discharge side and suction side are balanced when the compressor is stopped. Even if the valve is closed, the pressure on the discharge side is definitely higher than the pressure on the suction side just before the valve stops, so it is impossible to ensure a pressure difference between one inlet and the other inlet of the four-way valve. This makes it possible to switch the flow paths using the four-way valve even when the compressor is stopped. Therefore, it is not necessary to provide a mechanism and a control device to prevent the switching operation of the four-way valve from being performed while the compressor is stopped.

【図面の簡単な説明】 各図は本発明の一実施例を示す冷媒回路図であって、第
1図及び第2図はそれぞれ冷却運転時及び除霜運転時の
冷媒の流れを示している。 1・・・冷媒回路、 2・・・圧縮機、 3・・・四方
弁(流路切替弁)、 6・・・凝縮器、 11・・・減
圧装置、  13・・・蒸発器、 14・・・第3の逆
止弁、20・・・ホットガスバイパス管、  25・・
・流路切替用低圧管、  31・・・一方の入口、 3
4・・・他方の入口、  35・・・圧力平衡管、 3
6・・・電磁弁。
[Brief Description of the Drawings] Each figure is a refrigerant circuit diagram showing one embodiment of the present invention, and FIGS. 1 and 2 show the flow of refrigerant during cooling operation and defrosting operation, respectively. . DESCRIPTION OF SYMBOLS 1... Refrigerant circuit, 2... Compressor, 3... Four-way valve (flow path switching valve), 6... Condenser, 11... Pressure reduction device, 13... Evaporator, 14. ...Third check valve, 20...Hot gas bypass pipe, 25...
・Low pressure pipe for flow path switching, 31...one inlet, 3
4...Other inlet, 35...Pressure balance tube, 3
6... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1、冷媒圧縮機、第1の逆止弁、凝縮器、第2の逆止弁
、減圧装置、蒸発器、第3の逆止弁にて冷媒回路を形成
し、前記圧縮機の吐出側と吸込側との間に圧縮機の停止
時に開放する電磁弁を有した圧力平衡管を有する冷凍装
置において、前記圧縮機の吐出側に圧力差により流路を
切り替える四方弁を配設し、該四方弁の一方の入口を圧
縮機の吐出側に、他方の入口を前記蒸発器の出口と前記
第3の逆止弁の入口との間に接続される流路切替用低圧
管に、一方の出口を第1の逆止弁に、他方の出口をバイ
パス管にそれぞれ連結し、前記バイパス管はその他端を
蒸発器の入口側に接続するとともにその途中に熱交換部
及び第4の逆止弁を備え、前記四方弁は冷却運転時に一
方の入口と一方の出口とを連結して、除霜運転時に一方
の入口と他方の出口を、他方の出口と一方の出口とをそ
れぞれ連結するように動作させることを特徴とする冷凍
装置。
1. A refrigerant circuit is formed by a refrigerant compressor, a first check valve, a condenser, a second check valve, a pressure reducing device, an evaporator, and a third check valve, and the refrigerant circuit is connected to the discharge side of the compressor. In a refrigeration system having a pressure balance pipe having a solenoid valve that is opened when the compressor is stopped between the suction side and the compressor, a four-way valve is disposed on the discharge side of the compressor to switch a flow path based on a pressure difference, and the four-way valve is arranged on the discharge side of the compressor. One inlet of the valve is connected to the discharge side of the compressor, the other inlet is connected to the flow path switching low pressure pipe connected between the outlet of the evaporator and the inlet of the third check valve, and one outlet of the valve is connected to the flow path switching low pressure pipe connected between the outlet of the evaporator and the inlet of the third check valve. is connected to a first check valve, and the other outlet is connected to a bypass pipe, and the bypass pipe has its other end connected to the inlet side of the evaporator, and a heat exchange section and a fourth check valve are connected in the middle thereof. The four-way valve operates to connect one inlet and one outlet during a cooling operation, connect one inlet and another outlet during a defrosting operation, and connect the other outlet and one outlet, respectively. A refrigeration device characterized by:
JP13405989A 1989-05-26 1989-05-26 Refrigeration equipment Expired - Lifetime JPH076715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13405989A JPH076715B2 (en) 1989-05-26 1989-05-26 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13405989A JPH076715B2 (en) 1989-05-26 1989-05-26 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH031059A true JPH031059A (en) 1991-01-07
JPH076715B2 JPH076715B2 (en) 1995-01-30

Family

ID=15119404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13405989A Expired - Lifetime JPH076715B2 (en) 1989-05-26 1989-05-26 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH076715B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595095A (en) * 2019-10-08 2019-12-20 珠海格力电器股份有限公司 Air conditioning system and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110595095A (en) * 2019-10-08 2019-12-20 珠海格力电器股份有限公司 Air conditioning system and control method
CN110595095B (en) * 2019-10-08 2023-08-01 珠海格力电器股份有限公司 Air conditioning system and control method

Also Published As

Publication number Publication date
JPH076715B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
CN110173917B (en) Air conditioning system and control method thereof
EP1645817A2 (en) Air conditioner
CN210154145U (en) Air conditioning system
JP2002188873A (en) Refrigerating equipment of air conditioner
JPH10205958A (en) Multi-evaporator refrigerator
JP3407866B2 (en) Air conditioner
JPH031059A (en) Refrigerating apparatus
JPH05322388A (en) Defrosting operation controller for refrigerating device
JPH08291951A (en) Air conditioner
JPH04324075A (en) Air conditioning apparatus
JPH0424364Y2 (en)
KR20080006055A (en) Air conditioning system
JP2001241798A (en) Multizone air conditioner
JPH08166183A (en) Air-conditioning equipment
JP2002081807A (en) Refrigerating device
JP3407867B2 (en) Operation control method of air conditioner
JPH03122460A (en) Operating controller for refrigerating machine
JPH11132603A (en) Air-conditioner
KR102312664B1 (en) Apparatus for providing cold water and ice with function to detach ice
JPH05203271A (en) Two-stage compression type refrigerating cycle apparatus
JPH02223778A (en) Defrosting device for air-conditioning machine
JPH0351680A (en) Refrigerating cycle of air conditioner
JP2000220894A (en) Air conditioner and method for operating the same
KR950004394Y1 (en) Removing frost by hot fluid
JPH05340625A (en) Air conditioner