JPH03105929A - Manufacture of schottky barrier junction gate type field-effect transistor - Google Patents

Manufacture of schottky barrier junction gate type field-effect transistor

Info

Publication number
JPH03105929A
JPH03105929A JP24418989A JP24418989A JPH03105929A JP H03105929 A JPH03105929 A JP H03105929A JP 24418989 A JP24418989 A JP 24418989A JP 24418989 A JP24418989 A JP 24418989A JP H03105929 A JPH03105929 A JP H03105929A
Authority
JP
Japan
Prior art keywords
insulating film
electrode
gate
gate electrode
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24418989A
Other languages
Japanese (ja)
Inventor
Fumiaki Katano
片野 史明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24418989A priority Critical patent/JPH03105929A/en
Publication of JPH03105929A publication Critical patent/JPH03105929A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a GaAs-MESFET having high gate breakdown strength and small source resistance by separating an N-type low resistance layer on the drain side having high carrier concentration from the end of a gate electrode. CONSTITUTION:An N<+> type channel layer 2 is formed onto the surface of a semi-insulating GaAs substrate 1, a gate electrode 3 is shaped, a first insulating film 4 is deposited on a front, and a first photo-ressit 5 is formed. The first insulating film 4 is etched through an RIE method, and the sidewalls 4a, 4b of the gate electrode are left. A second photo-resist 6 covering the drain side is shaped. The first insulating layer 4 is etched through wet etching while using the second photo-resist 6 as a mask, the gate-electrode side-wall 4b on the drain side is left, and the photo-resist 6 is removed. N-type low resistance layers 8 and an N<+> type ohmic layer 9 are formed, a metallic wiring 10 is shaped onto the gate electrode 3, and a source electrode 11 and a drain electrode 12 are formed, thus completing a GaAs-MESFET.

Description

【発明の詳細な説明】 し産業上の利用分野〕 本発明は高出力用のガリウム砒素ショットキー障壁ゲー
ト型電界効果トランジスタの装道方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for mounting a high-output gallium arsenide Schottky barrier gate type field effect transistor.

1従来の技術〕 ガリウム砒素ショットキー障壁ゲート型電界効東トラン
ジスタ( G a A s−M E S F E T 
)は、高周波特性に優れているので、高周波増幅素子を
始めとして、製品開発が進められている。
1. Prior art] Gallium arsenide Schottky barrier gate field effect transistor (GaAs-MESFET)
) has excellent high-frequency characteristics, so product development is progressing, including high-frequency amplification elements.

従来技術によるGaAs−MESFETについて、第3
図を参照して説明する。
About GaAs-MESFET according to the conventional technology, Part 3
This will be explained with reference to the figures.

半絶縁性ガリウム砒素基板1の表面に、キャリア濃度I
 X 1 0 ”c m−’、厚さ2000人のN型チ
ャネル層2を挟んでキャリア濃度3X10”cm−’、
厚さ3000人のN型低抵抗層8が形戒され、N型チャ
ネル層2とショットキー接合をなす厚さ6000人の高
融点金属、たとえばタングステンシリサイド(WSi>
からなるゲート電極3と、N型低抵抗層8とオーミック
接合をなすソース電極11、ドレイン電極12とが形成
されている。
On the surface of the semi-insulating gallium arsenide substrate 1, there is a carrier concentration I
X 10 "cm-', carrier concentration 3X10"cm-' across the N-type channel layer 2 with a thickness of 2000 people,
An N-type low resistance layer 8 with a thickness of 3000 nm is formed, and a high melting point metal such as tungsten silicide (WSi>
A source electrode 11 and a drain electrode 12 forming an ohmic contact with the N-type low resistance layer 8 are formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般にG a A s  M E S F E Tは、
ソース電極11を接地し、ドレイン電極12を正電位に
し、ゲーI−電極3を負電位にバイアスして使用される
In general, G a As M E S F E T is
The source electrode 11 is grounded, the drain electrode 12 is set to a positive potential, and the gate I-electrode 3 is biased to a negative potential.

このときゲート電fJi3とドレイン電極12との間に
臨界電圧以上の電圧が印加されると、ドレイ〉・電極1
2からゲート電極3に電流が流れてしまうため、ドレイ
ン電極12に印加できる電圧は臨界電圧による制限を受
ける。
At this time, if a voltage higher than the critical voltage is applied between the gate voltage fJi3 and the drain electrode 12, the drain>・electrode 1
Since current flows from the drain electrode 2 to the gate electrode 3, the voltage that can be applied to the drain electrode 12 is limited by the critical voltage.

この臨界電圧はゲート耐圧と称されており、特に高出力
用のG a A s − M E S F E Tにと
っては、このゲート耐圧の向上が出力電力限界および信
頼度の向上などの性能向上のために重要である。
This critical voltage is called the gate withstand voltage, and especially for high-output GaAs-MESFETs, improving the gate withstand voltage improves performance such as improving the output power limit and reliability. It is important for

しかしながら従来技術によるGaAs−MESFETで
は、キャリア濃度が3X10l7cm−’と高いN型低
抵抗層8がゲー1ヘ電極3に接して設けられている。
However, in the GaAs-MESFET according to the prior art, an N-type low resistance layer 8 having a high carrier concentration of 3.times.1017 cm.sup.-' is provided in contact with the gate electrode 3.

そのためゲート耐圧が8■という小さいものしか得られ
ず、高出力用GaAs−MESFETとして機能させる
には不十分であった。
Therefore, the gate breakdown voltage was only as low as 8 .mu., which was insufficient to function as a high-output GaAs-MESFET.

本発明の目的はゲート耐圧を高くして、出力電力限界お
よび信頼度を向上させるとともに、ソース抵抗、ゲート
抵抗を低減して、遮断周波数、電力付加効率などの向七
を実現するものである。
An object of the present invention is to increase the gate breakdown voltage to improve the output power limit and reliability, and to reduce the source resistance and gate resistance to achieve improvements in cutoff frequency, power addition efficiency, etc.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のショットキー障壁接合ゲート型電界効果トラン
ジスタの製造方法は、トレイン側のゲート電iu面に第
1の絶縁膜を形成する工程と、前記ゲー1〜電極と第1
の絶縁膜とをマスクとして、N型不純物をイオン注入す
る工程と、ソース側のゲート電極側面とドレイン側の第
1の絶縁膜の側面とに第2の絶縁膜を形成する工程と、
前記ゲート電極、第1の絶縁膜と第2の絶縁膜とをマス
クとして、N型不純物をイオン注入する工程と、イオン
注入された不純物を活性化するためのアニール工程と、
ソース−ドレイン電極を形成する工程とから構成されて
いる。
The method for manufacturing a Schottky barrier junction gate field effect transistor of the present invention includes the steps of forming a first insulating film on the gate electrode iu surface on the train side,
using the insulating film as a mask, ion-implanting N-type impurities; forming a second insulating film on the side surface of the gate electrode on the source side and the side surface of the first insulating film on the drain side;
A step of ion-implanting N-type impurities using the gate electrode, the first insulating film, and the second insulating film as masks, and an annealing step for activating the ion-implanted impurities.
The process consists of a step of forming source-drain electrodes.

L実施例〕 本発明の第1の実施例について、第1図(a)〜(i>
を参照して説明する。
L Example] Regarding the first example of the present invention, FIGS. 1(a) to (i>
Explain with reference to.

はじめに第1図(a)に示すように、半絶縁性G aA
 s基板1の表面にキャリア濃度I X 1 0 ”c
m−3、深さ0.2umのN一型チャネルM2を形成し
、これとショットキー接合をなす、たとえば厚さ6 0
 0 0人のタングステンシリサイドからなるゲー1〜
電極3を形成し、全面に厚さ4 0 0 0人の第1の
絶縁膜(例えばC V D  S i O 2膜)4を
堆積したのち、第1のフォトレジスト5を形吠する。
First, as shown in Figure 1(a), semi-insulating GaA
The carrier concentration I
m-3, a depth of 0.2 um N-type channel M2 is formed, and a Schottky junction is formed with this, for example, a thickness of 60 um.
Game 1 consisting of 0 0 tungsten silicides
After forming an electrode 3 and depositing a first insulating film (for example, a C V D Si O 2 film) 4 to a thickness of 4000 on the entire surface, a first photoresist 5 is formed.

つぎに第1図(b)に示すように5第1のフォトレジス
ト5をマスクとして、RIE法により第1の絶縁膜4を
エッチングしたのち、第1のフォトレジスト5を除去し
て、ソース側のゲー1・電極3の側壁に第1の絶縁膜4
aを残す。
Next, as shown in FIG. 1(b), the first insulating film 4 is etched by RIE using the first photoresist 5 as a mask, and then the first photoresist 5 is removed and the source side A first insulating film 4 is formed on the side wall of the gate 1 and electrode 3.
Leave a.

つぎに第1図(C)に示すように、第2のフォトレジス
ト6を形成する。
Next, as shown in FIG. 1(C), a second photoresist 6 is formed.

つぎに第1図(d)に示すように、第2のフォトレジス
ト6をマスクとして、RIE法により第■の絶縁膜4を
エッチングしたのち、第2のフォトレジスト6を除去し
て、トレイン測のゲー1〜電極側壁に第1の絶縁膜4b
を残す。
Next, as shown in FIG. 1(d), the second insulating film 4 is etched by RIE using the second photoresist 6 as a mask, and then the second photoresist 6 is removed and the train measurement is performed. A first insulating film 4b is formed on the sidewalls of the electrodes 1 to 1.
leave.

つぎに第1図(e)に示すように、N型低抵抗層8を形
成するために、ゲーI−電極3および第1の絶縁膜4を
マスクとして、N型不純物(例えばシリコン)を加速エ
ネルギー50keV、注入量(ドース) I X 1 
0l2/cm2イオン注入する。
Next, as shown in FIG. 1(e), in order to form an N-type low resistance layer 8, an N-type impurity (for example, silicon) is accelerated using the gate I-electrode 3 and the first insulating film 4 as a mask. Energy 50 keV, implantation amount (dose) I x 1
0l2/cm2 ion implantation.

つぎに第1図(f>に示すように、全面に厚さ3000
人の第2の絶縁膜(例えばCVD−SiO2膜)7を堆
積する。
Next, as shown in Figure 1 (f>), a thickness of 3000 was applied to the entire surface.
A second insulating film (eg, CVD-SiO2 film) 7 is deposited.

つぎに第1図(g>に示すように、RIE法により第2
の絶縁膜7を工・ソチングして、第2の絶縁膜7からな
る側壁7aを残す。
Next, as shown in Figure 1 (g>), a second
The insulating film 7 is etched and sown, leaving side walls 7a made of the second insulating film 7.

つぎに第1図(h)に示すように、N+型オーミック層
9を形成するために、ゲート電fi3および第1、第2
の絶縁膜4b,7aをマスクとしてて、N型不純物(例
えばシリコン〉を加速エネルギー1 50keV、注入
量(ドース)IXIOIS・’cm2イオン注入ずる。
Next, as shown in FIG. 1(h), in order to form the N+ type ohmic layer 9, the gate voltage fi3 and the first and second
Using the insulating films 4b and 7a as masks, N-type impurity (for example, silicon) ions are implanted at an acceleration energy of 150 keV and a dose of IXIOIS.cm2.

このあとイオン注入された不純物を活性化する六二めに
、例えばアノレシン(Asl−13)ガス中でアニール
を行なう。
Thereafter, to activate the ion-implanted impurities, annealing is performed in, for example, anolescine (Asl-13) gas.

つぎに第1図(i)に示すように、ゲーl・電極3の上
にチタンー白金一金(Ti−Pt−Au>からなる金属
配線10を設けたのち、ソース電極11およびドレイン
電極12を形成して、G a As−M E S F 
E Tが完戊する。
Next, as shown in FIG. 1(i), a metal wiring 10 made of titanium-platinum (Ti-Pt-Au) is provided on the gate electrode 3, and then a source electrode 11 and a drain electrode 12 are formed. to form GaAs-MESF
ET is completed.

つぎに本発明の第2の実施例について、第2図(a)〜
(e)を参照して説明する。
Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to (e).

はじめに第2図<a>に示すように、半絶縁性G aA
 s基板1の表面にN一型チャネルN2を形成し、ゲー
ト電極3を形成し、全面に第1の絶縁1漠4を堆積した
のち、第1のフォトレジスト5を形成する。
First, as shown in Figure 2<a>, semi-insulating GaA
An N1 type channel N2 is formed on the surface of the s-substrate 1, a gate electrode 3 is formed, a first insulating film 4 is deposited on the entire surface, and a first photoresist 5 is formed.

つぎに第2図(b)に示すように、RIE法により第1
の絶縁膜4をエッチングしてゲート電極の側壁4a.4
bを残す。
Next, as shown in Figure 2(b), the first
The insulating film 4 of the gate electrode is etched to form side walls 4a. 4
Leave b.

つぎに第2図(c)に示すように、ドレイン側を覆う第
2のフォトレジストl2を形成する。
Next, as shown in FIG. 2(c), a second photoresist 12 covering the drain side is formed.

つぎに第2図(d)に示すように、第2のフォトレジス
ト6をマスクとして、ウェットエッチングにより第1の
絶縁膜4をエッチングして、トレイン側のゲート電極側
壁4bを残してから、フォトレジスト12を除去する つぎに第2図(e)に示すように、N型低抵抗層8とN
+型オーミック層9とを形戒したのち、ゲー1〜電極3
の上に金属配線10を形成し、ソース電極11およびド
レ,イン電極12を形戒して、Ga A s 一M B
 S F E Tが完成する。
Next, as shown in FIG. 2(d), the first insulating film 4 is etched by wet etching using the second photoresist 6 as a mask, leaving the gate electrode sidewall 4b on the train side, and then photoresist 6 is used as a mask. After removing the resist 12, as shown in FIG. 2(e), the N-type low resistance layer 8 and the N-type
After forming the + type ohmic layer 9, the electrodes 1 to 3
A metal wiring 10 is formed on the metal wiring 10, a source electrode 11 and drain and inlet electrodes 12 are formed, and Ga
SFET is completed.

〔発明の効果〕〔Effect of the invention〕

本発明のGaAs−MESFETの製造方法は、キャリ
ア濃度の高いドレイン側のN型低抵抗層をゲート電極端
から離すことができるため、ゲート耐圧が高く(例えば
第1の実施例では15V)、シかもソース抵抗は小さい
(例えば0.8Ω・mm)GaAs−MESFETを得
ることができた9 特に第2の実施例においては、半絶縁性G a AS基
板1の表面が、ほとんどRIE法によるエッチングのプ
ラズマ雰囲気にさらされないため、表面損傷の影響が少
ないという特徴がある。
In the GaAs-MESFET manufacturing method of the present invention, the N-type low resistance layer on the drain side with high carrier concentration can be separated from the end of the gate electrode, so the gate breakdown voltage is high (for example, 15V in the first embodiment) and the silicon In addition, we were able to obtain a GaAs-MESFET with a low source resistance (for example, 0.8 Ω·mm).9 Especially in the second embodiment, the surface of the semi-insulating Ga AS substrate 1 was almost completely etched by the RIE method. Since it is not exposed to a plasma atmosphere, it has the characteristic of being less susceptible to surface damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図<a)〜(i)は本発明の第1の実施例を工程順
に示す断面図、第2図(a)〜(e)は本発明の第2の
実施例を工程順に示す断面図、第3図は従来技術による
G a A s  M E S F E Tを示す断面
図。 1・・・半絶縁性GaAs基板、2・・N型チャネル層
、3・・・ゲーl〜電極、4・・・第1の絶縁膜、4a
,4b・・・側壁、5・・・第1のフォトレジスト、6
・・・第2のフォトレジス?−、7・・・第2の絶縁膜
、7a・・+11J壁、8・・・N型低抵抗層、9・・
・N+型オーミック層、10・・・金属配線、11・・
ソース電極、12・・・ドレイン電極。
Figures 1(a) to (i) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and Figures 2(a) to (e) are cross-sectional views showing the second embodiment of the present invention in the order of steps. FIG. 3 is a cross-sectional view showing a G as M E S F E T according to the prior art. DESCRIPTION OF SYMBOLS 1... Semi-insulating GaAs substrate, 2... N-type channel layer, 3... Gael~electrode, 4... First insulating film, 4a
, 4b... side wall, 5... first photoresist, 6
...Second Photoregis? -, 7...Second insulating film, 7a...+11J wall, 8...N-type low resistance layer, 9...
・N+ type ohmic layer, 10...metal wiring, 11...
Source electrode, 12... drain electrode.

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性ガリウム砒素基板表面に形成されたショットキ
ー障壁ゲート型電界効果トランジスタの製造方法におい
て、ドレイン側のゲート電極側面に第1の絶縁膜を形成
する工程と、前記ゲート電極と第1の絶縁膜とをマスク
として、N型不純物をイオン注入する工程と、ソース側
のゲート電極側面とドレイン側の第1の絶縁膜の側面と
に第2の絶縁膜を形成する工程と、前記ゲート電極、第
1の絶縁膜と第2の絶縁膜とをマスクとして、N型不純
物をイオン注入する工程と、イオン注入された不純物を
活性化するためのアニール工程と、ソース−ドレイン電
極を形成する工程を含むことを特徴とするショットキー
障壁ゲート型電界効果トランジスタの製造方法。
In a method of manufacturing a Schottky barrier gate field effect transistor formed on a surface of a semi-insulating gallium arsenide substrate, a step of forming a first insulating film on a side surface of a gate electrode on a drain side, and forming a first insulating film between the gate electrode and the first insulating film are provided. a step of ion-implanting N-type impurities using the film as a mask; a step of forming a second insulating film on a side surface of the gate electrode on the source side and a side surface of the first insulating film on the drain side; A step of ion-implanting N-type impurities using the first insulating film and the second insulating film as masks, an annealing step to activate the ion-implanted impurities, and a step of forming source-drain electrodes. A method of manufacturing a Schottky barrier gate field effect transistor, comprising:
JP24418989A 1989-09-19 1989-09-19 Manufacture of schottky barrier junction gate type field-effect transistor Pending JPH03105929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24418989A JPH03105929A (en) 1989-09-19 1989-09-19 Manufacture of schottky barrier junction gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24418989A JPH03105929A (en) 1989-09-19 1989-09-19 Manufacture of schottky barrier junction gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03105929A true JPH03105929A (en) 1991-05-02

Family

ID=17115097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24418989A Pending JPH03105929A (en) 1989-09-19 1989-09-19 Manufacture of schottky barrier junction gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03105929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768147B2 (en) * 2002-03-28 2004-07-27 Fujitsu Quantum Devices Limited Semiconductor device and method of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768147B2 (en) * 2002-03-28 2004-07-27 Fujitsu Quantum Devices Limited Semiconductor device and method of fabricating the same

Similar Documents

Publication Publication Date Title
JP2826924B2 (en) Method of manufacturing MOSFET
KR920002090B1 (en) Method of manufacturing field effect transistor
GB2243950A (en) Field effect transistors
JPH08264562A (en) Semiconductor device and fabrication thereof
JPH06204469A (en) Field-effect transistor and manufacture thereof
JPH06177159A (en) Field-effect transistor and manufacture thereof
JP3057439B2 (en) Method for manufacturing semiconductor device
JPH03105929A (en) Manufacture of schottky barrier junction gate type field-effect transistor
JPS6245184A (en) Field-effect transistor and manufacture thereof
JPS63131576A (en) Manufacture of semiconductor device
JPH04291732A (en) Manufacture of field-effect transistor
JPH0348428A (en) Semiconductor device
JP3077653B2 (en) Field effect transistor and method of manufacturing the same
JPH01251669A (en) Manufacture of field effect transistor
JPS6057971A (en) Manufacture of semiconductor device
JPH0330336A (en) Manufacture of semiconductor device with ldd structure
KR0170513B1 (en) Mos transistor and its fabrication
JPH03148834A (en) Manufacture of mos transistor
TW410386B (en) Fabrication of spacer
JPH0774184A (en) Manufacture of schottky gate field-effect transistor
JPH0475388A (en) Semiconductor device and manufacture thereof
JPH0233940A (en) Manufacture of semiconductor device
JPH02295131A (en) Manufacture of mos transistor
JPH07193089A (en) Semiconductor device
JPS6054480A (en) Manufacture of gallium arsenide schottky barrier junction gate field effect transistor