JPH031056A - Heat pump type heat recovery apparatus - Google Patents

Heat pump type heat recovery apparatus

Info

Publication number
JPH031056A
JPH031056A JP1132633A JP13263389A JPH031056A JP H031056 A JPH031056 A JP H031056A JP 1132633 A JP1132633 A JP 1132633A JP 13263389 A JP13263389 A JP 13263389A JP H031056 A JPH031056 A JP H031056A
Authority
JP
Japan
Prior art keywords
heat
heat recovery
recovery device
condenser
supercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1132633A
Other languages
Japanese (ja)
Other versions
JP2685583B2 (en
Inventor
Akihiro Tani
明洋 谷
Jirou Sugimoto
杉本 磁郎
Junichi Kaneko
淳一 金子
Toshisuke Onoda
小野田 利介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1132633A priority Critical patent/JP2685583B2/en
Publication of JPH031056A publication Critical patent/JPH031056A/en
Application granted granted Critical
Publication of JP2685583B2 publication Critical patent/JP2685583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PURPOSE:To increase the refrigerating capacity with the same required power for obtaining a heat pump type heat recovery apparatus with energy saving by a method wherein an auxiliary heat exchanger mounted on a gas outlet pipe of a compressor and a super cooler provided on a refrigerant outlet pipe of a condenser are connected to each other by a water pipe. CONSTITUTION:Firstly, superheat of the discharged gas is recovered by an auxiliary heat exchanger 4 by heat recovery operation, and the heat storage medium in a heat recovery unit 7 is concentrated by this heat for preparing heat output operation. Nest, the heat at a supercooler unit is released to the heat recovery unit by heat output operation which utilizes the cooling effect gained by diluting the concentrated medium in the heat recovery unit. The refrigerating capacity in an operation using the supercooler unit and the heat recovery unit can be increased with the same required power. For instance, the heat recovery operation is carried out during the nighttime, and the heat output operation is performed during the peak load period in the daytime, so that waste heat is effectively utilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒートポンプ熱回収装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a heat pump heat recovery device.

〔従来の技術〕[Conventional technology]

圧縮機、凝縮器、蒸発器から成る冷凍サイクルにおいて
、凝縮器内の冷媒液を冷却液で飽和温度以下にすれば、
同じ所要動力において、冷凍能力を増加させる事は周知
である。
In a refrigeration cycle consisting of a compressor, condenser, and evaporator, if the refrigerant liquid in the condenser is brought below the saturation temperature with cooling liquid,
It is well known that refrigeration capacity can be increased for the same power requirement.

従来の装置ではこの適冷を冷却水により行なっていた。In conventional equipment, this appropriate cooling was performed using cooling water.

なお、この値の装置として関連するものには例えば実開
昭47−16056号が挙げられる。
A related device having this value is, for example, Utility Model Application No. 16056/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は排熱の有効利用の点について配慮がされ
ていなかった。
The above-mentioned conventional technology did not give consideration to the effective use of waste heat.

本発明の目的は冷凍機の排熱を有効に利用して、同じ所
要動力にて、冷凍能力を増加させ、省エネルギーを図る
ヒートポンプ熱回収装置を提供することにある。
An object of the present invention is to provide a heat pump heat recovery device that effectively utilizes the exhaust heat of a refrigerator to increase the refrigeration capacity and save energy with the same required power.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために排熱を回収して利用するヒー
トポンプ熱回収装置において、圧縮機。
A compressor in a heat pump heat recovery device that recovers and uses waste heat to achieve the above purpose.

凝縮器及び蒸発器からなる冷凍機の前記圧縮機の吐出ガ
ス配管に補助熱交換器を設け、前記凝縮器の冷媒液出口
配管に過冷却器を設け、前記補助熱交換器及び過冷却器
を水配管で接続したものである。
An auxiliary heat exchanger is provided in the discharge gas piping of the compressor of the refrigerator consisting of a condenser and an evaporator, a supercooler is provided in the refrigerant liquid outlet pipe of the condenser, and the auxiliary heat exchanger and the supercooler are provided. It is connected by water piping.

また、本発明は上記日記を達成するために、吸収式冷凍
機の前記凝縮器の冷媒液出口配管に過冷却器を設け、前
記再生器の蒸気又はガスの排出口に補助熱交換器を設け
、過冷却器及び補助熱交換器を水配管で接続したもので
ある。
Furthermore, in order to achieve the above-mentioned requirements, the present invention provides a supercooler in the refrigerant liquid outlet pipe of the condenser of the absorption chiller, and an auxiliary heat exchanger in the steam or gas outlet of the regenerator. , a supercooler and an auxiliary heat exchanger are connected by water piping.

〔作用〕[Effect]

補助熱交換器により吐出ガスのスーパーヒート熱を取り
出し、この熱により熱回収装置内の蓄熱媒体を濃縮する
。次に熱回収装置内の濃縮された媒体を希釈することに
よって得られる冷却効果を利用して、過冷却器での熱を
熱回収装置に放熱する。この過冷却器と熱回収装置を使
用した運転の際に同し所要動力にて、冷凍能力の増加が
可能になる。
The superheat heat of the discharged gas is extracted by the auxiliary heat exchanger, and the heat storage medium in the heat recovery device is condensed using this heat. Next, the heat in the supercooler is radiated to the heat recovery device using the cooling effect obtained by diluting the concentrated medium in the heat recovery device. When operating using this supercooler and heat recovery device, the refrigeration capacity can be increased with the same required power.

また、補助熱交換器により吸収式冷凍機の回収器の蒸気
又はガスの排熱を取り出し、この熱により熱回収装置内
の蓄熱媒体を濃縮する。次に熱回収装置内の濃縮された
媒体を希釈することによって得られる冷却効果を利用し
て、本体冷凍機から取り出した過冷却器での熱を熱回収
装置に放熱する。この過冷却器と熱回収装置を使用した
運転の際に同じ所要動力にて、冷凍能力の増加が可能に
なる。
In addition, the auxiliary heat exchanger extracts waste heat of steam or gas from the recovery device of the absorption chiller, and uses this heat to condense the heat storage medium in the heat recovery device. Next, by utilizing the cooling effect obtained by diluting the concentrated medium in the heat recovery device, the heat taken out from the main refrigerator in the supercooler is radiated to the heat recovery device. When operating using this supercooler and heat recovery device, it is possible to increase the refrigeration capacity with the same required power.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

最初に本装置の構成について説明する。本体の冷凍機は
圧縮機1と、その吐出配管に接続した補助熱交換器4と
、凝縮器2と、凝縮器2の冷媒液出口配管に接続した過
冷却器5と、膨張オリフィス6と、それに接続した蒸発
器3と、これと圧縮機1を接続した配管より成っている
。熱回収装置7は、再生器7a、7Q縮器7b、蒸発器
7c、吸収器7dより成り、それらに接続配管と冷媒ポ
ンプ8、冷凍ポンプ10.媒体ポンプ9.媒体ポンプ1
1と、切かえ用の弁12.弁13.弁14゜弁15.弁
16を設けである。本体の冷凍機と熱回収装置7は配管
で接続してあり、これに水ポンプ17、水ポンプ18を
設けである。
First, the configuration of this device will be explained. The main body refrigerator includes a compressor 1, an auxiliary heat exchanger 4 connected to its discharge pipe, a condenser 2, a subcooler 5 connected to the refrigerant liquid outlet pipe of the condenser 2, and an expansion orifice 6. It consists of an evaporator 3 connected to it, and piping connecting it to a compressor 1. The heat recovery device 7 consists of a regenerator 7a, a 7Q condenser 7b, an evaporator 7c, an absorber 7d, and connecting pipes, a refrigerant pump 8, a freezing pump 10. Media pump9. Media pump 1
1 and a switching valve 12. Valve 13. Valve 14° Valve 15. A valve 16 is provided. The refrigerator of the main body and the heat recovery device 7 are connected by piping, and a water pump 17 and a water pump 18 are provided to this.

次に、動作について説明する。まず熱回収運転について
説明する。本体の冷凍機の吐出冷媒ガスのスーパーヒー
ト熱により、補助熱交換器4にて、伝熱管内を流れる水
を加熱する。この水は熱間収装[7の再生器7aの伝熱
管内に流入し、再生器7a内の媒体と熱交換し冷却され
、再び補助熱交換器4へ戻る。再生器7aでは、熱出力
運転の時に希釈されて吸収器7dにたまった希媒体を媒
体ポンプ11により、再生器7aの伝熱管外へ散布する
。この希媒体は、伝熱管内を流れる水と熱交換し加熱さ
れて、媒体中の冷媒が蒸発して、媒体の濃度が上がる。
Next, the operation will be explained. First, heat recovery operation will be explained. The superheat heat of the refrigerant gas discharged from the main body refrigerator heats the water flowing inside the heat transfer tube in the auxiliary heat exchanger 4. This water flows into the heat transfer tube of the regenerator 7a of the hot storage unit [7], exchanges heat with the medium in the regenerator 7a, is cooled, and returns to the auxiliary heat exchanger 4 again. In the regenerator 7a, the diluted rare medium accumulated in the absorber 7d during the thermal output operation is dispersed to the outside of the heat exchanger tubes of the regenerator 7a by the medium pump 11. This rare medium exchanges heat with the water flowing inside the heat transfer tube and is heated, the refrigerant in the medium evaporates, and the concentration of the medium increases.

これを再び媒体ポンプ9にて再生器7aの伝熱管へ散布
して濃度を上げる。こうして希媒体が濃媒体になる。
This is again sprayed onto the heat transfer tubes of the regenerator 7a using the medium pump 9 to increase the concentration. In this way, a dilute medium becomes a concentrated medium.

この蒸発した冷媒は、凝縮器7bで伝熱管内を流れる中
水等と熱交換して放熱し、凝縮して冷媒液になる。こう
して熱回収運転を行なう0次に熱出力運転について説明
する。本体の冷凍機の過冷却器5で凝縮器2の出口の冷
媒液を適冷した水は。
The evaporated refrigerant exchanges heat with gray water or the like flowing in the heat transfer tube in the condenser 7b, radiates heat, and is condensed to become a refrigerant liquid. The zero-order heat output operation in which the heat recovery operation is performed in this manner will be explained. The water obtained by appropriately cooling the refrigerant liquid at the outlet of the condenser 2 in the supercooler 5 of the refrigerator of the main body.

加熱され、接続配管を通って、熱回収装置7の蒸発器7
Cの伝熱管内へ流入する。この水は蒸発器7c内の冷媒
と熱交換し、冷却され再び過冷却器5へ戻る。蒸発器7
Cでは、熱回収運転の時に凝縮器7bにたまった冷媒液
を冷媒ポンプ8により。
It is heated and passes through the connecting pipe to the evaporator 7 of the heat recovery device 7.
C flows into the heat exchanger tube. This water exchanges heat with the refrigerant in the evaporator 7c, is cooled, and returns to the supercooler 5 again. Evaporator 7
In C, the refrigerant liquid accumulated in the condenser 7b during the heat recovery operation is removed by the refrigerant pump 8.

蒸発器7cの伝熱管外へ散布する。冷媒液は伝熱管内を
流れる水と熱交換し、加熱されて蒸発する。
Spread outside the heat transfer tube of the evaporator 7c. The refrigerant liquid exchanges heat with the water flowing inside the heat transfer tube, is heated, and evaporates.

蒸発しきれずに底に落下した冷媒液は、再び冷媒ポンプ
10によ、り伝熱管へ散布する。この蒸発した冷媒は吸
収器7dへ流入する。吸収器7dでは、熱回収運転の時
に濃縮されて再生器7aにたまった濃媒体を、媒体ポン
プ9により吸収器7dの伝熱管外に散布する。この濃媒
体に、蒸発器7Cに蒸発した冷媒が吸収されると共に、
吸収器7dの伝熱管内を流れる中水等と熱交換し放熱し
て、濃度が下がる。この媒体を、くり返し媒体ポンプ1
1により吸収器7dの伝熱管へ散布して、濃媒体を希媒
体にする。こうして熱出力運転を行なう。
The refrigerant liquid that has not been completely evaporated and has fallen to the bottom is again sprayed onto the heat transfer tubes by the refrigerant pump 10. This evaporated refrigerant flows into the absorber 7d. In the absorber 7d, the medium pump 9 sprays the concentrated medium that is concentrated during the heat recovery operation and accumulated in the regenerator 7a outside the heat transfer tube of the absorber 7d. The refrigerant evaporated in the evaporator 7C is absorbed into this concentrated medium, and
It exchanges heat with gray water flowing in the heat exchanger tube of the absorber 7d, radiates heat, and the concentration decreases. This medium is repeatedly pumped into the medium pump 1.
1 to the heat exchanger tube of the absorber 7d to turn the concentrated medium into a diluted medium. In this way, thermal output operation is performed.

まず熱回収運転により、本体の冷凍機の排熱を利用し、
熱回収装置の媒体の濃縮を行なって熱出力運転の準備を
する0次に熱出力運転により、熱回収装置の媒体の希釈
を行なって、本体の冷凍機の過冷却を行なう。過冷却を
行なえば周知のように、同じ所要動力でも、冷凍容量は
増加する。
First, the heat recovery operation utilizes the exhaust heat of the main unit's refrigerator,
The medium of the heat recovery device is diluted by the zero-order heat output operation in which the medium of the heat recovery device is concentrated to prepare for the heat output operation, and the main body refrigerator is supercooled. As is well known, if supercooling is performed, the refrigeration capacity will increase even with the same required power.

例えば夜間に熱回収運転を行ない、昼間のピーク負荷時
に熱出力運転を行なって、排熱を有効に利用できる。こ
れを図によって説明する。
For example, exhaust heat can be used effectively by performing heat recovery operation at night and performing heat output operation during peak load during the day. This will be explained using a diagram.

例えば、第4図の様な負荷パターンのビルの冷房を行な
うとする。熱回収装置の冷凍機の場合はピーク負荷でも
オーバーロードせぬ様に、210(USRT)の容量の
冷凍機を選定する。この所要動力は260(KW)であ
る、熱回収装置を付けた冷凍機の場合は、熱回収運転時
は170(USRT)で212(KW)、熱出力運転時
は200(USRT)で212(KWIである。一方負
荷は第4図の様に、昼間は170 (USRT)X4 
(時間) +200(USRT)X6 [時間)=18
80 (USRT・h)、夜間は1.70(USRT]
X14(時間〕=2380(USRT−h)であり、1
日の合計は1880+2380=4260 [USRT
−h/日]である。冷凍機を全負荷で運転したとすると
、ビルの負荷率を55%として、熱回収装置なしの冷凍
機は年間で、(4260(USRT−h/日〕X365
  (日)Xo、55)/210  (USRTI=4
072 C時間〕の運転時間になる。一方熱間収装百付
冷凍機は、1日にピーク負荷時の200[USRT]に
熱出力運転を6〔時間〕、通常負荷時の170 (US
RT)に熱回収運転を14+4=18 [時間1行なう
とすると1日平均では(170(USRT)X18 (
時間)+200(USRT)X6 (時間))/24[
時間]=177.5(USRT)になる。年間運転時間
は。
For example, suppose that a building with a load pattern as shown in FIG. 4 is to be cooled. In the case of a refrigerator for the heat recovery device, a refrigerator with a capacity of 210 (USRT) is selected so as not to overload even at peak loads. The required power is 260 (KW), in the case of a refrigerator equipped with a heat recovery device, it is 170 (USRT) and 212 (KW) during heat recovery operation, and 200 (USRT) and 212 (KW) during heat output operation. KWI.On the other hand, as shown in Figure 4, the load is 170 (USRT) x 4 during the daytime.
(Time) +200 (USRT) x 6 [Time] = 18
80 (USRT/h), 1.70 (USRT) at night
X14 (time) = 2380 (USRT-h), 1
The total for the day is 1880+2380=4260 [USRT
-h/day]. Assuming that the chiller is operated at full load and the building load factor is 55%, the chiller without heat recovery device will produce (4260 (USRT-h/day) x 365
(Sun) Xo, 55)/210 (USRTI=4
The driving time will be 072 C hours]. On the other hand, a hot storage refrigerator has a heat output operation of 200 [USRT] at peak load for 6 [hours] per day, and 170 [USRT] at normal load.
RT) and heat recovery operation is 14+4=18 [If it is performed once per hour, the daily average is (170 (USRT) x 18 (
time) + 200 (USRT) x 6 (hours))/24[
time] = 177.5 (USRT). Annual operating hours.

(4260(USRT−h/日3 x365  ([E
I)Xo、55/177.5[USRT]=4818[
時間〕である0年間の消費電力は、熱回収装置なしの場
合は、4072 (時間)X260 (KW)=105
8720 (KW−h) 、熱回収装置付の場合は48
18 (時間) X 212 (KWI =10214
16(KW−h)となる0両者の差は1058720−
1021416=37304(K W −h )となり
、熱回収装置を付けると年間で37304 (Kw−h
)の省エネルギーになる。
(4260 (USRT-h/day 3 x 365 ([E
I) Xo, 55/177.5 [USRT] = 4818 [
If there is no heat recovery device, the power consumption for 0 years is 4072 (hours) x 260 (KW) = 105
8720 (KW-h), 48 if equipped with heat recovery device
18 (hours) x 212 (KWI =10214
The difference between 0 and 16 (KW-h) is 1058720-
1021416 = 37304 (Kw - h ), and if a heat recovery device is attached, the annual cost will be 37304 (Kw - h
) saves energy.

次に、他の実施例を第2図により説明する。Next, another embodiment will be explained with reference to FIG.

最初に本装置の構成について説明する0本体の冷凍機は
圧縮機1と、その吐出口管に接続した凝縮器2と、凝縮
器2の冷媒液出口配管に接続した過冷却器5と、膨張オ
リフィス6と、それに接続した蒸発器3と、これと圧縮
機1を接続した配管より成っている。熱回収装置7は、
再生器7a。
First, we will explain the configuration of this device.The main body of the refrigerator consists of a compressor 1, a condenser 2 connected to its discharge outlet pipe, a supercooler 5 connected to the refrigerant liquid outlet pipe of the condenser 2, and an expansion It consists of an orifice 6, an evaporator 3 connected to it, and piping connecting this and a compressor 1. The heat recovery device 7 is
Regenerator 7a.

凝縮器7b、蒸発器7c、吸収器7dより成り、それら
に接続配管と冷媒ポンプ8.冷媒ポンプ10、媒体ポン
プ9.媒体ポンプ11と、切かえ用の弁12.弁13.
弁14.弁15.弁16を設けである。本体の冷凍機と
熱回収装置7は水配管で接続してあり、これに水ポンプ
18を設けである。
It consists of a condenser 7b, an evaporator 7c, and an absorber 7d, with connecting pipes and a refrigerant pump 8. Refrigerant pump 10, medium pump 9. Medium pump 11 and switching valve 12. Valve 13.
Valve 14. Valve 15. A valve 16 is provided. The refrigerator of the main body and the heat recovery device 7 are connected by water piping, and a water pump 18 is provided to this.

次に動作について説明する。まず熱回収運転について説
明する。第1図の実施例では、補助熱交換器4により、
圧縮機1の吐出ガスのスーパーヒート熱を利用していた
が、本例では凝縮器2の排熱を利用して、この冷却水を
熱回収装置7の再生器7aへ送り、熱回収運転を行なう
。その他は第1図の実施例と同じである。次に熱出力運
転については第1図の実施例と同じなので説明を省略す
る。
Next, the operation will be explained. First, heat recovery operation will be explained. In the embodiment of FIG. 1, the auxiliary heat exchanger 4 provides
The superheat heat of the discharged gas of the compressor 1 was used, but in this example, the exhaust heat of the condenser 2 is used to send this cooling water to the regenerator 7a of the heat recovery device 7 to perform heat recovery operation. Let's do it. The rest is the same as the embodiment shown in FIG. Next, the thermal output operation is the same as that of the embodiment shown in FIG. 1, so the explanation will be omitted.

第1図実施例と同じ様に、まず熱回収運転を行ない、次
に熱力運転を行なう。
As in the embodiment shown in FIG. 1, first a heat recovery operation is performed, and then a thermal power operation is performed.

また更に他の実施例を第3図により説明する。Still another embodiment will be explained with reference to FIG.

最初に本装置′の構成について説明する。第15図の実
施例の補助熱交換器4を、吸収式冷凍機19の再生器の
蒸気又はガスの排出口に取り付けた。
First, the configuration of this device' will be explained. The auxiliary heat exchanger 4 of the embodiment shown in FIG. 15 was attached to the steam or gas outlet of the regenerator of the absorption refrigerator 19.

これ以外は第1図の実施例と同じである。Other than this, the embodiment is the same as the embodiment shown in FIG.

次に動作について説明する。まず熱回収運転について説
明する。第1図の実施例では、補助熱交換器4により、
圧縮8!1の吐呂ガスのスーピーヒート熱を利用してい
たが、本例では、吸収式冷凍機19の再生器の蒸気又は
ガスの排熱を利用して、補助熱交換器4にて、この排熱
により水を加熱して、熱回収装置7の再生器7aへ送り
、熱回収運転を行なう。その他は第1図の実施例と同じ
である0次に熱出力運転については第1図の実施例と同
じなので、説明を省略する。
Next, the operation will be explained. First, heat recovery operation will be explained. In the embodiment of FIG. 1, the auxiliary heat exchanger 4 provides
The heat from the compressed 8!1 steam gas was used, but in this example, the waste heat of the steam or gas from the regenerator of the absorption chiller 19 is used to generate heat in the auxiliary heat exchanger 4. This waste heat heats water and sends it to the regenerator 7a of the heat recovery device 7 to perform heat recovery operation. The rest is the same as the embodiment shown in FIG. 1. Since the zero-order heat output operation is the same as the embodiment shown in FIG. 1, the explanation thereof will be omitted.

第1図の実施例と同じ様に、まず熱回収運転を行ない5
次に熱出力運転を行なう。
As in the example shown in Fig. 1, heat recovery operation is first performed.
Next, perform thermal output operation.

以上の3つの実施例で述べた本体の冷凍機としては、遠
心圧縮機式冷凍機、スクリュー圧縮機式冷凍機、往復動
圧縮機式冷凍機、スクロール圧縮機式冷凍機等がある。
The main body refrigerators described in the above three embodiments include centrifugal compressor refrigerators, screw compressor refrigerators, reciprocating compressor refrigerators, scroll compressor refrigerators, and the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱回収装置のない冷凍機と比べると、
同じ所要動力でも大きい冷凍容量を得ることができるの
で、省エネルギーの効果がある。
According to the present invention, compared to a refrigerator without a heat recovery device,
Since a large refrigeration capacity can be obtained with the same required power, there is an energy saving effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、冷凍機に補助熱交換器、過冷却器を設けて、
熱回収装置を組合わせた実施例の系統図、第2図は冷凍
機に過冷却器を設けて、熱回収装置を組合わせた他の実
施例の系統図、第3図は冷凍機に過冷却器を設け、吸収
式冷凍機に補助熱交換器を設けて、熱回収装置を組合わ
せた更に他の実施例の系統図、第4図は負荷パターンの
一例を示す図である。 1・・・圧縮機、2・・・凝縮器、3・・・蒸発器、4
・・・補助熱交換器、5・・・過冷却器、6・・膨張オ
リフィス、7・・・熱回収装置、7a・・・再生器、7
b・・・凝縮器、7c・・・蒸発器、7d・・・吸収器
、8・・・冷媒ポンプ。 9・・・媒体ポンプ、10・・・冷媒ポンプ、11・・
・媒体ポンプ、12・・・弁、13・・・弁、14・・
・弁、15・・・弁、16・・・弁、17・・・水ポン
プ、18・・・水ポンプ、19・・・吸収式冷凍機。
Figure 1 shows a refrigerator equipped with an auxiliary heat exchanger and a subcooler,
A system diagram of an embodiment in which a heat recovery device is combined; Figure 2 is a system diagram of another embodiment in which a refrigerator is equipped with a supercooler and a heat recovery device is combined; FIG. 4 is a system diagram of still another embodiment in which a cooler is provided, an auxiliary heat exchanger is provided in the absorption refrigerator, and a heat recovery device is combined. FIG. 4 is a diagram showing an example of a load pattern. 1... Compressor, 2... Condenser, 3... Evaporator, 4
... Auxiliary heat exchanger, 5... Supercooler, 6... Expansion orifice, 7... Heat recovery device, 7a... Regenerator, 7
b... Condenser, 7c... Evaporator, 7d... Absorber, 8... Refrigerant pump. 9... Medium pump, 10... Refrigerant pump, 11...
・Medium pump, 12...valve, 13...valve, 14...
・Valve, 15...Valve, 16...Valve, 17...Water pump, 18...Water pump, 19...Absorption refrigerator.

Claims (1)

【特許請求の範囲】 1、排熱を回収して利用するヒートポンプ熱回収装置に
おいて、圧縮機、凝縮器及び蒸発器からなる冷凍機の前
記圧縮機の吐出ガス配管に補助熱交換器を設け、前記凝
縮器の冷媒液出口配管に過冷却器を設け、前記補助熱交
換器及び過冷却器を水配管で接続したことを特徴とする
ヒート熱回収装置。 2、凝縮器の熱によつて媒体を濃縮することを特徴とす
る請求項1記載のヒートポンプ熱回収装置。 3、排熱を回収して利用するヒートポンプ熱回収装置に
おいて、蒸気器、吸収器、再生器及び凝縮器から吸収式
冷凍機の前記凝縮器の冷媒液出口配管に過冷却器を設け
、前記再生器の蒸気又はガスの排出口に補助熱交換器を
設け、過冷却器及び補助熱交換器を水配管で接続したこ
とを特徴とするヒートポンプ熱回収装置。
[Scope of Claims] 1. In a heat pump heat recovery device that recovers and utilizes exhaust heat, an auxiliary heat exchanger is provided in the discharge gas piping of the compressor of a refrigerator consisting of a compressor, a condenser, and an evaporator, A heat recovery device characterized in that a supercooler is provided in the refrigerant liquid outlet pipe of the condenser, and the auxiliary heat exchanger and the supercooler are connected by a water pipe. 2. The heat pump heat recovery device according to claim 1, wherein the medium is concentrated by the heat of the condenser. 3. In a heat pump heat recovery device that recovers and utilizes exhaust heat, a supercooler is provided from the steamer, absorber, regenerator, and condenser to the refrigerant liquid outlet piping of the condenser of the absorption chiller, 1. A heat pump heat recovery device, characterized in that an auxiliary heat exchanger is provided at the steam or gas outlet of the device, and the supercooler and the auxiliary heat exchanger are connected by water piping.
JP1132633A 1989-05-29 1989-05-29 Heat pump heat recovery device Expired - Lifetime JP2685583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1132633A JP2685583B2 (en) 1989-05-29 1989-05-29 Heat pump heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1132633A JP2685583B2 (en) 1989-05-29 1989-05-29 Heat pump heat recovery device

Publications (2)

Publication Number Publication Date
JPH031056A true JPH031056A (en) 1991-01-07
JP2685583B2 JP2685583B2 (en) 1997-12-03

Family

ID=15085893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1132633A Expired - Lifetime JP2685583B2 (en) 1989-05-29 1989-05-29 Heat pump heat recovery device

Country Status (1)

Country Link
JP (1) JP2685583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809023B1 (en) * 2007-01-04 2008-03-03 박상술 A heat exchanger for a public bath
US9500395B2 (en) 2011-07-05 2016-11-22 Carrier Corporation Refrigeration circuit, gas-liquid separator and heating and cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809023B1 (en) * 2007-01-04 2008-03-03 박상술 A heat exchanger for a public bath
US9500395B2 (en) 2011-07-05 2016-11-22 Carrier Corporation Refrigeration circuit, gas-liquid separator and heating and cooling system

Also Published As

Publication number Publication date
JP2685583B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
JPH0926226A (en) Refrigeration apparatus
CN103615824A (en) Method and device for obtaining cooling capacities of multiple temperature zones based on expansion work recycling drive
JPH0953864A (en) Engine type cooling device
JPH031056A (en) Heat pump type heat recovery apparatus
CN212274330U (en) Defrosting device adopting secondary condensation of refrigerant
CN114234312A (en) Energy storage method of compression-type and absorption-type integrated air conditioner and energy storage air conditioner
CN2298457Y (en) Cold storage air conditioner using refrigerant supercooling internal melting ice releasing cold way
CN108981293B (en) Solar absorption refrigeration freeze dryer system for combined building and operation method
JP2003121025A (en) Heating-cooling combination appliance
JP2678211B2 (en) Heat storage type cold / heat generator
CN111023227B (en) Double-stage compression heat source tower heat pump system suitable for cold areas
CN217110104U (en) Vapor compression type refrigeration heat pump circulating system with surrounding type heat regenerator
CN219264605U (en) Coupling heat pump double-circulation energy-saving system and three-circulation energy-saving system without condensing heat emission
CN215002372U (en) Compressor condensing unit of integrative many materials phase transition heat transfer of dual system
JP2004028375A (en) Refrigerating equipment combined with absorption type and compression type and operating method thereof
KR200339347Y1 (en) Hybrid heat pump using air heat and water heat
CN202032780U (en) Hydrojet reinforcement condensation refrigeration system
JPS5865Y2 (en) Refrigeration equipment
JPH0370945A (en) Heat pump system
JPH0921575A (en) Refrigerator
JP2004028374A (en) Refrigerating equipment combined with absorption type and compression type
JP2751695B2 (en) Heat storage type cooling device
JPH03241271A (en) Cool heat generating equipment and operation of the same
JP2561701B2 (en) Air source heat pump device
JPS6231824Y2 (en)