JPH03241271A - Cool heat generating equipment and operation of the same - Google Patents

Cool heat generating equipment and operation of the same

Info

Publication number
JPH03241271A
JPH03241271A JP3233990A JP3233990A JPH03241271A JP H03241271 A JPH03241271 A JP H03241271A JP 3233990 A JP3233990 A JP 3233990A JP 3233990 A JP3233990 A JP 3233990A JP H03241271 A JPH03241271 A JP H03241271A
Authority
JP
Japan
Prior art keywords
heat
heat storage
refrigerant
concentration difference
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3233990A
Other languages
Japanese (ja)
Inventor
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Sankichi Takahashi
燦吉 高橋
Junichi Kaneko
淳一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3233990A priority Critical patent/JPH03241271A/en
Publication of JPH03241271A publication Critical patent/JPH03241271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To improve cooling capacity and save energy by providing a compressive freezing system in which an overcooler is arranged on the rear stage of a condenser in a refrigerant circulation passage. CONSTITUTION:A compressive freezing system 10 has a refrigerant circulation passage 20 in which a compressor 12 driven by an electric motor 11, a condenser 14 which exchanges heat between cooling water cooled by atmosphere in a cooling tower 25 arranged on a roof of a building and supplied through a pump 26 and pipe passage 21 and refrigerant, a liquid receiving tank 16, an expansion valve 17, a vaporizer 18 which exchanges heat between cool water to be supplied to the place to be cooled and refrigerant, and an accumulator 19 are arranged in this order in the refrigerant flowing direction. Further, an overcooler 15 which cools or overcools the refrigerant having been cooled by the condenser 14 is arranged on the rear stage of the condenser 14 in the refrigerant circulation passage 20. By this, the cooling capacity can be improved and energy can be saved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主要部に圧縮式冷凍系が用いられ、特に比較
的大なる建物あるいは地域を冷房対象とする冷熱発生設
備及びその運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cold heat generating facility in which a compression type refrigeration system is used as the main part, and in particular, to cool a relatively large building or area, and a method of operating the same. .

〔従来の技術〕[Conventional technology]

冷熱発生設備、特に、ホテル、オフィスビル、病院、工
場、団地等の比較的大きな建物あるいは地域を冷房対象
とした冷熱発生設備は、その主要部に圧縮式冷凍装置が
用いられることが多い。このような冷熱発生設備に用い
られる圧縮式冷凍装置は、周知のように、冷媒の圧縮。
BACKGROUND ART Cold heat generating equipment, particularly cold heat generating equipment designed to cool relatively large buildings or areas such as hotels, office buildings, hospitals, factories, and housing complexes, often uses a compression refrigeration system as the main part thereof. As is well known, compression refrigeration equipment used in such cold heat generation equipment compresses refrigerant.

凝縮、膨張、及び蒸発の各工程からなる冷凍サイクルの
うちの蒸発工程における冷媒の蒸発潜熱を利用して冷房
先に供給されるべき冷水を冷却することを基本構成とし
ている。
The basic configuration is to cool the cold water to be supplied to the cooling destination by using the latent heat of evaporation of the refrigerant in the evaporation step of the refrigeration cycle consisting of the steps of condensation, expansion, and evaporation.

また、このような基本構成を有する圧縮式冷凍装置に温
水取り出し機能を付加したものとして、例えば第5図に
示される如くのものが知られている。この第5図に示さ
れる圧縮式冷凍装置は、冷媒循環通路110に、電動モ
ータ101により駆動される圧縮機102.建物の屋上
等に配された冷水塔125内で大気により冷却されてポ
ンプ126及び管路121を通じて供給される冷却水と
冷媒循環通路内を流れる冷媒との熱交換を行う凝縮器1
04.受液槽106、膨張弁107.冷房先に供給され
るべき冷水と循環冷媒との熱交換を行う蒸発器108.
アキュームレータ109が配設されるとともに、冷媒循
環通路110における凝縮器104の前段に温水取出用
熱交換器103 (凝縮器104と合わせてダブルバン
ドル型凝縮器と称されることもある)が配設されており
、この温水取出用熱交換器103内で外部から管路12
3を通して供給される常温の冷水もしくは温水と圧縮機
102で圧縮されて吐出された高温高圧の冷媒との熱交
換が行われ、それによって管路124から給湯設備等に
おいて用いられるのに適した50〜60°C前後の温水
が得られるようにされる。
Further, as a compression type refrigeration apparatus having such a basic configuration with a hot water extraction function added, for example, the one shown in FIG. 5 is known. The compression type refrigeration system shown in FIG. 5 has a compressor 102. A condenser 1 performs heat exchange between cooling water cooled by the atmosphere in a cooling tower 125 disposed on the roof of a building, and supplied through a pump 126 and a pipe 121, and a refrigerant flowing in a refrigerant circulation passage.
04. Liquid receiving tank 106, expansion valve 107. An evaporator 108 that performs heat exchange between the chilled water to be supplied to the cooling destination and the circulating refrigerant.
An accumulator 109 is provided, and a hot water extraction heat exchanger 103 (sometimes referred to as a double bundle condenser together with the condenser 104) is provided upstream of the condenser 104 in the refrigerant circulation passage 110. In this hot water extraction heat exchanger 103, the pipe line 12 is connected from the outside.
3, and the high temperature and high pressure refrigerant compressed and discharged by the compressor 102, thereby making the water 50 suitable for use in hot water supply equipment etc. from the pipe 124. It is possible to obtain hot water around ~60°C.

[発明が解決しようとする課題] 一般に、冷熱発生設備は、それが使用される建物等にお
いて冷房負荷が最大となるときにおいても冷房能力に不
足をきたさないように設計される必要があるため、近年
における冷房需要の増加に伴い大型化が余儀なくされて
おり、その結果、設備費の高騰をきたしている。
[Problems to be Solved by the Invention] In general, cold heat generating equipment needs to be designed so that its cooling capacity does not run out even when the cooling load is at its maximum in the building etc. in which it is used. The increase in demand for air conditioners in recent years has forced them to become larger, resulting in a rise in equipment costs.

このような大型化に伴う設備費の高騰に対拠するための
一つの方策として、冷熱発生設備に蓄熱装置を組み込む
ことが考えられている。つまり、冷房負荷が突出して大
きくなるのは、通常夏期における昼間の4〜5時間だけ
であるから、かかる時間帯以外の期間、特に安価に電力
が得られる深夜に圧縮式冷凍装置等を使用して冷熱もし
くは温熱を蓄えておき、必要に応じてそれを取り出して
使用するようになすことにより、圧縮式冷凍装置を大型
化(大容量化)せずとも冷房負荷の増大に対拠すること
ができるのである。
Incorporating a heat storage device into cold heat generation equipment is being considered as one measure to counter the soaring equipment costs associated with such enlargement. In other words, since the cooling load is typically only particularly large during the 4-5 daytime hours in the summer, compression refrigeration equipment, etc., should not be used outside of these hours, especially late at night when electricity is available cheaply. By storing cold or hot heat in the refrigerator and extracting it for use when necessary, it is possible to cope with increased cooling loads without increasing the size (larger capacity) of the compression refrigeration equipment. It can be done.

しかしながら、従来の蓄熱装置が組み込まれた冷熱発生
設備では、主要部をなす圧縮式冷凍系自体は従前のもの
と基本的には変わらないため、冷房能力の向上及び省エ
ネルギー化が図られているとは言い難い。
However, in conventional cold heat generation equipment that incorporates heat storage devices, the compression refrigeration system itself, which is the main part, is basically the same as before, so improvements in cooling capacity and energy savings are expected. It's hard to say.

一方、本願の出願人は、冷熱発生設備の小型化及び省エ
ネルギー化を図ることを主目的として先に、例えば、特
開昭62−218773号公報に示される如く、圧縮式
冷凍装置と濃度差蓄熱装置とを巧妙に組み合わせた冷熱
発生設備を提案している。かかる冷熱発生設備は、概略
的に述べれば、圧縮式冷凍系で必要とされる凝縮器を濃
度差蓄熱系における蓄熱材加熱手段として用い、また、
蒸発器を濃度差蓄熱系における熱媒凝縮手段として用い
るようにされている。
On the other hand, the applicant of the present application has previously developed a compression type refrigeration system and a concentration differential heat storage system, as shown in Japanese Patent Application Laid-Open No. 62-218773, with the main purpose of downsizing and energy saving of cold heat generating equipment. We are proposing cooling and heat generating equipment that is cleverly combined with other equipment. Broadly speaking, such cold heat generation equipment uses a condenser required in a compression type refrigeration system as a heat storage material heating means in a concentration difference heat storage system, and
The evaporator is used as a heat medium condensing means in a concentration difference heat storage system.

そして、濃度差蓄熱系においては、吸収された熱媒を蒸
発させて蓄熱材から分離する蓄熱動作と熱媒を蒸発させ
て蓄熱材に吸収させる放熱動作とが行われ、その放熱動
作時における熱媒の蒸発潜熱によって降温された冷水を
冷房先に供給することを基本としている。また、冷房負
荷の増大によって冷房能力が不足する場合には、放熱動
作によって得られた冷水に圧縮式冷凍系で得られる冷水
を合流させて冷房先に供給するようにされている。
In a concentration difference heat storage system, a heat storage operation is performed in which the absorbed heat medium is evaporated and separated from the heat storage material, and a heat radiation operation is performed in which the heat medium is evaporated and absorbed into the heat storage material. The basic idea is to supply cold water whose temperature has been lowered by the latent heat of vaporization of the medium to the cooling destination. Further, when the cooling capacity is insufficient due to an increase in the cooling load, the cold water obtained by the heat dissipation operation is combined with the cold water obtained by the compression type refrigeration system, and the mixture is supplied to the cooling destination.

このように構成された冷熱発生設備にあっては、圧縮式
冷凍系の小型化及び設備の省エネルギー化がある程度は
図られる反面、圧縮式冷凍系と濃度差蓄熱系との組み合
わせ方が巧妙であるがゆえに設備の構成が複雑化するこ
とは避けられず、設備が高価なものとなってしまう虞が
ある。
In cold heat generation equipment configured in this way, although the compression type refrigeration system can be downsized and the equipment can save energy to some extent, the combination of the compression type refrigeration system and the concentration difference heat storage system is ingenious. Therefore, it is inevitable that the configuration of the equipment becomes complicated, and there is a risk that the equipment will become expensive.

本発明の目的は、圧縮式冷凍系の大型化を招来すること
なく冷房能力の向上及び省エネルギー化を図ることので
きる冷熱発生設備を提供することにある。
An object of the present invention is to provide cold heat generation equipment that can improve cooling capacity and save energy without increasing the size of a compression refrigeration system.

また、本発明の他の目的は、圧縮式冷凍系と濃度差蓄熱
系とを効果的に組み合わせて、設備の大型化及び複雑化
を招くことなく、設備費及び運転費の低減と設備全体の
省エネルギー化を図ることのできる冷熱発生設備を提供
すること、及び該設備を効率良く運転する方法を提供す
ることにある。
Another object of the present invention is to effectively combine a compression type refrigeration system and a concentration differential heat storage system to reduce equipment costs and operating costs and improve overall equipment efficiency without increasing the size and complexity of the equipment. It is an object of the present invention to provide cold/heat generating equipment that can save energy, and to provide a method for efficiently operating the equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成すべく、本願の発明者等は鋭意研究し
たところ、以下のような究明結果を得た。
In order to achieve the above object, the inventors of the present application conducted extensive research and obtained the following findings.

即ち、圧縮式冷凍系にあっては、前述のように、草発工
程における冷媒の蒸発潜熱を利用して冷房先に供給され
るべき冷水を冷却するようにされる。従って、何らかの
方策で冷媒の蒸発潜熱を増大させることができれば、冷
房能力を増大させることが可能となる。蒸発潜熱を増大
させるには、まず、冷媒循環量を増大させることが考え
られる。しかしながら、冷媒循環量を増大させる方策は
、従来から採られているもので、圧縮機の冷媒吐出量を
増大することであり、必然的に圧縮機の大型化を招来す
ることになり、設備費及び運転費の高騰をきたしてしま
う結果となる。
That is, in the compression type refrigeration system, as described above, the latent heat of vaporization of the refrigerant in the weeding process is used to cool the cold water to be supplied to the cooling destination. Therefore, if the latent heat of vaporization of the refrigerant can be increased by some means, the cooling capacity can be increased. One possible way to increase the latent heat of vaporization is to increase the amount of refrigerant circulation. However, the conventional measure to increase the amount of refrigerant circulation is to increase the amount of refrigerant discharged from the compressor, which inevitably leads to an increase in the size of the compressor and equipment costs. This results in an increase in operating costs.

そこで、視点をかえて圧縮式冷凍系における冷媒循環通
路を流れる冷媒の状態変化と温度との関係に着目したと
ころ、現状の圧縮式冷凍系では、厳密には冷媒が出し得
る飽和液−飽和蒸気間の潜熱を充分に利用せず、比較的
乾き度の高い湿り蒸気−飽和蒸気間の潜熱変化を利用し
ているに過ぎないということを見出した。即ち、従来の
圧縮式冷凍系においては、圧縮機で圧縮されて高温高圧
となった冷媒は、凝縮器で冷却されるが、当該凝縮器で
用いられる冷却水は通常冷水塔で大気により冷却されて
得られるものであり、その温度は夏期では30°C前後
とされ、そのため凝縮器において冷媒は40°C程度(
高圧状態における飽和液)までしか降温されない。
Therefore, we changed our perspective and focused on the relationship between the change in the state of the refrigerant flowing through the refrigerant circulation passage in a compression refrigeration system and the temperature, and found that in the current compression refrigeration system, strictly speaking, the refrigerant can produce saturated liquid - saturated vapor. It was discovered that the latent heat between steam and saturated steam is not fully utilized, but rather the change in latent heat between relatively dry wet steam and saturated steam is utilized. In other words, in conventional compression refrigeration systems, the refrigerant that is compressed to high temperature and pressure by a compressor is cooled by a condenser, but the cooling water used in the condenser is usually cooled by the atmosphere in a cooling tower. The temperature of the refrigerant is said to be around 30°C in summer, so the temperature of the refrigerant in the condenser is around 40°C (
The temperature is lowered only to saturated liquid (at high pressure).

この冷媒の飽和液を断熱膨張(等エンタルピー変化)さ
せて降圧すると当該圧力における湿り蒸気となるが、か
かる圧力下では比較的乾き度の高い(25%前後の)湿
り蒸気となる。そして、冷房能力に相当する冷媒の蒸発
潜熱量はその湿り蒸気から飽和蒸気までのエンタルピー
変化量であるから、従来の圧縮式冷凍系にあっては、冷
媒が出し得る蒸発潜熱を充分に使っていないことになる
When this saturated liquid of refrigerant is subjected to adiabatic expansion (isenthalpic change) and the pressure is lowered, it becomes wet steam at that pressure, but under such pressure, it becomes wet steam with a relatively high degree of dryness (about 25%). The amount of latent heat of vaporization of a refrigerant, which corresponds to its cooling capacity, is the amount of change in enthalpy from wet vapor to saturated vapor. There will be no.

本発明に係る冷熱発生設備は、上述の如くの究明結果及
びそれに基づく考察に立脚してなされたもので、具体的
には、圧縮機、凝縮器、膨張弁、及び蒸発器が順次配設
された冷媒循環通路を有し、上記凝縮器が大気により冷
却されて得られる冷却水を利用して冷媒循環通路内の冷
媒を冷却するようにされるとともに、上記冷媒循環通路
における上記凝縮器の後段に上記冷媒をさらに冷却する
過冷却器が配設されてなる圧縮式冷凍系を備えて構成さ
れる。
The cold heat generation equipment according to the present invention was developed based on the above-mentioned research results and considerations based thereon, and specifically, a compressor, a condenser, an expansion valve, and an evaporator are sequentially arranged. The refrigerant circulation passage is configured to cool the refrigerant in the refrigerant circulation passage using cooling water obtained when the condenser is cooled by the atmosphere, and the refrigerant in the refrigerant circulation passage is disposed downstream of the condenser in the refrigerant circulation passage. The refrigerating system is equipped with a compression type refrigeration system in which a supercooler is provided to further cool the refrigerant.

また、本発明に係る他の冷熱発生設備は、請求項1記載
の圧縮式冷凍系に加えて、吸収された熱媒を蒸発させて
蓄熱材から分離する蓄熱動作と熱媒を蒸発させて蓄熱材
に吸収させる放熱動作とを行う濃度差蓄熱系が備えられ
、上記圧縮式冷凍系に配設された過冷却器における冷媒
の冷却に上記濃度差蓄熱系の放熱動作時における熱媒の
蒸発潜熱によって降温された冷却水を利用するようにさ
れる。
In addition to the compression type refrigeration system according to claim 1, another cold heat generation equipment according to the present invention includes a heat storage operation in which the absorbed heat medium is evaporated and separated from the heat storage material, and a heat storage operation in which the absorbed heat medium is evaporated to be separated from the heat storage material. A concentration difference heat storage system is provided which performs a heat dissipation operation by absorbing heat into the material, and uses the latent heat of evaporation of the heating medium during the heat dissipation operation of the concentration difference heat storage system to cool the refrigerant in the supercooler installed in the compression type refrigeration system. Cooling water whose temperature has been lowered is used.

さらに、本発明に係る冷熱発生設備のうちで重要なもの
は、濃度差蓄熱系において、放熱動作部と蓄熱動作部と
が個別に設けられ、放熱動作と蓄熱動作とが並行して実
行できるようにされて構成される。
Furthermore, an important feature of the cold heat generating equipment according to the present invention is that the heat radiation operation section and the heat storage operation section are separately provided in the concentration difference heat storage system, so that the heat radiation operation and the heat storage operation can be executed in parallel. and configured.

一方、本発明に係る冷熱発生設備の運転方法は、上述の
圧縮式冷凍系と濃度差蓄熱系とを備えた冷熱発生設備に
ついてのもので、具体的には、冷房負荷変動要因に関す
るデータに基づき、対象日における冷房負荷を予測し、
予測された冷房負荷と過冷却器による冷媒の過冷却が行
われないと仮定したもとで得られる冷房能力との差に基
き、対象日において過冷却器による冷媒の過冷却が行わ
れない場合に不足する熱量を算出し、算出された不足熱
量を過冷却器による冷媒の過冷却を行うことにより補う
ようにするために濃度差蓄熱系において必要とされる蓄
熱量を算出し、算出された必要蓄熱量と濃度差蓄熱系に
おける実際の蓄熱量との差に基づき、濃度差蓄熱系にお
ける蓄熱動作期間を設定し、設定された蓄熱動作期間は
濃度差蓄熱系に蓄熱動作を行わせるようにされる。
On the other hand, the method of operating a cold heat generation facility according to the present invention is for a cold heat generation facility equipped with the above-mentioned compression type refrigeration system and a concentration difference heat storage system, and specifically, the method is based on data regarding cooling load fluctuation factors. , predict the cooling load on the target day,
If the refrigerant is not subcooled by the subcooler on the target day based on the difference between the predicted cooling load and the cooling capacity that would be obtained assuming that the subcooler does not subcool the refrigerant. Calculate the amount of heat that is required in the concentration difference heat storage system in order to compensate for the calculated amount of insufficient heat by supercooling the refrigerant using the supercooler. The heat storage operation period in the concentration difference heat storage system is set based on the difference between the required heat storage amount and the actual heat storage amount in the concentration difference heat storage system, and the concentration difference heat storage system is caused to perform heat storage operation during the set heat storage operation period. be done.

〔作用〕[Effect]

上述のごとくの構成を有する本発明に係る冷熱発生設備
においては、圧縮式冷凍系において凝縮器で冷却された
冷媒が過冷却器でさらに冷却されるので、蒸発器で蒸発
せしめらる際の冷媒の蒸発潜熱量が大となって蒸発工程
におけるエンタルピー変化量が増大し、その結果、冷房
能力が増大する。
In the cold heat generation equipment according to the present invention having the above-described configuration, the refrigerant cooled by the condenser in the compression refrigeration system is further cooled by the subcooler, so that the refrigerant is evaporated by the evaporator. The amount of latent heat of vaporization increases, the amount of enthalpy change in the evaporation process increases, and as a result, the cooling capacity increases.

また、圧縮式冷凍系に配設された過冷却器における冷媒
の冷却に上記濃度差蓄熱系の放熱動作時における熱媒の
蒸発潜熱によって降温された冷却水を利用するようにさ
れることにより、必要なときのみ過冷却器で冷媒を要求
される温度まで降温させることが可能となる。
Furthermore, by using the cooling water whose temperature has been lowered by the latent heat of evaporation of the heating medium during the heat dissipation operation of the concentration difference heat storage system to cool the refrigerant in the supercooler installed in the compression type refrigeration system, It becomes possible to lower the temperature of the refrigerant to the required temperature using the supercooler only when necessary.

さらに、濃度差蓄熱系において、放熱動作部と蓄熱動作
部とが個別に設けられた場合には、放熱動作と蓄熱動作
とを同時にかつ連続して実行できることになる。
Furthermore, in the concentration difference heat storage system, when the heat radiation operation section and the heat storage operation section are provided separately, the heat radiation operation and the heat storage operation can be performed simultaneously and continuously.

一方、冷房負荷を予測して蓄熱動作期間を設定すること
により、濃度差蓄熱系の稼(1]期間が必要最小限のも
のとされ、省エネルギー化が図られる。
On the other hand, by predicting the cooling load and setting the heat storage operation period, the operation period (1) of the concentration difference heat storage system is made the minimum necessary period, and energy saving is achieved.

(実施例〕 以下、本発明の実施例を図面の簡単な説明する。(Example〕 Embodiments of the present invention will be briefly described below with reference to the drawings.

第1図は本発明に係る冷熱発生設備の一実施例を示し、
この例の冷熱発生設備は、圧縮式冷凍系10と濃度差蓄
熱系30とそれらの共用部分とされる冷水塔25とを備
えている。
FIG. 1 shows an embodiment of cold generation equipment according to the present invention,
The cold heat generation equipment of this example includes a compression type refrigeration system 10, a concentration difference heat storage system 30, and a cold water tower 25 which is a common part thereof.

圧縮式冷凍系10は、電動モータ11により駆動される
圧縮機12、建物の屋上等に配された冷水塔25内で大
気により冷却されてポンプ26及び管路2Iを通して供
給される冷却水と冷媒との熱交換を行う凝縮器14、受
液槽16、膨張弁17、冷房光に供給されるべき冷水と
冷媒との熱交換を行う蒸発器18、アキュームレータ1
9が冷媒の流れ方向に沿って順次配設された冷媒循環通
路20を有し、この冷媒循環通路20における凝縮器1
4の後段に凝縮器で冷却された冷媒をさらに冷却(過冷
却)するための過冷却器15が配設されている。なお、
かかる圧縮式冷凍系10においては、冷媒循環通路20
に封入される冷媒として一般に汎用されているR−22
(フロン22)が用いられる。
The compression type refrigeration system 10 includes a compressor 12 driven by an electric motor 11, and cooling water and refrigerant that are cooled by the atmosphere in a cooling tower 25 placed on the roof of a building and supplied through a pump 26 and a pipe 2I. a condenser 14 for exchanging heat with the liquid receiving tank 16, an expansion valve 17, an evaporator 18 for exchanging heat between the cold water to be supplied to the cooling light and the refrigerant, and an accumulator 1.
9 has refrigerant circulation passages 20 arranged sequentially along the flow direction of the refrigerant, and the condenser 1 in this refrigerant circulation passage 20
A supercooler 15 for further cooling (supercooling) the refrigerant cooled by the condenser is disposed downstream of the refrigerant 4 . In addition,
In such a compression type refrigeration system 10, a refrigerant circulation passage 20
R-22, which is generally used as a refrigerant sealed in
(Freon 22) is used.

一方、濃度差蓄熱系30は、蓄熱放熱用容器40、蓄熱
材貯槽41、熱媒貯槽42、ポンプ45.46,55、
補助熱交換器39等を有している。蓄熱放熱用容器40
には、第1熱交換室31と第2熱交換室32とが隔壁3
3を挟んで形成されており、第1熱交換室31には蓄熱
材用熱交換器35と蓄熱材散布器43が配され、第2熱
交換室32には熱媒用熱交換器36と熱媒散布器44と
が配されている。
On the other hand, the concentration difference heat storage system 30 includes a heat storage and radiation container 40, a heat storage material storage tank 41, a heat medium storage tank 42, pumps 45, 46, 55,
It has an auxiliary heat exchanger 39 and the like. Heat storage and radiation container 40
, the first heat exchange chamber 31 and the second heat exchange chamber 32 are connected to the partition wall 3.
The first heat exchange chamber 31 is provided with a heat exchanger 35 for heat storage material and a heat storage material dispersion device 43, and the second heat exchange chamber 32 is provided with a heat exchanger 36 for heat medium and a heat exchanger 36 for heat storage material. A heat medium diffuser 44 is arranged.

そして、蓄熱材用熱交換器35の一端は三方弁56が配
された管路53及びポンプ26を介して冷水塔25の供
給ボートに接続されるとともに、三方弁56を介して温
水供給管路58に接続され得、その他端は三方弁57が
配された管路54及び管路48の下流側部分を介して冷
水塔25の導入ボートに接続されるとともに三方弁57
を介して温水排出管路59に接続され得るようになされ
ており、また、熱媒用熱交換器36の一端は三方弁51
が配された管路47及びポンプ26を介して冷水塔25
の供給ボートに接続されるとともに三方弁51及び管路
61を介して過冷却器15の導入ボートに接続され得、
その他端は三方弁52が配された管路48を介して冷水
塔25の導入ボートに接続されるとともに三方弁52.
ポンプ55.管路62を介して過冷却器15の導出ボー
トに接続され得るようになされている。
One end of the heat exchanger 35 for heat storage material is connected to a supply boat of the cooling tower 25 via a pipe 53 and a pump 26 in which a three-way valve 56 is arranged, and a hot water supply pipe via the three-way valve 56. 58, and the other end is connected to the inlet boat of the cooling tower 25 via the downstream portion of the pipe 54 and the pipe 48, in which the three-way valve 57 is disposed, and the three-way valve 57
The heat exchanger 36 for heat medium can be connected to the hot water discharge pipe 59 via the three-way valve 51.
The cooling tower 25 is
can be connected to the supply boat of the supercooler 15 through the three-way valve 51 and the pipe 61, and to the introduction boat of the supercooler 15,
The other end is connected to the introduction boat of the cooling tower 25 via a pipe 48 in which a three-way valve 52 is disposed, and the three-way valve 52.
Pump 55. It can be connected to the outlet boat of the subcooler 15 via a conduit 62.

なお、かかる濃度差蓄熱系30においては、蓄熱材(吸
収材)として臭化リチウム水溶液が、また、熱媒として
水が用いられる。
In addition, in the concentration difference heat storage system 30, a lithium bromide aqueous solution is used as a heat storage material (absorbing material), and water is used as a heat medium.

このような構成を有する濃度差蓄熱系30においては、
蓄熱材を濃縮する蓄熱動作と蓄熱材を希釈する放熱動作
とが選択的に行われるようにされる。以下において、蓄
熱動作と放熱動作とをそれぞれ説明する。
In the concentration difference heat storage system 30 having such a configuration,
A heat storage operation for concentrating the heat storage material and a heat dissipation operation for diluting the heat storage material are selectively performed. The heat storage operation and the heat radiation operation will be explained below.

蓄熱動作; これが行われる際には、三方弁56,57゜51.52
が第1図において実線で示される如くの接続状態をとる
ようにされ、ポンプ45は駆動されるがポンプ46は停
止される。それにより、蓄熱材用熱交換器35には外部
加熱源により加熱された温水等が管路58を介して供給
されるとともに、蓄熱材貯槽41内の蓄熱材が補助熱交
換器39において第1熱交換室31からの蓄熱材と熱交
換されて昇温された後蓄熱材散布器43に導かれて第1
熱交換室31に散布される。その結果、蓄熱材が加熱さ
れてそれに含まれる水分(熱媒)が蒸発する。かかる際
には、熱媒用熱交換器36に冷水塔25がらの冷却水が
供給されるため、蓄熱材から蒸発した水分は凝縮して熱
媒貯槽42に溜められる。
Heat storage operation: When this is done, the three-way valve 56, 57° 51.52
is connected as shown by the solid line in FIG. 1, and the pump 45 is driven, but the pump 46 is stopped. As a result, hot water etc. heated by an external heating source are supplied to the heat exchanger 35 for heat storage material via the pipe line 58, and the heat storage material in the heat storage material storage tank 41 is transferred to the auxiliary heat exchanger 39. After being heated through heat exchange with the heat storage material from the heat exchange chamber 31 and raised in temperature, the first
It is dispersed into the heat exchange chamber 31. As a result, the heat storage material is heated and the moisture (heat medium) contained therein evaporates. In this case, since the cooling water from the cold water tower 25 is supplied to the heat exchanger 36 for heat medium, the moisture evaporated from the heat storage material is condensed and stored in the heat medium storage tank 42.

従って、水分が蒸発せしめられて濃縮された蓄熱材は、
熱媒としての水分(水蒸気)を吸収する能力が高められ
たことになり、換言すれば蓄熱したことになる。
Therefore, the heat storage material that has been concentrated by evaporation of water is
This means that the ability to absorb moisture (water vapor) as a heat medium has been increased, or in other words, heat has been stored.

なお、蓄熱動作用の外部加熱源としては排熱。Note that the external heating source for heat storage operation is exhaust heat.

太陽熱、排温水、廃棄物の燃焼熱、及び化石燃料の燃焼
熱のうちのいずれかが用いられる。
Any one of solar heat, heated waste water, waste combustion heat, and fossil fuel combustion heat is used.

また、かかる蓄熱動作時には、圧縮式冷凍系10と濃度
差蓄熱系30とが切り離された状態となり、圧縮式冷凍
系10においては過冷却器15が実質的に存在しない状
態となる。
Further, during such heat storage operation, the compression type refrigeration system 10 and the concentration difference heat storage system 30 are in a state of being separated, and the supercooler 15 is not substantially present in the compression type refrigeration system 10.

放熱動作: これがjテわれる際には、三方弁56,5751.52
が第1図において破線で示される如くの接続状態をとる
ようにされ、ポンプ45に加えてポンプ46駆動も駆動
される。それにより、蓄熱材用熱交換器35には冷水塔
25からの冷却水が管路53を介して供給されるととも
に、蓄熱材貯槽41内の蓄熱材が補助熱交換器39にお
いて第1熱交換室31からの蓄熱材と熱交換されて降温
された後蓄熱材散布器43に導かれて第1熱交換室31
に散布される。
Heat dissipation operation: When this is turned on, the three-way valve 56,5751.52
are connected as shown by broken lines in FIG. 1, and in addition to pump 45, pump 46 is also driven. As a result, the cooling water from the cold water tower 25 is supplied to the heat exchanger 35 for heat storage material via the pipe 53, and the heat storage material in the heat storage material storage tank 41 is first heat exchanged in the auxiliary heat exchanger 39. After exchanging heat with the heat storage material from the chamber 31 and lowering the temperature, it is guided to the heat storage material dispersion device 43 and transferred to the first heat exchange chamber 31.
be dispersed.

一方、かかる際には、熱媒用熱交換器36と過冷却器1
5とが接続され、それらの間を冷却水が循環せしめられ
るとともに、熱媒貯槽42内の水がポンプ46により管
路38を介して熱媒散布器44に導かれ、第2熱交換室
32内に散布される。
On the other hand, in such a case, the heat exchanger 36 for heat medium and the subcooler 1
5 are connected to each other, cooling water is circulated between them, and the water in the heat medium storage tank 42 is guided by the pump 46 to the heat medium distribution device 44 via the pipe line 38, and the second heat exchange chamber 32 distributed within.

このような条件下では、蓄熱放熱用容器4゜内の圧力が
低下せしめられるので、熱媒散布器44から散布される
水が蒸発し易い状況が整うことになる。その結果、水が
激しく蒸発し、その蒸発潜熱により熱媒用熱交換器36
内を流れる冷却水が熱を奪われて降温せしめられ、その
降温された冷却水が過冷却器15に供給され、この過冷
却器15内で、凝縮器14によって冷却された冷媒循環
通路20内の冷媒がさらに冷却されることになる。そし
て、過冷却器I5により過冷却された冷媒は、膨張弁1
7により温度及び圧力が低下せしめられて蒸発器18に
導かれ、蒸発器18内で管路23を通じて冷房先から戻
ってきた冷水から熱を奪って蒸発し、アキュームレータ
19を介しで圧縮機12に導かれる。また、熱を奪われ
て冷却された冷水は管路24を通して再び冷房先に送ら
れる。
Under such conditions, the pressure inside the heat storage and heat dissipation container 4° is reduced, so that a situation is created in which the water sprayed from the heat medium sprayer 44 is likely to evaporate. As a result, the water evaporates violently, and the latent heat of evaporation causes the heat exchanger 36 for the heat medium to
The cooling water flowing therein is deprived of heat and lowered in temperature, and the cooled water is supplied to the supercooler 15, and in the supercooler 15, the coolant circulation passage 20 cooled by the condenser 14 is cooled. of refrigerant will be further cooled. Then, the refrigerant supercooled by the supercooler I5 is transferred to the expansion valve 1
7, the temperature and pressure are lowered and the cooled water is led to the evaporator 18. In the evaporator 18, heat is taken from the cold water that has returned from the cooling end through the pipe 23, and the water is evaporated. be guided. Furthermore, the cooled water that has been deprived of heat is sent to the cooling destination again through the pipe line 24.

次に、上述の如くにして冷媒循環通路20内を循環する
冷媒を過冷却器15により過冷却することによる作用効
果を第3図のR−22についてのモリエル線図を参照し
つつ説明する。
Next, the effects of supercooling the refrigerant circulating in the refrigerant circulation passage 20 by the supercooler 15 as described above will be explained with reference to the Mollier diagram for R-22 in FIG. 3.

圧縮機12で圧縮された冷媒は、第3図のA点で示され
る如くに高温(約90″C)高圧(約26kg/cii
)のガスとなって凝縮器14に導入され、その凝縮器1
4内で管路21を通じて供給される、冷水塔25におい
て大気により冷却されて得られた冷却水にによって冷却
され、Ba点で示される如くの、温度が約60°C1圧
力が約26kg/cdの飽和液となる。一方、冷却水は
管路22を通じて冷水塔25に戻され、そこで大気によ
り冷却されて再び凝縮器14に供給される。
The refrigerant compressed by the compressor 12 is at a high temperature (approximately 90"C) and a high pressure (approximately 26 kg/cii) as shown at point A in FIG.
) is introduced into the condenser 14, and the condenser 1
The temperature is about 60°C, the pressure is about 26kg/cd, as shown by point Ba, and the temperature is about 60°C, and the pressure is about 26kg/cd. It becomes a saturated liquid. On the other hand, the cooling water is returned to the cooling tower 25 through the pipe 22, where it is cooled by the atmosphere and supplied to the condenser 14 again.

飽和液となった冷媒は、過冷却器15に導入される。過
冷却器15には前述のように、濃度差蓄熱系30の放熱
動作時における熱媒(水)の蒸発潜熱によって降温され
てその温度が約10″Cとされた冷却水が供給されてい
るため、冷媒はさらに冷却されて点Beで示される如く
にその温度が約20 ”Cとなって、前述の如くに受液
槽16及び膨張弁17を介して蒸発器18に導入され、
そこで点Ccに示される如くの、圧力が約5 kg /
 crMlで温度が約O′Cの飽和ガスとなる。
The refrigerant that has become a saturated liquid is introduced into the supercooler 15. As mentioned above, the supercooler 15 is supplied with cooling water whose temperature is lowered to about 10"C by the latent heat of vaporization of the heating medium (water) during the heat dissipation operation of the concentration difference heat storage system 30. Therefore, the refrigerant is further cooled to a temperature of about 20"C as shown by point Be, and is introduced into the evaporator 18 via the liquid receiving tank 16 and the expansion valve 17 as described above.
There, as shown at point Cc, the pressure is about 5 kg/
crMl becomes a saturated gas with a temperature of about O'C.

それに対し、第1図に示される圧縮式冷凍系10から過
冷却器15を取り去った基本のもの(比較例1)では、
凝縮器の出口における冷媒の温度は約60°Cとなり、
冷媒の状態変化は第3図においてA−Ba−Ca−Dを
結ぶものとなり、また、前述した第5図に示される如く
の、凝縮器の前段に温水取出用熱交換器が配されたもの
(比較例2)では、凝縮器で利用される冷却水が大気に
より冷却されたものであるため、凝縮器の出口における
冷媒の温度は約40°Cが限界であり、冷媒の状態変化
は第3図においてA−Bb−Cb−Dを結ぶものとなる
On the other hand, in the basic system (Comparative Example 1) in which the supercooler 15 is removed from the compression refrigeration system 10 shown in FIG.
The temperature of the refrigerant at the outlet of the condenser is approximately 60°C,
The state change of the refrigerant connects A-Ba-Ca-D in Fig. 3, and as shown in Fig. 5 described above, a heat exchanger for hot water extraction is arranged in the front stage of the condenser. In (Comparative Example 2), the cooling water used in the condenser is cooled by the atmosphere, so the temperature of the refrigerant at the outlet of the condenser is limited to approximately 40°C, and the change in the state of the refrigerant occurs only after a short period of time. In Figure 3, it connects A-Bb-Cb-D.

ここで、冷房に寄与する熱量は第3図においてCa、C
b、Ccの各点のエンタルピーとD点のエンタルピーと
の差、即ち、冷媒の蒸発潜熱量の差である。この場合、 ■比較例1 −−−−−・−149−119=30■比
較例2−・−141−112=37■本実施例 −−−
−−149−105=44(単位はいずれもkcal/
kg )となり、圧縮機12への入力は、158 14
9=9(kcal/kg)で共通であるから、それぞれ
の成績係数は■が3.3、■が4.1、■が4.9とな
り、同一仕様同一条件のもとでも、本発明にかかるもの
は基本のものに比して30%強の冷房出力が得られるこ
とが理解される。
Here, the amount of heat contributing to cooling is Ca, C
This is the difference between the enthalpy at each point b and Cc and the enthalpy at point D, that is, the difference in the amount of latent heat of vaporization of the refrigerant. In this case, ■Comparative example 1 -------・-149-119=30■Comparative example 2-・-141-112=37■This example ---
--149-105=44 (all units are kcal/
kg), and the input to the compressor 12 is 158 14
Since 9=9 (kcal/kg) is common, the respective coefficients of performance are 3.3 for ■, 4.1 for ■, and 4.9 for ■, and even under the same specifications and conditions, the present invention It is understood that such a system can provide over 30% more cooling output than the basic system.

なお、本例における圧縮式冷凍系10の冷水製造能力は
、第3図におけるBa−Ba間で示される熱量の差であ
り、それは凝縮器14における冷却熱量の約1/3とな
る。
The cold water production capacity of the compression type refrigeration system 10 in this example is the difference in the amount of heat shown between Ba and Ba in FIG. 3, which is about 1/3 of the amount of cooling heat in the condenser 14.

次に、上述した第1図に示される冷熱発生設備の運転方
法を説明する。
Next, a method of operating the cold heat generating equipment shown in FIG. 1 mentioned above will be explained.

まず、冷房負荷がさほど太き(ないとき、つまり、過冷
却器15による冷媒の過冷却が行われないと仮定したも
とで得られる冷房能力で充分に冷房負荷を満たすことが
できるときは、濃度差蓄熱系30において適宜蓄熱動作
を行わせるだけで放熱動作を行わせる必要はない。
First, when the cooling load is not very large (that is, when the cooling capacity obtained assuming that the refrigerant is not supercooled by the supercooler 15 is sufficient to satisfy the cooling load, It is not necessary to perform a heat dissipation operation only by performing a heat storage operation as appropriate in the concentration difference heat storage system 30.

それに対し、真夏等の冷房負荷が著しく増大するときは
、予め、対象日(例えば、翌日)おける冷房負荷変動要
因に関するデータ、例えば、天候1人の参集状況等に基
づいて、対象日における冷房負荷を予測しておき、予測
された冷房負荷と過冷却器15による冷媒の過冷却が行
われないと仮定したもとで得られる冷房能力との差に基
き、対象日において過冷却器15による冷媒の過冷却が
行われない場合に不足する熱量を算出する。即ち、対象
日における冷房負荷が第4図に示される如くに経時変化
することが予測され、過冷却器■5による冷媒の過冷却
が行われないと仮定したもとで得られる冷房能力が線S
で示されるとした場合には、図のハツチングで示される
部分の面積が不足する熱量となる。
On the other hand, when the cooling load increases significantly in the middle of summer, etc., the cooling load on the target day is determined based on data on cooling load fluctuation factors on the target day (e.g., the next day), such as the situation of gathering of one person due to the weather, etc. Based on the difference between the predicted cooling load and the cooling capacity obtained assuming that the refrigerant is not subcooled by the subcooler 15, the amount of refrigerant used by the subcooler 15 on the target day Calculate the amount of heat that would be insufficient if supercooling is not performed. In other words, it is predicted that the cooling load on the target day will change over time as shown in Figure 4, and the cooling capacity obtained under the assumption that the refrigerant will not be supercooled by supercooler 5 will be S
In this case, the amount of heat is insufficient in the area indicated by hatching in the figure.

このようにして、不足する熱量が算出された後、その不
足熱量を過冷却器15による冷媒の過冷却を行うことに
より補うようにするために深度差蓄熱系30において必
要とされる蓄熱量を算出する。そして、算出された必要
蓄熱量と濃度差蓄熱系における実際の蓄熱量との差に基
づき、濃度差蓄熱系における蓄熱動作期間を設定する。
In this way, after the insufficient amount of heat is calculated, the amount of heat storage required in the depth difference heat storage system 30 is calculated in order to compensate for the insufficient amount of heat by supercooling the refrigerant by the supercooler 15. calculate. Then, a heat storage operation period in the concentration difference heat storage system is set based on the difference between the calculated required heat storage amount and the actual heat storage amount in the concentration difference heat storage system.

その場合、濃度差蓄熱系30における実際の蓄熱量は、
例えば、蓄熱材貯槽41における蓄熱材の濃度と量とを
計測し、その計測結果に基づいて算出することができる
。このようにして設定された蓄熱動作期間は濃度差蓄熱
系30に蓄熱動作を行わせ、また、冷房負荷が過冷却器
15による冷媒の過冷却が行われないと仮定したもとで
得られる冷房能力より大きくなることが予測されるとき
には濃度差蓄熱系30に放熱動作を行わせるようにする
。その場合、蓄熱動作と放熱動作との切り換えは、三方
弁56.57,57.52やポンプ45,46.55等
の接続状態あるいは動作状態を前述の如くに切り換える
ことで達成できる。
In that case, the actual amount of heat storage in the concentration difference heat storage system 30 is
For example, the concentration and amount of the heat storage material in the heat storage material storage tank 41 can be measured and calculated based on the measurement results. During the heat storage operation period set in this way, the concentration difference heat storage system 30 performs heat storage operation, and the cooling load is obtained assuming that the refrigerant is not supercooled by the supercooler 15. When it is predicted that the temperature will exceed the capacity, the concentration difference heat storage system 30 is caused to perform a heat dissipation operation. In that case, switching between the heat storage operation and the heat dissipation operation can be achieved by switching the connection state or operating state of the three-way valves 56, 57, 57, 52, the pumps 45, 46, 55, etc. as described above.

なお、上述の如くの濃度差蓄熱系30おける蓄熱動作と
放熱動作との切り換えは、例えば、マイクロコンピュー
タ等を用いたコントロールユニットヲ設置して、このコ
ントロールユニットに冷房負荷変動要因に関するデータ
を入力することにより、コントロールユニットに、対象
日における冷房負荷の予測、予測された冷房負荷と過冷
却器15による冷媒の過冷却が行われないと仮定したも
とで得られる冷房能力との差に基づく、対象日において
過冷却器15による冷媒の過冷却が行われない場合に不
足する熱量の算出、算出された不足熱量を過冷却器15
による冷媒の過冷却を行うことにより補うようにするた
めに濃度差蓄熱系30において必要とされる蓄熱量の算
出、算出された必要蓄熱量と濃度差蓄熱系30における
実際の蓄熱量との差に基づく、濃度差蓄熱系30におけ
る蓄熱動作期間の設定、設定された蓄熱動作期間は濃度
差蓄熱系に蓄熱動作を行わせ、また、冷房負荷が過冷却
器15による冷媒の過冷却が行われないと仮定したもと
で得られる冷房能力より大きくなることが予測されると
きには濃度差蓄熱系30に放熱動作を行わせる配管系制
御、のそれぞれを代行させて、自動化することも可能で
ある。
Note that switching between heat storage operation and heat dissipation operation in the concentration difference heat storage system 30 as described above can be achieved by, for example, installing a control unit using a microcomputer or the like, and inputting data regarding cooling load fluctuation factors into this control unit. This allows the control unit to predict the cooling load on the target day, based on the difference between the predicted cooling load and the cooling capacity obtained assuming that the refrigerant is not supercooled by the supercooler 15. Calculate the amount of heat that would be insufficient if the refrigerant is not supercooled by the supercooler 15 on the target day, and transfer the calculated amount of insufficient heat to the supercooler 15.
Calculation of the amount of heat storage required in the concentration difference heat storage system 30 to compensate by supercooling the refrigerant, and the difference between the calculated required heat storage amount and the actual heat storage amount in the concentration difference heat storage system 30. The setting of the heat storage operation period in the concentration difference heat storage system 30 based on When it is predicted that the cooling capacity will be greater than that obtained under the assumption that there is no cooling capacity, it is also possible to automate the piping system control that causes the concentration difference heat storage system 30 to perform heat dissipation operation.

また、上述の例においては、過冷却器15による冷媒の
過冷却温度を変化させることで圧縮機12の吐出容量等
を変えることなく冷房能力を可変とすることができる。
Further, in the above example, by changing the subcooling temperature of the refrigerant by the subcooler 15, the cooling capacity can be made variable without changing the discharge capacity of the compressor 12, etc.

具体的には、例えば、蓄熱材散布器43及び/又は熱媒
散布器44から散布される蓄熱材及び/又は熱媒の量を
変化させて熱媒の蒸発量を調整すること、蓄熱材用熱交
換器35及び/又は熱媒用熱交換器36を流れる冷却水
の流速を変化させること等により過冷却器15の冷媒冷
却能力が調整され、それによって圧縮式冷凍系10にお
ける冷房能力を変えることが可能となる。
Specifically, for example, adjusting the amount of heat storage material and/or heat medium sprayed from the heat storage material spreader 43 and/or heat medium spreader 44 to adjust the amount of evaporation of the heat medium; The refrigerant cooling capacity of the supercooler 15 is adjusted by changing the flow rate of the cooling water flowing through the heat exchanger 35 and/or the heat exchanger 36 for heat medium, thereby changing the cooling capacity of the compression refrigeration system 10. becomes possible.

また、濃度差蓄熱系30における蓄熱量に余裕がある場
合には第1図において一点鎖線で示されるごと(に、管
路61,62に三方弁63゜64を介して冷水供給用管
路66、冷水戻し用管路65を接続して、熱媒用熱交換
器36で得られた冷却水を冷房光に供給するようにして
もよい。
In addition, if there is a surplus in the amount of heat stored in the concentration difference heat storage system 30, as shown by the dashed line in FIG. , a cold water return pipe 65 may be connected to supply the cooling water obtained by the heat medium heat exchanger 36 to the cooling light.

次に、第2図を参照して本発明の他の実施例を説明する
Next, another embodiment of the present invention will be described with reference to FIG.

この例において第1図に示される各部に対応する部分は
共通の符号を付してその詳細な説明を省略する。
In this example, parts corresponding to those shown in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

この例が第1図に示されるものと大きく異なるのは、濃
度差蓄熱系30において、蓄熱動作用容器80と放熱動
作用容器70とが個別に設けられて、蓄熱動作と放熱動
作とを並行して実行できるようにした点にある。
This example differs greatly from the one shown in FIG. 1 because, in the concentration difference heat storage system 30, a heat storage operation container 80 and a heat radiation operation container 70 are provided separately, and heat storage operation and heat radiation operation are performed in parallel. The main point is that it can be executed by

なお、圧縮式冷凍系10にあっては1、第5図の温水取
出用熱交換器113と同様な塩水取出用熱交換器13を
冷媒循環通!20における凝縮器14の前段に配設して
、冷水の供給と温水の取り出しをそれぞれ管路23.2
4で行うようにされており、他の部分は第1図に示され
るものと同様に構成されている。
In addition, in the compression type refrigeration system 10, the refrigerant is circulated through a salt water extraction heat exchanger 13 similar to the hot water extraction heat exchanger 113 shown in FIG. The pipes 23.2 and 23.2 are arranged upstream of the condenser 14 in the pipes 23.2 and 23.2, respectively, to supply cold water and take out hot water.
4, and the other parts are constructed in the same way as shown in FIG.

濃度差蓄熱系30における放熱動作用容器70には、隔
壁73.第1熱交換室71.第2熱交換室72.蓄熱材
用熱交換器75.熱媒用熱交換器76、蓄熱材散布器7
7、熱媒散布器78が設けられ、また、蓄熱動作用容器
8oには、隔壁83.第1熱交換室81.第2熱交換室
82゜蓄熱材用熱交換器85.熱媒用熱交換器86゜蓄
熱材散布器84が設けられている。
The heat radiation operation container 70 in the concentration difference heat storage system 30 includes a partition wall 73. First heat exchange chamber 71. Second heat exchange chamber 72. Heat exchanger for heat storage material 75. Heat medium heat exchanger 76, heat storage material spreader 7
7, a heat medium diffuser 78 is provided, and the heat storage operation container 8o is provided with a partition wall 83. First heat exchange chamber 81. Second heat exchange chamber 82° heat exchanger for heat storage material 85. A heat exchanger 86° for heat medium and a heat storage material spreader 84 are provided.

そして、放熱動作用容器7oにおける蓄熱材用熱交換器
75には冷水塔25からの冷水が供給され、その冷水は
管路91をiilじて蓄熱動作用容器80の熱媒用熱交
換器86導かれ、管路92を通じて冷水塔25にもどさ
れ、熱媒用熱交換器76の導入ボート及び導出ボートは
それぞれ過冷却器15の導出ボート及び導入ボートに管
路62及び61を介して接続され、それらで形成される
循環路内で冷却水がポンプ55により循環せしめられる
。また、蓄熱動作用容器80における蓄熱材用熱交換器
85には管路58.59を通じて、前述した外部加熱源
により加熱された温水等が給排される。
The cold water from the cold water tower 25 is supplied to the heat exchanger 75 for heat storage material in the container 7o for heat dissipation operation, and the cold water is passed through the pipe 91 to the heat exchanger 86 for heat medium in the container 80 for heat storage operation. The inlet boat and the outlet boat of the heat medium heat exchanger 76 are connected to the outlet boat and the inlet boat of the supercooler 15 via the conduits 62 and 61, respectively. , cooling water is circulated by a pump 55 within the circulation path formed by them. Further, hot water or the like heated by the above-mentioned external heating source is supplied to and discharged from the heat exchanger 85 for heat storage material in the container 80 for heat storage operation through the pipes 58 and 59.

このように構成された冷熱発生設備にあっては、蓄熱動
作と放熱動作とを同時にかつ連続して実行できることに
なる。従って、蓄熱材加熱用熱源の発生熱量が不十分で
ある場合には、蓄熱動作を継続して実行して濃縮された
蓄熱材を蓄熱材貯槽41に貯蔵しつつ、必要に応して放
熱動作を実行して過冷却器15への冷却水の供給を行う
ことができ、それにより、必要なときにはいつでも圧縮
式冷凍系10の冷房能力を増大させることが可能となる
In the cold heat generating equipment configured in this way, the heat storage operation and the heat dissipation operation can be performed simultaneously and continuously. Therefore, when the amount of heat generated by the heat source for heating the heat storage material is insufficient, the heat storage operation is continuously executed to store the concentrated heat storage material in the heat storage material storage tank 41, and the heat dissipation operation is performed as necessary. can be executed to supply cooling water to the supercooler 15, thereby making it possible to increase the cooling capacity of the compression refrigeration system 10 whenever necessary.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかな如く、本発明に係る冷熱発生設
備においては、圧縮式冷凍系において凝縮器で冷却され
た冷媒が過冷却器でさらに冷却されるので、蒸発器で蒸
発せしめらる際の冷媒の蒸発潜熱量が大となって蒸発工
程におけるエンタルピー変化量が増大し、その結果、冷
房能力が向上するものとなる。
As is clear from the above explanation, in the cold heat generating equipment according to the present invention, the refrigerant cooled by the condenser in the compression type refrigeration system is further cooled by the supercooler, so that the refrigerant when evaporated by the evaporator is The amount of latent heat of evaporation of the refrigerant increases, and the amount of enthalpy change in the evaporation process increases, resulting in improved cooling capacity.

また、圧縮式冷凍系に配設された過冷却器における冷媒
の冷却に濃度差蓄熱系の放熱動作時における熱媒の蒸発
潜熱によって降温された冷却水を利用するようにされる
ことにより、必要なときのみ過冷却器で冷媒を要求され
る温度まで降温させることが可能となり、冷房負荷が最
大となるときに合わせて圧縮機の容量等を設定する必要
がなくなり、そのため、設備の大型化や複雑化を招来す
ることなく省エネルギー化を図ることができる。
In addition, cooling water whose temperature has been lowered by the latent heat of evaporation of the heating medium during the heat dissipation operation of the concentration difference heat storage system is used to cool the refrigerant in the supercooler installed in the compression refrigeration system. This makes it possible to lower the temperature of the refrigerant to the required temperature using the supercooler only when the cooling load is at its maximum, eliminating the need to set the compressor capacity etc. according to when the cooling load is at its maximum. Energy saving can be achieved without increasing complexity.

さらに、濃度差蓄熱系において、放熱動作部と蓄熱動作
部とが個別に設けられた場合には、放熱動作と蓄熱動作
とを同時にかつ連続して実行できることになる。
Furthermore, in the concentration difference heat storage system, when the heat radiation operation section and the heat storage operation section are provided separately, the heat radiation operation and the heat storage operation can be performed simultaneously and continuously.

一方、冷房負荷を予測して蓄熱動作期間を設定すること
により、濃度差蓄熱系の稼(II!tJI間が必要最小
限のものとされ、運転費の低減、省エネルギー化が図ら
れる。
On the other hand, by predicting the cooling load and setting the heat storage operation period, the operation (II!tJI) of the concentration difference heat storage system is minimized, reducing operating costs and saving energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷熱発生設備の一例を示す全体構
成図、第2図は本発明に係る冷熱発生設備の他の例を示
す全体構成図、第3図は本発明の作用・動作の説明に供
されるモリエル線図、第4図は第1図に示される例の動
作説明に供される図、第5図は従来の冷熱発生設備の説
明に供される図である。 図中における符号と各部の名称は次のように対応する。 1〇−圧縮式冷凍系、12−圧縮機 14−凝縮器、15−・−過冷却器、 18−蒸発器、20−冷媒循環通路 25−冷水塔、3o−濃度差蓄熱系 4〇−蓄熱放熱用容器 7〇−放熱動作用容器 80−蓄熱動作用容器
FIG. 1 is an overall configuration diagram showing an example of the cold heat generating equipment according to the present invention, FIG. 2 is an overall configuration diagram showing another example of the cold heat generating equipment according to the present invention, and FIG. 3 is an operation/operation of the present invention. FIG. 4 is a diagram used to explain the operation of the example shown in FIG. 1, and FIG. 5 is a diagram used to explain the conventional cooling and heat generating equipment. The symbols and names of parts in the figure correspond as follows. 10-compression refrigeration system, 12-compressor 14-condenser, 15--supercooler, 18-evaporator, 20-refrigerant circulation passage 25-chilling water tower, 3o-concentration difference heat storage system 40-thermal storage Container for heat radiation 70 - Container for heat radiation action 80 - Container for heat storage action

Claims (1)

【特許請求の範囲】 1、圧縮機、凝縮器、膨張弁、及び蒸発器が順次配設さ
れた冷媒循環通路を有する冷熱発生設備において、上記
凝縮器が大気により冷却されて得られる冷却水を利用し
て冷媒循環通路内の冷媒を冷却するようにされるととも
に、上記冷媒循環通路における上記凝縮器の後段に上記
冷媒をさらに冷却する過冷却器が配設されてなる圧縮式
冷凍系を備えたことを特徴とする冷熱発生設備。 2、請求項1記載の圧縮式冷凍系に加えて、吸収された
熱媒を蒸発させて蓄熱材から分離する蓄熱動作と熱媒を
蒸発させて蓄熱材に吸収させる放熱動作とを行う濃度差
蓄熱系が備えられ、上記圧縮式冷凍系に配設された過冷
却器における冷媒の冷却に上記濃度差蓄熱系の放熱動作
時における熱媒の蒸発潜熱によって降温された冷却水を
利用するようにされていることを特徴とする冷熱発生設
備。 3、圧縮式冷凍系における凝縮器への冷却水の供給と濃
度差蓄熱系への冷却水の供給とが共通の冷水塔から行わ
れるようにされてなる請求項2記載の冷熱発生設備。 4、濃度差蓄熱系において、放熱動作部と蓄熱動作部と
が個別に設けられ、放熱動作と蓄熱動作とが並行して実
行できるようにされてなる請求項2記載の冷熱発生設備
。 5、濃度差蓄熱系における蓄熱動作用の熱源が、排熱、
太陽熱、排温水、廃棄物の燃焼熱、及び化石燃料の燃焼
熱のうちのいずれかである請求項2記載の冷熱発生設備
。 6、入力される冷房負荷変動要因に関するデータに基づ
き、対象日における冷房負荷を予測する冷房負荷予測手
段と、 該冷房負荷予測手段により予測された冷房負荷と過冷却
器による冷媒の過冷却が行われないと仮定したもとで得
られる冷房能力との差に基づき、対象日において過冷却
器による冷媒の過冷却が行われない場合に不足する熱量
を算出する不足熱量算出手段と、 該不足熱量算出手段により算出された不足熱量を過冷却
器による冷媒の過冷却を行うことにより補うようにする
ために濃度差蓄熱系において必要とされる蓄熱量を算出
する必要蓄熱量算出手段と、 該必要蓄熱量算出手段により算出された必要蓄熱量と濃
度差蓄熱系における実際の蓄熱量との差に基づき、濃度
差蓄熱系における蓄熱動作期間を設定する蓄熱動作期間
設定手段と、 該蓄熱動作期間設定手段により設定された蓄熱動作期間
中濃度差蓄熱系に蓄熱動作を行わせる配管系制御手段と
、を具備して構成される請求項2記載の冷熱発生設備。 7、冷房負荷変動要因に関するデータに基づき、対象日
における冷房負荷を予測し、 予測された冷房負荷と過冷却器による冷媒の過冷却が行
われないと仮定したもとで得られる冷房能力との差に基
き、対象日において過冷却器による冷媒の過冷却が行わ
れない場合に不足する熱量を算出し、 算出された不足熱量を過冷却器による冷媒の過冷却を行
うことにより補うようにするために濃度差蓄熱系におい
て必要とされる蓄熱量を算出し、 算出された必要蓄熱量と濃度差蓄熱系における実際の蓄
熱量との差に基づき、濃度差蓄熱系における蓄熱動作期
間を設定し、 設定された蓄熱動作期間は濃度差蓄熱系に蓄熱動作を行
わせることを特徴とする、請求項2記載の冷熱発生設備
の運転方法。
[Claims] 1. In a cold heat generation facility having a refrigerant circulation passage in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially arranged, the condenser cools the cooling water obtained by being cooled by the atmosphere. the refrigerant in the refrigerant circulation passage, and a compression type refrigeration system in which a supercooler is disposed downstream of the condenser in the refrigerant circulation passage to further cool the refrigerant. Cold heat generating equipment characterized by: 2. In addition to the compression type refrigeration system according to claim 1, a concentration difference that performs a heat storage operation in which the absorbed heat medium is evaporated and separated from the heat storage material, and a heat radiation operation in which the heat medium is evaporated and absorbed into the heat storage material. A heat storage system is provided, and the cooling water whose temperature is lowered by the latent heat of evaporation of the heating medium during the heat dissipation operation of the concentration difference heat storage system is used to cool the refrigerant in the supercooler disposed in the compression refrigeration system. Cold and heat generating equipment characterized by: 3. The cold heat generation equipment according to claim 2, wherein the supply of cooling water to the condenser in the compression type refrigeration system and the supply of cooling water to the concentration difference heat storage system are performed from a common cooling water tower. 4. The cold heat generating equipment according to claim 2, wherein in the concentration difference heat storage system, a heat radiation operation section and a heat storage operation section are provided separately, so that the heat radiation operation and the heat storage operation can be executed in parallel. 5. The heat source for heat storage operation in the concentration difference heat storage system is exhaust heat,
3. The cold heat generating equipment according to claim 2, wherein the cold heat generation equipment is any one of solar heat, waste hot water, waste combustion heat, and fossil fuel combustion heat. 6. Cooling load prediction means for predicting the cooling load on the target day based on input data regarding cooling load fluctuation factors, and cooling load predicted by the cooling load prediction means and supercooling of refrigerant by a supercooler. a heat deficit calculating means for calculating a heat deficit when the refrigerant is not supercooled by a supercooler on a target day based on the difference between the cooling capacity obtained under the assumption that the cooling capacity is not supercooled; a necessary heat storage amount calculation means for calculating the amount of heat storage required in the concentration difference heat storage system in order to compensate for the insufficient heat amount calculated by the calculation means by supercooling the refrigerant by a supercooler; a heat storage operation period setting means for setting a heat storage operation period in the concentration difference heat storage system based on the difference between the required heat storage amount calculated by the heat storage amount calculation means and the actual heat storage amount in the concentration difference heat storage system; 3. The cold heat generation equipment according to claim 2, further comprising piping system control means for causing the concentration difference heat storage system to perform heat storage operation during the heat storage operation period set by the means. 7. Based on the data on cooling load fluctuation factors, predict the cooling load on the target day, and compare the predicted cooling load with the cooling capacity that would be obtained assuming that the refrigerant is not overcooled by the supercooler. Based on the difference, calculate the amount of heat that would be insufficient if the refrigerant was not supercooled by the supercooler on the target day, and compensate for the calculated lack of heat by supercooling the refrigerant using the supercooler. The heat storage amount required in the concentration difference heat storage system is calculated, and the heat storage operation period in the concentration difference heat storage system is set based on the difference between the calculated required heat storage amount and the actual heat storage amount in the concentration difference heat storage system. 3. The method of operating a cold heat generation facility according to claim 2, wherein the set heat storage operation period causes the concentration difference heat storage system to perform a heat storage operation.
JP3233990A 1990-02-15 1990-02-15 Cool heat generating equipment and operation of the same Pending JPH03241271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233990A JPH03241271A (en) 1990-02-15 1990-02-15 Cool heat generating equipment and operation of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233990A JPH03241271A (en) 1990-02-15 1990-02-15 Cool heat generating equipment and operation of the same

Publications (1)

Publication Number Publication Date
JPH03241271A true JPH03241271A (en) 1991-10-28

Family

ID=12356194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233990A Pending JPH03241271A (en) 1990-02-15 1990-02-15 Cool heat generating equipment and operation of the same

Country Status (1)

Country Link
JP (1) JPH03241271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044092A (en) * 2019-05-10 2019-07-23 南京工程学院 A kind of energy tower heat pump system and its application method having accumulation of energy and solution regeneration function concurrently

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044092A (en) * 2019-05-10 2019-07-23 南京工程学院 A kind of energy tower heat pump system and its application method having accumulation of energy and solution regeneration function concurrently
CN110044092B (en) * 2019-05-10 2023-08-15 南京工程学院 Energy tower heat pump system with energy storage and solution regeneration functions and application method thereof

Similar Documents

Publication Publication Date Title
JP3662557B2 (en) Heat pump system
US9175889B2 (en) Heat source system and control method thereof
KR20100059176A (en) Storage system
CN212618630U (en) Refrigerating system
JP2684814B2 (en) Air conditioner
KR102329430B1 (en) Hybrid adsorption chiller having dual condensors and method for operating the same
JPS5829397Y2 (en) Air conditioning equipment
KR20100005735U (en) storage system
JPH03241271A (en) Cool heat generating equipment and operation of the same
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP2013011423A (en) Refrigerating apparatus
CN208075369U (en) A kind of air-conditioning refrigerator combined system of central refrigerating fission cooling
JP3821286B2 (en) Refrigeration system combining absorption type and compression type and its operating method
JP3370501B2 (en) Cooling system
JP3871207B2 (en) Refrigeration system combining absorption and compression
KR100389269B1 (en) Heat pump system
KR102329432B1 (en) Hybrid adsorption chiller having super colling chain with renewable energy and method for operating the same
KR102287461B1 (en) Hybrid adsorption chiller having dual condensers with renewable energy and method for operating the same
KR102275972B1 (en) Hybrid adsorption chiller having super cooling chain and method for operating the same
JP2007147133A (en) Air conditioner
JP3918980B2 (en) Refrigeration equipment
JPH05118696A (en) Heat pump device
CN220017784U (en) Refrigerant direct cooling system with heat recovery function
JP2004316968A (en) Compound heat accumulating system
JPH0510168Y2 (en)