JPH03105298A - Producing method for solidified body of radioactive waste - Google Patents

Producing method for solidified body of radioactive waste

Info

Publication number
JPH03105298A
JPH03105298A JP1243671A JP24367189A JPH03105298A JP H03105298 A JPH03105298 A JP H03105298A JP 1243671 A JP1243671 A JP 1243671A JP 24367189 A JP24367189 A JP 24367189A JP H03105298 A JPH03105298 A JP H03105298A
Authority
JP
Japan
Prior art keywords
solidified
radioactive
solidifying
waste
radioactive waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1243671A
Other languages
Japanese (ja)
Other versions
JP2912393B2 (en
Inventor
Jun Kikuchi
菊池 恂
Masato Oura
正人 大浦
Shin Tamada
玉田 慎
Koichi Chino
耕一 千野
Kiyomi Funabashi
清美 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1243671A priority Critical patent/JP2912393B2/en
Priority to US07/581,904 priority patent/US5143654A/en
Priority to EP19900310117 priority patent/EP0419162A3/en
Publication of JPH03105298A publication Critical patent/JPH03105298A/en
Application granted granted Critical
Publication of JP2912393B2 publication Critical patent/JP2912393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/14Processing by incineration; by calcination, e.g. desiccation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/008Apparatus specially adapted for mixing or disposing radioactively contamined material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/304Cement or cement-like matrix

Abstract

PURPOSE:To increase an amount of waste which can be filled in a solidification container by using, as a binder, a mixture of one or a plurality of kinds of binder elements which have different distribution factors, and which are selected according to the distribution factors of the binder elements to be appropriately used for each radioactive substances. CONSTITUTION:A concentrated radioactive waste liquid is transfered to a centrifugal thin film dryer 2 from a feed tank 1 to be dried up and pulverized, and then is pelletized by a pelletizer 3 and is filled into a container 4. On the other hand, each binder element is put into a binder tank from tanks 6 and 6 containing different binder elements, along with controlling valves 6' and 6' by a controller 5, based upon a concentration factor of radioactivity concentration and a distribution factor of each binder element. Then, the binder elements are kneaded by a kneader 9 with a predetermined amount of water, and the binder produced in this way, is injected into gaps among the pellets in the container 4 to produce a final solidified body. In this case, a decaying characteristic as a radioactive waste, is improved by around 8 to 10 times.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、減容化された放射性廃棄物を容器内に固化材
で固化させて作成した放射性廃棄物固化体を最終処分と
して土中等に埋設したときに長半減期の放射性核種が該
固化体から地下水等を通して環境に放出されるのを極力
抑えるために、放射性核種封じ込め性能を向上させた固
化材によって固化体を作戒する方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a method for solidifying radioactive waste, which has been reduced in volume, by solidifying it in a container with a solidifying material, and disposing of the solidified radioactive waste in soil etc. as final disposal. This invention relates to a method of guarding a solidified body using a solidifying material with improved radionuclide containment performance, in order to minimize the release of long-half-life radionuclides from the solidified body into the environment through underground water etc. when buried.

[従来の技術] 原子力発電所等から生じた放射性の濃縮廃液や廃樹脂ス
ラリーは、従来、これをそのまま容器内にセメントで固
化することにより放射性廃棄物固化体とされていた。こ
れに対し,近年,減容率を高めるため濃縮廃液やスラリ
ーを乾燥粉体化したもの、または該粉体を更にペレット
に造粒したもの,を容器内にセメントその他の固化材で
固化して固化体とする方法が行われており、また最近、
濃縮廃液をスラッジ状に濃縮したものを容器内に固化材
で固化する方法も開発されようとしている.他方、我が
国では放射性廃棄物固化体の最終処分方式として陸地処
分を主とすることが定められ,その最終処分施設の19
91年運川開始を目指して計画の具体化が進められてい
る6そのための基準の整備も進められており、その1つ
が,昭和62年3月17日改正の「核原料物質、核燃料
物質及び原子炉の規制に関する法律施行令(昭和32年
11月21日政令第324号)」の第13条の8に掲げ
られた次の表1である。
[Prior Art] Radioactive concentrated liquid waste and waste resin slurry generated from nuclear power plants and the like have conventionally been solidified as radioactive waste by solidifying them as they are in a container with cement. On the other hand, in recent years, in order to increase the volume reduction rate, concentrated waste liquid and slurry are dried and powdered, or the powder is further granulated into pellets and solidified with cement or other solidifying materials in a container. A method of solidifying it has been used, and recently,
A method is also being developed in which concentrated waste liquid is concentrated into sludge and solidified in a container using a solidifying agent. On the other hand, in Japan, it has been decided that land disposal will be the main final disposal method for solidified radioactive waste, and 19
The plan is being put into practice with the aim of starting the river in 19916. Standards for this purpose are also being developed, one of which is the ``Nuclear Source Materials, Nuclear Fuel Materials, The following Table 1 is listed in Article 13-8 of the Enforcement Order of the Act on Regulation of Nuclear Reactors (Cabinet Order No. 324 of November 21, 1950).

表l この表では、処分される放射性廃棄物固化体中の放射性
核種濃度をカーボンエ4 (C−14と記す),コバル
ト6 0 (Go−60)、ニッケル6 3 (Ni−
63)、ストロンチウム90(Sr−90)、セシウム
137(Cs−137)およびα線を放出する物質(以
下α廃棄物質という)について規定している。
Table 1 This table shows the concentrations of radionuclides in solidified radioactive waste to be disposed of: carbon 4 (denoted as C-14), cobalt 6 0 (Go-60), nickel 6 3 (Ni-
63), stipulates strontium-90 (Sr-90), cesium-137 (Cs-137), and substances that emit alpha rays (hereinafter referred to as alpha waste materials).

[発明が解決しようとする課M] 放射性廃棄物固化体を最終的に陸地処分したとき、固化
体から地下水への放射能の浸出に因る環境への漏洩を極
力低くすることは、住民被曝や環境汚染の防止の観点か
ら非常に重要である。そのために最終処分施設の設計で
は、放射性物質を吸着するペンナイト等の材料で所謂人
エバリア層を施すことが計画されている。しかし、同時
に、放射性廃棄物固化体を構成する固化材自身による放
射性物質吸着能力を高めることによって固化体からの放
射能浸出量を極力低く抑えることが望ましい。
[Problem M to be solved by the invention] When solidified radioactive waste is finally disposed of on land, it is important to minimize the leakage of radioactivity into the environment from the solidified solidified material into groundwater in order to reduce the exposure of residents to radiation. This is extremely important from the perspective of preventing pollution and environmental pollution. For this reason, in the design of the final disposal facility, it is planned to apply a so-called human evalia layer using a material such as pennite that adsorbs radioactive materials. However, at the same time, it is desirable to suppress the amount of radioactivity leaching from the solidified radioactive waste to the lowest possible level by increasing the radioactive substance adsorption capacity of the solidifying material itself that constitutes the solidified radioactive waste.

ところで、放射性の濃縮廃液や廃樹脂スラリーをそのま
まセメントで容器内に固化してなる従来の放射性廃棄物
固化体(以下、これを従来のセメント固化体と略称する
)に比べて,更に減容率を高めた前述の如き固化体では
、固化体一体当りに含まれる放射能量が増加しているの
で、固化体からの放射能の浸出量が増える傾向となる。
By the way, compared to the conventional radioactive waste solidified body (hereinafter referred to as conventional cement solidified body), which is made by solidifying concentrated radioactive waste liquid or waste resin slurry in a container with cement, the volume reduction rate is even higher. In the above-mentioned solidified material with increased radioactivity, since the amount of radioactivity contained per solidified material is increased, the amount of radioactivity leached from the solidified material tends to increase.

この傾向は,減容率を高めて固化体一体当りに含まれる
放射能量を多くすればするほど強まる。従って、減容率
の高い固化体からの放射能浸出量を従来のセメント固化
体からの放射能浸出量と同等又はそれ以下に抑えるには
,減容率が高いほど固化材の放射性物質吸着能力を高め
る必要がある。例えば放射性廃棄物の減容率が従来のセ
メン1・固化体の2倍(従って固化体一体当りに含まれ
る放射能の量が2倍)であれば、同じ条件で放射能浸出
量を従来のセメント固化体と同等又はそれ以下とするた
めには,固化材の放射性物質吸着能力を2倍又はそれ以
上にする必要がある。
This tendency becomes stronger as the volume reduction rate increases and the amount of radioactivity contained per solidified body increases. Therefore, in order to suppress the amount of radioactivity leached from a solidified material with a high volume reduction rate to the same level or less than the amount of radioactivity leached from a conventional cement solidified material, the higher the volume reduction rate, the higher the radioactive substance adsorption capacity of the solidified material. It is necessary to increase For example, if the volume reduction rate of radioactive waste is twice that of conventional cement 1 solidified material (therefore, the amount of radioactivity contained per solidified material is twice as much), the amount of radioactivity leached under the same conditions will be lower than that of conventional cement. In order to make it equivalent to or lower than that of solidified cement, it is necessary to double or more than double the radioactive substance adsorption capacity of the solidified material.

しかし、従来,固化体作或用の固化材の選定に当っては
,強度や耐火性など機械的性質が重要視され、固化材の
放射性物質吸着能力を向上させることにより固化体から
の放射能浸出量を低減させるという配慮は必ずしも十分
なされていなかった。
However, in the past, when selecting a solidifying material for making a solidified body, emphasis was placed on mechanical properties such as strength and fire resistance. Sufficient consideration has not always been given to reducing the amount of leaching.

本発明の目的は、前述の如き減容率を向上させた放射性
廃棄物固化体を作成するに当って,放射性物質吸着能力
を高めた固化材を用いて固化を行うことにより固化体か
らの放射能浸出量を従来のセメント固化体と同等又はそ
れ以下にすることにある。
The purpose of the present invention is to eliminate radiation from the solidified waste by solidifying it using a solidifying material with increased radioactive substance adsorption capacity in producing a solidified radioactive waste with an improved volume reduction rate as described above. The aim is to make the amount of leachate equal to or lower than that of conventional cement solidified bodies.

[課題を解決するための手段コ 本発明は特許請求の範囲の夫々の請求項に記載された放
射性廃棄物固化体の作成方法を提atする。
[Means for Solving the Problems] The present invention proposes a method for producing solidified radioactive waste as set forth in each of the claims.

[作   用] 本発明においては、請求項1中に記載した滅容された放
射性廃棄物に含まれている同請求項に記載の放射性物質
の上記減容による濃縮された濃度に対応して、当該放射
性物質に対する分配係数の異なる固化材成分を適切な割
合で調合して固化材として用いるので、得られた固化体
からの上記放射性物質の浸出量が、従来のセメント固化
体に比へて,同等以下に効果的に低減される。
[Function] In the present invention, in response to the concentrated concentration due to the volume reduction of the radioactive substance according to claim 1 contained in the sterilized radioactive waste described in claim 1, Since the solidifying material components having different distribution coefficients for the radioactive substance are mixed in appropriate proportions and used as the solidifying agent, the amount of the radioactive substance leached from the obtained solidified material is lower than that of conventional cement solidified material. effectively reduced to the same level or below.

[実 施 例] 原子力発電所から生ずる放射性廃棄物としての放射性濃
縮廃液を滅容のため乾燥粉体化し、更にペレノトに造粒
した後に容器に充填し,固化材を注入して固化体とする
場合における本発明の実施例を以下説明する。第1図は
そのプロセスフロ一図、第2図はそのプロセス設備概要
図である。放射性濃縮廃液は供給タンク1から遠心薄膜
乾燥機2に送られて乾燥粉体化され、更に造粒機3でペ
レットにされて容器4に充填される。一方,異なる固化
材成分の入っているタンク6,6から、放射能濃度の濃
縮率(これは上記の濃縮廃液の乾燥粉体化およびペレッ
ト化による減容比に依存する)と夫々の固化材或分の分
配係数とに基づき制御器5で弁6’ ,6’ を制御し
て、夫々の固化材成分を固化材タンク7に入れ,更に水
タンク8からの所定量の水と共に、混棟槽9で混練し、
このようにして調整した固化材を混練槽9から容器4内
のペレットの間隙に注入して最終固化体を作成する。
[Example] Concentrated radioactive waste liquid as radioactive waste generated from nuclear power plants is dried and powdered for sterilization, then granulated into pellets, filled into a container, and solidified by injecting a solidifying material. Examples of the present invention in this case will be described below. FIG. 1 is a diagram of the process flow, and FIG. 2 is a schematic diagram of the process equipment. The radioactive concentrated waste liquid is sent from a supply tank 1 to a centrifugal thin film dryer 2 where it is dried and powdered, and then pelletized by a granulator 3 and filled into a container 4. On the other hand, from the tanks 6 and 6 containing different solidification material components, the concentration ratio of radioactivity concentration (this depends on the volume reduction ratio by drying and powdering the concentrated waste liquid and pelletizing mentioned above) and the respective solidification materials are obtained. The valves 6' and 6' are controlled by the controller 5 based on a certain distribution coefficient, and the respective solidifying material components are put into the solidifying material tank 7, and together with a predetermined amount of water from the water tank 8, the mixed building Knead in tank 9,
The solidified material thus prepared is injected from the kneading tank 9 into the gaps between the pellets in the container 4 to produce a final solidified material.

このようにして作威された固化体は、濃縮廃液をそのま
まセメントで容器内に固化して作成した同体積の従来の
セメント固化体に比べて、放射性物質を約8〜10倍の
量だけ含んでいる。即ち放射性廃棄物としての減容性は
約8〜10倍向上している。しかし反面、同じ容器内に
8〜10倍の放射能が含まれていることになる。
The solidified material created in this way contains approximately 8 to 10 times more radioactive materials than a conventional cement solidified material of the same volume made by solidifying the concentrated waste liquid directly in a container with cement. I'm here. That is, the ability to reduce the volume of radioactive waste is improved by about 8 to 10 times. However, on the other hand, the same container contains 8 to 10 times more radioactivity.

さて,表2は、表1に挙げられた各放射性核種のイオン
に関する各固化材成分の分配係数の測定値を示す。
Now, Table 2 shows the measured values of the distribution coefficients of each solidifying material component regarding the ions of each radionuclide listed in Table 1.

分配係数の測定の例を次に説明する。前記放射性濃縮廃
液が原子力発電所の脱塩用イオン交換樹脂の再生廃液(
主成分はN a z S O 4)である場合を想定し
、槽中にNa2So,飽和水溶液を5 0mf2人れ,
これに表2に示した6通りの核種のうちの1核種のイオ
ンを0.01μC i / rn Q添加した上で、こ
の溶液に、表2に示した固化材成分のうちの1成分の硬
化後粉砕した粒を1g入れ、吸着平衡に達するに十分な
時間の経過後に溶液と固化材成分とを分離し,溶液中の
該核種の′a度(μCi/n+Q)と、固化材成分中の
核種濃度(μCi/g)を放射線測定により測定する。
An example of measuring the distribution coefficient will be explained below. The radioactive concentrated waste liquid is recycled waste liquid of ion exchange resin for desalination at nuclear power plants (
Assuming that the main component is Naz SO (4), a saturated aqueous solution of Na2So was poured into a tank at 50mf,
After adding 0.01 μC i / rn Q of ions of one of the six types of nuclides shown in Table 2, to this solution, one of the solidifying material components shown in Table 2 was cured. Add 1 g of the post-pulverized particles, separate the solution and the solidifying material component after a sufficient time has elapsed to reach adsorption equilibrium, and calculate the 'a degree (μCi/n+Q) of the nuclide in the solution and the solidifying material component. The nuclide concentration (μCi/g) is measured by radiation measurement.

後者の測定値を前者の測定値で割って得られる値が当該
核種に関する当該固化成分の分配係数となる。
The value obtained by dividing the latter measured value by the former measured value becomes the distribution coefficient of the solidified component with respect to the nuclide.

表2のように,放射性核種および固化材成分に依って分
配係数は大きく異なる。セメントとケイ酸.ソーダとで
はCs,Srに関して分配係数が特に大きく異なってい
る。
As shown in Table 2, the distribution coefficient varies greatly depending on the radionuclide and solidification material components. Cement and silicic acid. Particularly, the distribution coefficients of Cs and Sr are significantly different from those of soda.

本発明では前述のような減容作威される放射性廃棄物固
化体の放射性核種濃度に応じて該固化体からの放射能浸
出量を従来のセメント固化体からのそれと同等又はそれ
以下とする様に固化材の戊分を調整するものである。
In the present invention, the amount of radioactivity leached from the solidified radioactive waste to be reduced in volume is made equal to or lower than that from the conventional solidified cement, depending on the radionuclide concentration of the solidified radioactive waste to be reduced in volume. This is to adjust the amount of solidifying material.

今,表2に示す6通りの核種のうちの任意の工つを注目
核種としてこれをjで表わし、表2に示す固化材成分の
任意の1つをkで表わし、jに関するkの分配係数をk
dJkで表わす。
Now, let any one of the six types of nuclides shown in Table 2 be the nuclide of interest and represent it by j, any one of the solidification material components shown in Table 2 by k, and the distribution coefficient of k with respect to j. k
It is expressed as dJk.

(1)単一の固化材成分kを用いる場合:(ここにC,
は固化体中の核種jの濃度)目標とする条件は (従来のセメント固化体からのjの浸出量)≧(a縮廃
液を乾燥粉体化、又は更にはペレット化したものを固化
材kで固化してなる減容された固化体からのjの浸出量
)・・(2) である。濃縮廃液を粉体化もしくはペレント化したこと
による放射性核種jの濃度の濃縮率をα,とすれば上式
(2)は K d s x      K d jkすなわち、 ?d,■ ここにK d J tはセメント(これをk=1で表わ
す)の分配係数とする。
(1) When using a single solidifying agent component k: (where C,
is the concentration of nuclide j in the solidified body) The target condition is (amount of leachable j from the conventional cement solidified body) ≧ (a) The waste liquid is dried and powdered, or furthermore, the solidified material k is made into pellets. The amount of leaching of j from the volume-reduced solidified material obtained by solidification) is (2). If α is the concentration rate of the concentration of radionuclide j resulting from powdering or pelletizing the concentrated waste liquid, then the above equation (2) becomes K d s x K d jk, that is, ? d, ■ Here, K d J t is the distribution coefficient of cement (represented by k=1).

但し、単一の固化材戊分を用いる本場合(1)において
は、その用いる固化材成分はボルトランドセメント、高
炉セメント等の如き通常のセメントではない(即ちk≠
1)とする。なお、一般的に云って、滅容による濃縮率
α,の核種依存性は殆どなく,換言すれば、全てのjに
ついてαjは概ね同じ値である。
However, in this case (1) where a single solidifying agent is used, the solidifying agent component used is not a normal cement such as Boltland cement or blast furnace cement (i.e., k≠
1). Generally speaking, the enrichment rate α due to sterilization has almost no dependence on the nuclide; in other words, αj is approximately the same value for all j.

[例1コ 誠容によってCsが10倍に濃縮された乾燥粉体をケイ
酸ソーダで固化させた場合、表2から、式(4)は となって,十分に満足される。
[Example 1] When a dry powder in which Cs is 10 times more concentrated is solidified with sodium silicate, from Table 2, formula (4) is fully satisfied.

なお、単一固化材成分を用いる場合、表2によれば、C
s,Go両者の浸出量を従来のセメント固化体よりも改
善する例はないが、現実的には、長半減期核種であるC
sに特に注目して、上記[例1]に例示した如く、その
溶出率の低減を図るのが得策である。
In addition, when using a single solidifying material component, according to Table 2, C
Although there is no example of improving the leaching amount of both S and Go compared to conventional cement solidified materials, in reality, C, which is a long half-life nuclide,
It is advisable to pay particular attention to s and try to reduce its elution rate as exemplified in [Example 1] above.

(2)複数の固化材成分を調合した固化材を用いる場合
: この場合は、式(4)に相当する一般式はKdJ. ここに、K d j* H K d 4 1・・は、夫
々、用いる固化材成分a (k=aとする)、固化材戒
分b(k−=b)・・・の分配係数であり、w.,W1
・・はそれら固化材戒分の夫々の調合重量比率を表わし
、 W,+W.+・・・=1         ・・(7)
である。
(2) When using a solidifying material prepared by blending a plurality of solidifying material components: In this case, the general formula corresponding to formula (4) is KdJ. Here, K d j * H K d 4 1... are the distribution coefficients of the solidifying agent component a (k=a), the solidifying agent component b (k-=b), etc. used, respectively. ,w. ,W1
... represents the blended weight ratio of each of the solidifying material precepts, W, +W. +...=1...(7)
It is.

[例2] Csが10倍濃縮された乾燥粉体をセメントにケイ酸ソ
ーダを混合した固化材で固化した場合、式(6)は ?dJi (似しk=1はセメント、k=bはケイ酸ソーダを意味
する) となり、表2からKd,■” l , Kdab = 
9 0であるから、上式は l ?た  Wよ+W,=1 従って、W■=0.89, W.=0.11と選定すれ
ば式(9)は 0.89+ 9 0 X0.11= 10.8> 1 
0となって満足される。
[Example 2] If a dry powder with 10 times the concentration of Cs is solidified with a solidifying agent that is a mixture of cement and sodium silicate, what is the equation (6)? dJi (similarly, k = 1 means cement, k = b means sodium silicate), and from Table 2, Kd, ■" l , Kdab =
9 0, so the above formula is l? W+W,=1 Therefore, W■=0.89, W. =0.11, formula (9) becomes 0.89+90X0.11=10.8>1
It becomes 0 and is satisfied.

[例3] CoとCsが10倍濃縮された乾燥粉体をセメントにケ
イ酸ソーダ及びオキシン添着炭を混合した固化材で固化
した場合、COとCsに関して式(6)は次のようにな
る。
[Example 3] When dry powder in which Co and Cs are concentrated 10 times is solidified with a solidifying agent that is a mixture of cement, sodium silicate, and oxine-impregnated carbon, equation (6) regarding CO and Cs becomes as follows. .

?d,、 (但し、k=1はセメント、k=bはケイ酸ソーダ,k
=cはオキシン添着炭を意味する)表2から Csに関してKd,■= 1 , Kd3b = 9 
0 ,KdJ− = IGoに関してKd,、”930
,KdJb=600,Kd,。:27000 従って、次の三式が成り立つ。
? d,, (where k=1 is cement, k=b is sodium silicate, k
= c means oxine-impregnated carbon) From Table 2, for Cs, Kd, ■ = 1, Kd3b = 9
0, KdJ− = Kd for IGo, “930
,KdJb=600,Kd,. :27000 Therefore, the following three equations hold true.

?L+Wb+W,=1          ・・・(1
3)これら三式を解き、W■=0.6, Wl,=0.
1. W.=0.3と選定すれば式(11) , (1
2)は満足され、CsとCOの両者について浸出量を従
来のセメント固化体よりも低減することができる。
? L+Wb+W,=1...(1
3) Solve these three equations and get W■=0.6, Wl,=0.
1. W. =0.3, formula (11), (1
2) is satisfied, and the amount of leaching of both Cs and CO can be reduced compared to conventional cement solidified bodies.

前記[例1]では式(5)は目標10に対して90であ
って余裕がありすぎ、例えば特に固化材が高価なときは
、余裕を持たせすぎるよりも、必要量だけの固化材を用
いる方がコスト的に菫ましいが,[例2コ、[例3コで
はそのようにできる.本発明の実施において、濃縮率α
jを実際に求めるには、濃縮廃液の貯蔵タンク又は供給
タンク1から濃縮廃液をサンプリングして,その中の固
形分(乾燥粉体化処理後に粉体となる分)の濃度を測定
し,乾燥粉体化、更にはペレット化した場合における濃
縮率αを計算する。前述した様に、一般に現実には,濃
縮率αの核種依存性は殆どなく,実際上全ての核種jに
ついてα,はほぼ同じ値である。標準的な濃縮廃液(主
戊分Na,So.20wt%)では、粉体化の揚合α=
6〜8、更にペレット化の場合にはα=8〜10である
。なお,核種濃度C,は、上記のサンプリング測定した
時にγ線又はβ線測定法によりC,を決定できる。
In the above [Example 1], formula (5) is 90 with respect to the target 10, which is too much margin.For example, if the solidifying material is particularly expensive, it is better to use only the necessary amount of solidifying material rather than allowing too much margin. Although it is more costly to use this method, it can be done in Example 2 and Example 3. In the practice of the present invention, the concentration factor α
To actually determine j, sample the concentrated waste liquid from the concentrated waste liquid storage tank or supply tank 1, measure the concentration of solid content (the amount that becomes powder after drying and powdering), and Calculate the concentration α when powdered and further pelletized. As mentioned above, in general, in reality, the enrichment factor α has almost no dependence on the nuclide, and α is practically the same value for all nuclides j. For standard concentrated waste liquid (mainly Na, So. 20wt%), the powderization ratio α=
6 to 8, and in the case of pelletization, α=8 to 10. Note that the nuclide concentration C, can be determined by the gamma ray or beta ray measurement method when performing the sampling measurement described above.

固化材の調整は、その都度,′a縮廃液Ift蔵タンク
又は供給タンク1からサンプリング(或いは更に乾燥粉
体機2からのサンプリング)による測定で求めた濃縮率
αに基づいて前述の式を用いて固化材の調整をするのが
原則であるが、しかし、実際上、減容・固化処理システ
ムが定まれば、前述したように、濃縮率αは概ね決まる
ので、それに合わせて予め始めから調整した固化材を用
いる方が実際的である。例えば、ベレット化の場合には
,αは約10であるから、ケイ酸ソーダを主成分とした
固化材を前以って作成しておき、これを用いればよい。
The solidification agent is adjusted each time using the above-mentioned formula based on the concentration ratio α determined by sampling from the waste liquid Ift storage tank or supply tank 1 (or further sampling from the drying powder machine 2). However, in practice, once the volume reduction and solidification treatment system is determined, the concentration ratio α is roughly determined, so it must be adjusted from the beginning accordingly. It is more practical to use a solidified material. For example, in the case of pelletizing, since α is approximately 10, a solidifying material containing sodium silicate as a main component may be prepared in advance and used.

前記の例で述べたセメントとケイ酸ソーダを混ぜた固化
材(セメントガラスと称する)がその一例である。
An example of this is the solidifying material (referred to as cement glass) that is a mixture of cement and sodium silicate as described in the previous example.

注目核種jとしては、基本的には、表2に示す6核種を
選定するが,運用上便宜的には廃液中に含まれる核種の
うち次の3核穂でもよい。
Basically, the six nuclides shown in Table 2 are selected as the nuclide of interest j, but for operational convenience, the following three nuclides of the nuclides contained in the waste liquid may be used.

更に簡略的には、長半減期(30年)であって、γ線を
出すので測定が容易であるCs−137のみを注目核種
としてもよい。
More simply, only Cs-137, which has a long half-life (30 years) and is easy to measure because it emits gamma rays, may be the nuclide of interest.

これに関して補足説明すると、実際運用上では、用いる
固化材成分やその調合比の決定には、濃縮率αのみでな
く,核種の濃度、含有量、核種の半減期などを考慮する
ことが合理的であって、例えば、Go−60 (半減期
5.8年)がCs−137 (半減期30年)の10倍
の濃度で混入していたとしても、約20年でほぼ同じレ
ベルの濃度になり,その後はCs−137の方がレベル
が高くなるので、最終処分施設の管理期間(日本では3
00年)を考慮すれば. Cs−137を注目核種に選
んで固化材の選定をする方が合理的であると云える。
To provide a supplementary explanation on this, in actual operation, it is reasonable to consider not only the concentration rate α but also the nuclide concentration, content, half-life of the nuclide, etc. when determining the solidification material components to be used and their mixing ratio. For example, even if Go-60 (half-life 5.8 years) is mixed in at a concentration 10 times that of Cs-137 (half-life 30 years), the concentration will reach almost the same level in about 20 years. After that, the level of Cs-137 becomes higher, so the management period of the final disposal facility (3 in Japan)
2000). It can be said that it is more rational to select Cs-137 as the nuclide of interest and select the solidifying material.

第3図は固化体からの放射能放出量の比較を示す。この
図は、例IのCs放出量を基準II I IIにとって
他の値を規格化して表わした図である。例■は濃縮廃液
を乾燥粉体化し且つペレット化したものをケイ酸ソーダ
を固化材として用いて固化させた本発明実施例の固化体
の場合であり,例■は濃縮廃液そのままをセメントを固
化材として用いて均質固化させた従来のセメント固化体
の場合である。本発明実施例によれば、従来のセメント
固化体に比べて放射能を固化体から浸出させない効果が
優れていることがわかる。
Figure 3 shows a comparison of the amount of radioactivity released from the solidified bodies. This figure is a diagram in which the Cs release amount of Example I is normalized to the reference II III II and other values are normalized. Example (■) is a case of a solidified product according to an embodiment of the present invention in which the concentrated waste liquid is dried into powder and pelletized and solidified using sodium silicate as a solidifying agent. Example (2) is a case where cement is solidified from the concentrated waste liquid as it is. This is the case with conventional solidified cement that is used as a material and solidified homogeneously. According to the examples of the present invention, it can be seen that the effect of preventing radioactivity from leaching out from the solidified body is superior to that of conventional cement solidified bodies.

なお、以上の説明においては,濃縮廃液を乾燥粉体化、
或いは更にこれをペレット化したものを固化材で固化す
る場合について述べたが.本発明は,これに限らず、使
用済イオン交換樹脂スラリーを乾燥粉体化、更にはペレ
ット化したものを固化処理する場合、または濃縮廃液を
粉体化までは行かないが、泥(スラッジ)状にまで濃縮
したものを固化材で固化させる場合など、いずれの減容
・固化処理の場合にも適用することができる。
In the above explanation, the concentrated waste liquid is dried and powdered.
Or, I have described the case where this is made into pellets and solidified with a solidifying agent. The present invention is applicable not only to this, but also to the case where used ion exchange resin slurry is dried and powdered, or even pelletized and solidified, or when concentrated waste liquid is not powdered, but mud (sludge) is processed. It can be applied to any volume reduction/solidification process, such as when solidifying a substance that has been concentrated to a solid state using a solidifying agent.

[発明の効果] 本発明によれば,従来のセメント固化体に比べて滅容比
を高めた固化体(従って固化体中の放射能濃度がより高
い固化体)からの注目核種放射能の環境への浸出量を従
来のセメント固化体のそれと同等又はそれ以下となすこ
とができるので、固化容器一体当りに充填できる放射性
廃棄物量を増やすことができ、廃棄物の処分費,運搬費
等の諸経費の節約ができる。
[Effects of the Invention] According to the present invention, the radioactivity environment of the nuclide of interest is improved from a solidified body with a higher sterilization ratio than a conventional cement solidified body (therefore, a solidified body with a higher radioactivity concentration in the solidified body). The amount of radioactive waste that can be filled into one solidified container can be increased, and various costs such as waste disposal costs and transportation costs can be reduced. You can save costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例のプロセスフロー
およびプロセス設備概要を夫々示す図、第3図は放射能
放出量の比較を示す図である。 1・・・濃縮廃液供給タンク 2・・・遠心渾膜乾燥機  3・・・造粒機4・・・容
器       5・・・制御器6・・・固化材成分タ
ンク 7・・・固化材タンク8・・・水タンク    
 9・・・混棟槽他l名 第1図 5・・・i!Il画器 ギー研元F)T円
FIG. 1 and FIG. 2 are diagrams showing a process flow and an outline of process equipment in an embodiment of the present invention, respectively, and FIG. 3 is a diagram showing a comparison of the amount of radioactivity released. 1... Concentrated waste liquid supply tank 2... Centrifugal filter dryer 3... Granulator 4... Container 5... Controller 6... Solidifying material component tank 7... Solidifying material tank 8...Water tank
9...Mixed tank and others Figure 1 5...i! Il Painting Equipment Guy Kengen F) T Yen

Claims (1)

【特許請求の範囲】 1 放射性の濃縮廃液もしくは廃樹脂スラリーを乾燥粉
体化してなる、もしくはそれを更にペレット状に造粒し
てなる放射性廃棄物、又は上記濃縮廃液を更に泥状に濃
縮してなる放射性廃棄物を容器内に固化材を用いて固化
することにより放射性廃棄物固化体を作成する方法にお
いて、カーボン14、コバルト60、セシウム137、
ストロンチウム90、ニッケル63およびα線を放出す
る物質からなる放射性物質グループのうち前記放射性廃
棄物中に含有される少くとも1種または複数種の放射性
物質の上記放射性廃棄物固化体からの浸出量が、前記濃
縮廃液をそのまま容器内にセメントを固化材として用い
て固化することにより作成された放射性廃棄物固化体か
らのそれと同等またはそれ以下となるように、上記1種
または複数種の放射性物質別の放射能濃度および該夫々
の放射性物質に対する固化材成分の分配係数に応じて、
分配係数の異なる固化材成分の一種または複数種を調合
したものを固化材として用いることを特徴とする、放射
性廃棄物固化体の作成方法。 2 前記固化材成分がセメント、ケイ酸ソーダ、ゼオラ
イト、ベントナイト、カルシウム塩およびオキシン添着
炭よりなるグループから選ばれることを特徴とする請求
項1記載の放射性廃棄物固化体の作成方法。
[Scope of Claims] 1. Radioactive waste obtained by drying and powdering radioactive concentrated waste liquid or waste resin slurry, or by further granulating it into pellets, or by further concentrating the above concentrated waste liquid into slurry. A method for creating a solidified radioactive waste by solidifying radioactive waste in a container using a solidifying material, comprising carbon-14, cobalt-60, cesium-137,
The amount of at least one or more types of radioactive substances contained in the radioactive waste out of the radioactive substance group consisting of substances that emit strontium-90, nickel-63, and alpha rays is leached from the solidified radioactive waste. , one or more types of radioactive substances are added so that the concentration is equal to or lower than that from a radioactive waste solidified body created by solidifying the concentrated waste liquid as it is in a container using cement as a solidifying material. Depending on the radioactivity concentration of and the distribution coefficient of the solidifying material component for each radioactive substance,
A method for producing solidified radioactive waste, characterized in that a mixture of one or more types of solidification material components having different distribution coefficients is used as a solidification material. 2. The method for producing solidified radioactive waste according to claim 1, wherein the solidifying agent component is selected from the group consisting of cement, sodium silicate, zeolite, bentonite, calcium salt, and oxine-impregnated carbon.
JP1243671A 1989-09-20 1989-09-20 Radioactive waste treatment method Expired - Fee Related JP2912393B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1243671A JP2912393B2 (en) 1989-09-20 1989-09-20 Radioactive waste treatment method
US07/581,904 US5143654A (en) 1989-09-20 1990-09-13 Method and apparatus for solidifying radioactive waste
EP19900310117 EP0419162A3 (en) 1989-09-20 1990-09-17 Method and apparatus for solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243671A JP2912393B2 (en) 1989-09-20 1989-09-20 Radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JPH03105298A true JPH03105298A (en) 1991-05-02
JP2912393B2 JP2912393B2 (en) 1999-06-28

Family

ID=17107259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243671A Expired - Fee Related JP2912393B2 (en) 1989-09-20 1989-09-20 Radioactive waste treatment method

Country Status (3)

Country Link
US (1) US5143654A (en)
EP (1) EP0419162A3 (en)
JP (1) JP2912393B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498828A (en) * 1992-03-19 1996-03-12 Hitachi, Ltd. Solidification agents for radioactive waste and a method for processing radioactive waste
JPH09211194A (en) * 1996-01-30 1997-08-15 Toshiba Corp Method for solidifying radioactive waste
JP2013007599A (en) * 2011-06-23 2013-01-10 Denki Kagaku Kogyo Kk Solidification material for contaminated water and processing method
JP2013113716A (en) * 2011-11-29 2013-06-10 Shinki Sangyo Kk Method for treating radioactive nuclide contaminant
JP2013213701A (en) * 2012-03-30 2013-10-17 Ihi Corp Processing method for contaminated water, processing material, manufacturing method for crustal composition, paste crustal composition, and crustal composition
JP2013231696A (en) * 2012-05-01 2013-11-14 Sanai Fujita Immobilizing agent and immobilizing method for radioactive waste
JP2013250079A (en) * 2012-05-30 2013-12-12 Shimizu Corp Packaging system
JP2018017702A (en) * 2016-07-29 2018-02-01 株式会社クボタ Slurry heat treatment method, rotary type surface fusion furnace, radioactive cesium separation concentration device, and fusion device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540199A (en) * 1991-08-08 1993-02-19 Hitachi Ltd Processing system for radioactive waste
US5819186A (en) * 1996-04-26 1998-10-06 Stephens; Patrick J. Cellular grout radiation barrier
GB0130593D0 (en) * 2001-12-21 2002-02-06 British Nuclear Fuels Plc Treatment of waste products
US7737319B2 (en) * 2005-04-29 2010-06-15 Llyon Technologies, Llc Treating radioactive materials
US7402132B2 (en) * 2005-04-29 2008-07-22 Matthews Jack W Treating hazardous materials
US20080249347A1 (en) * 2007-04-04 2008-10-09 William Gregory Broda Waste Stabilization and Packaging System for Fissile Isotope-Laden Wastes
FR2933077B1 (en) * 2008-06-26 2010-06-18 Commissariat Energie Atomique SYSTEM FOR INTRODUCING MORTAR IN A CONTAINER
CN101935200A (en) * 2010-08-31 2011-01-05 清华大学 Curing agent for curing radioactive wastes containing borate and method thereof
US9400340B2 (en) * 2013-05-13 2016-07-26 Baker Hughes Incorporated Sourceless density measurements with neutron induced gamma normalization
CN104282353B (en) * 2014-09-24 2017-03-29 深圳市航天新材科技有限公司 Radioactivity steams the geological cement and its curing of residual liquid solidification
CN104291762B (en) * 2014-09-24 2017-04-26 深圳市航天新材科技有限公司 Chemically bonded cementing agent for curing radioactive spent resin and curing method of chemically bonded cementing agent
RU2580949C1 (en) * 2014-11-13 2016-04-10 Российская Федерация в лице Государственной корпорации по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for processing spent radioactive ion-exchange resins
JP2016150336A (en) * 2015-02-17 2016-08-22 篠原 健二 Solidified body storage vessel 3 for contaminated waste
RU2597242C1 (en) * 2015-04-13 2016-09-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method of cleaning liquid radioactive wastes from organic impurities
CN110483002A (en) * 2019-09-03 2019-11-22 湖州师范学院 For the buffering backfilling material and preparation method thereof in high level radioactive waste repository
CN111145931B (en) * 2020-02-17 2020-09-08 南华大学 Method for treating radioactive solid waste

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2129836B1 (en) * 1971-03-16 1974-04-26 Commissariat Energie Atomique
US4010108A (en) * 1972-01-24 1977-03-01 Nuclear Engineering Company, Inc. Radioactive waste disposal of water containing waste using urea-formaldehyde resin
US3988258A (en) * 1975-01-17 1976-10-26 United Nuclear Industries, Inc. Radwaste disposal by incorporation in matrix
US4173546A (en) * 1976-07-26 1979-11-06 Hayes John F Method of treating waste material containing radioactive cesium isotopes
JPS6038680B2 (en) * 1980-04-04 1985-09-02 株式会社日立製作所 Treatment method for radioactive waste liquid containing surfactant
US4444680A (en) * 1981-06-26 1984-04-24 Westinghouse Electric Corp. Process and apparatus for the volume reduction of PWR liquid wastes
DE3214242A1 (en) * 1982-04-17 1983-10-20 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR IMPROVING THE PROPERTIES OF RADIOACTIVE WASTE REINFORCEMENTS REQUIRED FOR LONG TERM STORAGE
DE3215508C2 (en) * 1982-04-26 1986-11-06 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Process for improving the radionuclide retention properties of solidification of radioactive waste
JPS5960299A (en) * 1982-09-29 1984-04-06 株式会社日立製作所 Radioactive waste solidifying facility
WO1984004624A1 (en) * 1983-05-18 1984-11-22 Hitachi Ltd Process for solidifying radioactive wastes
JP2781566B2 (en) * 1988-05-02 1998-07-30 株式会社日立製作所 Cement solidification method and solidified body of radioactive waste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498828A (en) * 1992-03-19 1996-03-12 Hitachi, Ltd. Solidification agents for radioactive waste and a method for processing radioactive waste
JPH09211194A (en) * 1996-01-30 1997-08-15 Toshiba Corp Method for solidifying radioactive waste
JP2013007599A (en) * 2011-06-23 2013-01-10 Denki Kagaku Kogyo Kk Solidification material for contaminated water and processing method
JP2013113716A (en) * 2011-11-29 2013-06-10 Shinki Sangyo Kk Method for treating radioactive nuclide contaminant
JP2013213701A (en) * 2012-03-30 2013-10-17 Ihi Corp Processing method for contaminated water, processing material, manufacturing method for crustal composition, paste crustal composition, and crustal composition
JP2013231696A (en) * 2012-05-01 2013-11-14 Sanai Fujita Immobilizing agent and immobilizing method for radioactive waste
JP2013250079A (en) * 2012-05-30 2013-12-12 Shimizu Corp Packaging system
JP2018017702A (en) * 2016-07-29 2018-02-01 株式会社クボタ Slurry heat treatment method, rotary type surface fusion furnace, radioactive cesium separation concentration device, and fusion device

Also Published As

Publication number Publication date
JP2912393B2 (en) 1999-06-28
EP0419162A3 (en) 1992-01-02
EP0419162A2 (en) 1991-03-27
US5143654A (en) 1992-09-01

Similar Documents

Publication Publication Date Title
JPH03105298A (en) Producing method for solidified body of radioactive waste
El-Kamash et al. Immobilization of cesium and strontium radionuclides in zeolite-cement blends
US4363757A (en) Method for noncontaminating solidification for final storage of aqueous, radioactive waste liquids
RU2381580C1 (en) Method of stabilising highly saline high-activity wastes
Vandevenne et al. Alkali-activated materials for radionuclide immobilisation and the effect of precursor composition on Cs/Sr retention
Maksin et al. Modeling of kinetics of pertechnetate removal by amino-functionalized glycidyl methacrylate copolymer
JPH06230186A (en) Processing system and method of radioactive waste
JP2908107B2 (en) Solidification material for radioactive waste and method for treating radioactive waste
JP3015593B2 (en) Radioactive waste treatment method
JPS61178698A (en) Method of hardening water glass
JPH09211194A (en) Method for solidifying radioactive waste
Amaya et al. Study of BiPbO 2 NO 3 for I-129 fixation under reducing conditions
El-Dessouky et al. Leaching and Mechanical Properties of Cement-Polyacrylamide Composite Developed as Matrices for Immobilization of 137Cs and 60Co Radionuclides.
JPH03150499A (en) Solidification of radioactive waste
Neilson Jr et al. Solidification of ion exchange resin wastes in hydraulic cement
Plecas et al. Immobilization of 137 Cs and 60 Co in a Concrete Matrix. Part Two: Mathematical Modeling of Transport Phenomena
RU2154317C2 (en) Method for recovering liquid radioactive wastes
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPH08285995A (en) Method for solidification process of radioactive waste
Tiwari et al. Inorganic and bio-materials in the removal/speciation of radiocesium and radiostrontium: an overview
Nichols et al. Hydraulic Properties of Grout Monoliths Containing Organic Ion Exchange Resin-18369
JPS6040998A (en) Method of wrapping and receiving radioactive waste
Moriyama et al. Incorporation of an Evaporator Concentrate in Polyethylene for a BWR
Plecas et al. Mathematical modelling of immobilization of radionuclides 137Cs and 60Co in concrete matrix
JPH0677075B2 (en) Method for solidifying radioactive waste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees