JP2013113716A - Method for treating radioactive nuclide contaminant - Google Patents

Method for treating radioactive nuclide contaminant Download PDF

Info

Publication number
JP2013113716A
JP2013113716A JP2011260208A JP2011260208A JP2013113716A JP 2013113716 A JP2013113716 A JP 2013113716A JP 2011260208 A JP2011260208 A JP 2011260208A JP 2011260208 A JP2011260208 A JP 2011260208A JP 2013113716 A JP2013113716 A JP 2013113716A
Authority
JP
Japan
Prior art keywords
contaminant
mineral water
radionuclide
activated mineral
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011260208A
Other languages
Japanese (ja)
Inventor
Atsushi Sugihara
杉原  淳
Kenji Hatanaka
賢爾 畑中
Kunihiko Hatanaka
邦彦 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKI SANGYO KK
Original Assignee
SHINKI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKI SANGYO KK filed Critical SHINKI SANGYO KK
Priority to JP2011260208A priority Critical patent/JP2013113716A/en
Publication of JP2013113716A publication Critical patent/JP2013113716A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To change a radioactive nuclide contaminant to a radioactive nuclide contaminant that can be easily treated as soon as possible by enhancing security by weakening radioactivity of the radioactive nuclide contaminant.SOLUTION: A radiation transmission power reduction treatment method of a radioactive nuclide contaminant infiltrates activated mineral water obtained by a prescribed preparation into a radioactive nuclide contaminant housed in a container or adopts a container made of resin material subjected to prescribed activation treatment as the container together with the treatment. The activated mineral water obtained by the prescribed preparation is activated mineral water manufactured by alternately repeating a process for making water pressurized to 5-30 atmospheric pressure subjected to contact transmission of mineral inorganic substance selected among basalt, andesite, and magnetite, and a process for storing the water subjected to the process under atmosphere less than the pressurized prescribed atmospheric pressure, and the prescribed activation treatment dips a monomer of resin material or a pellet-shaped or flake-shaped polymer into the activated mineral water. Radiation transmission power is efficiently reduced by such infiltration or the like in which the radioactive nuclide contaminant is subjected to the penetration of or is dipped into the activated mineral water.

Description

この発明は、放射性核種汚染物の放射線量を低減化する処理方法に関する。   The present invention relates to a processing method for reducing the radiation dose of radionuclide contaminants.

原子力発電プラントからの放射性核種を含む廃液や、事故によって外部に漏れた放射性核種によって汚染された土壌などの放射線量をできるだけ速やかに低減化するための処理方法の確立が求められている。   Establishment of a treatment method for reducing the radiation dose of waste liquid containing radioactive nuclides from nuclear power plants and soil contaminated with radioactive nuclides leaked to the outside as a result of accidents is required.

特に、原子力発電プラントからの放射性核種で汚染された土壌などに含まれている放射能核種としては、セシウム134、セシウム137、ヨウ素131、ストロンチウム90などが挙げられる。   In particular, as radionuclides contained in soil contaminated with radionuclides from a nuclear power plant, cesium 134, cesium 137, iodine 131, strontium 90, and the like can be given.

このうち、セシウム134(134 55Cs)の半減期は2年であり、セシウム137(137 55Cs)の半減期は30年、ストロンチウム90(90 38Sr)の半減期は約29年であることから、放射線量をできるだけ早期に低減する処理が希求されている。 Of these, the half-life of cesium 134 ( 134 55 Cs) is 2 years, the half-life of cesium 137 ( 137 55 Cs) is 30 years, and the half-life of strontium 90 ( 90 38 Sr) is about 29 years Therefore, there is a demand for a process for reducing the radiation dose as early as possible.

例えば、土壌や水などの汚染物から放射性核種を集めて分離除去する方法として、ゼオライトなどのような多孔質結晶構造の鉱物と混ぜることによりセシウムを吸着させ、これを分離して焼結し固化する技術が周知である。   For example, as a method of collecting and separating radionuclides from contaminants such as soil and water, cesium is adsorbed by mixing with minerals with a porous crystal structure such as zeolite, and this is separated, sintered, and solidified. Techniques for doing this are well known.

また、粒状イオン交換樹脂および繊維状イオン交換樹脂を用いて、原子力発電プラントからの放射性核種を含む廃液を処理する放射性核種含有廃液処理装置が知られている(特許文献1)。   Also, a radionuclide-containing waste liquid treatment apparatus that treats a waste liquid containing a radionuclide from a nuclear power plant using a granular ion exchange resin and a fibrous ion exchange resin is known (Patent Document 1).

なお、所定の活性化鉱水を樹脂材に接触または含ませて樹脂ペレットを活性化処理する方法(特許文献2)は知られているが、これにより得られた樹脂ペレットは通常のイオン交換樹脂とは異なる。   In addition, although the method (patent document 2) which activates a resin pellet by making a predetermined activated mineral water contact or contain a resin material is known, the resin pellet obtained by this is normal ion-exchange resin and Is different.

また、上記所定の活性化鉱水は、本願の出願人らによる特許発明「活性化鉱水の製造方法およびその製造装置」により調製される周知のものであり、水の分子レベルの変化によって物理化学的作用のある水として活性化鉱水の名称で製造技術が知られている(特許文献3)。   Further, the predetermined activated mineral water is a well-known one prepared by the patented invention “method for producing activated mineral water and its production apparatus” by the applicants of the present application. Production technology is known under the name of activated mineral water as active water (Patent Document 3).

特開2008−26054号公報JP 2008-26054 A 特開2008−26054号公報JP 2008-26054 A 特公平04−74074号公報Japanese Patent Publication No. 04-74074

しかし、従来のイオン交換樹脂を用いた放射性核種含有廃液処理技術では、廃液中から放射能核種やイオン性の不純物を除去できるが、固形物としての土壌や土壌を含む廃棄物そのものに対する処理は対処できなかった。   However, the radionuclide-containing waste liquid treatment technology using conventional ion exchange resins can remove radionuclides and ionic impurities from the waste liquid, but it does not deal with the treatment of soil as a solid or waste itself containing soil. could not.

また、原子力発電プラントから放出された放射性核種は、大量の土壌中に混じるとこれを除去することが、非効率的になって実際の処理は相当に困難であるため、放射性核種の外部への放射能を弱める処理が求められるが、効率のよい処理方法は確立されていなかった。   In addition, radionuclides released from nuclear power plants are mixed in a large amount of soil, and it is inefficient and actual treatment is difficult. Although treatment for reducing radioactivity is required, an efficient treatment method has not been established.

そこで、この発明の課題は、原子力発電プラントから放出された放射性核種を含む土壌またはそれを含む汚染物質であるガレキなどの放射性核種汚染物について、その放射能を効率よく弱めることにより安全性を高め、可及的速やかに適切な処理を可能にすることを課題としている。   Therefore, an object of the present invention is to increase safety by efficiently reducing the radioactivity of soil containing radioactive nuclides released from a nuclear power plant or radioactive nuclides such as rubble containing the radioactive nuclides. The challenge is to enable appropriate processing as quickly as possible.

上記の課題を解決するために、この発明においては、容器に収容した放射性核種汚染物に下記の所定製法で得られる活性化鉱水を浸潤または前記容器に含ませて接触させることからなる放射性核種汚染物の放射線透過力低減化処理方法としたのである。   In order to solve the above-mentioned problems, in the present invention, radionuclide contamination comprising the radioactive nuclide contaminated in a container is infiltrated with activated mineral water obtained by the following predetermined manufacturing method or brought into contact with the container. This is a method for reducing the radiation transmission power of an object.

上記所定の活性化鉱水の製法は、5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱から選ばれる鉱物性無機物質に接触通過させる工程と、この工程を経た水を前記加圧された所定気圧未満の雰囲気下に貯留する工程を交互に繰り返して製造する方法である。   The predetermined activated mineral water is produced by a step of contacting water pressurized to 5 to 30 atm with a mineral inorganic substance selected from basalt, andesite, and magnetite, and the water subjected to this step is pressurized. In addition, the process of storing in an atmosphere of less than a predetermined atmospheric pressure is alternately repeated.

上記したように構成されるこの発明の放射性核種汚染物の放射線透過力低減化処理方法では、容器内に収容された土壌などの放射性核種汚染物は、活性化鉱水が浸透または浸漬されるように浸潤すること、または前記容器に含ませて接触させることにより、活性化鉱水または容器を介してα線、β線、γ線および中性子線を含む放射線の透過力を効率よく低減する。   In the radionuclide contaminant reducing method for radionuclide contamination according to the present invention configured as described above, the activated mineral water is infiltrated or immersed in the radionuclide contaminant such as soil contained in the container. By infiltrating or in contact with the container, the transmission power of radiation including α-rays, β-rays, γ-rays and neutrons through the activated mineral water or the container is efficiently reduced.

この発明に用いる活性化鉱水は、通常の水に比べて浸透性の高い特性の水であり、土壌などに対する浸透性は高く、木材、コンクリート片その他の様々な物質が混在する土壌や放射性核種汚染物に速やかに染み込んで表面を濡らして浸潤する処理を効率よく行なえる。   The activated mineral water used in the present invention is water having characteristics that are more permeable than ordinary water, has high permeability to soil, etc., soil mixed with various materials such as wood, concrete pieces, and radionuclide contamination It is possible to efficiently infiltrate quickly by soaking in an object and wetting the surface.

また、放射性核種汚染物に対して活性化鉱水を浸潤することによる放射線の透過力低減効果は、通常の水を使用した場合の放射線の透過力低減効果に比べてより優れた効果が得られる。   Further, the effect of reducing the radiation transmission power by infiltrating the activated mineral water into the radionuclide pollutant is more excellent than the effect of reducing the radiation transmission power when normal water is used.

このような放射性核種汚染物の放射線透過力低減化は、以下の処理方法によっても同様な効果を奏する。
すなわち、上記活性化鉱水を浸潤させる処理に代えて、またはこの処理と共に上記容器として、下記の所定活性処理を経た樹脂材で形成された容器を採用する上記に記載の放射性核種汚染物の放射線透過力低減化処理方法とするのである。
Such a reduction in the radiation transmission power of radionuclide contaminants has the same effect by the following treatment method.
That is, instead of the treatment for infiltrating the activated mineral water, or together with this treatment, as the vessel, a container formed of a resin material that has been subjected to the following prescribed activation treatment is used. This is a force reduction processing method.

上記容器が、以下の所定活性処理を経た樹脂材を用いて形成された容器である場合においては、上記の放射性核種汚染物を収容することにより放射線透過力を低減化する。
すなわち、所定活性処理は、樹脂材のモノマーまたはペレット状もしくはフレーク状であるポリマーを、前記した所定製法により得られた活性化鉱水に所定時間浸漬させる樹脂材の活性処理である。
In the case where the container is a container formed using a resin material that has been subjected to the following predetermined activation treatment, the radiation transmission power is reduced by containing the radionuclide contaminants.
That is, the predetermined activation treatment is an activation treatment of the resin material in which a monomer of the resin material or a polymer in the form of pellets or flakes is immersed in the activated mineral water obtained by the above-described predetermined production method for a predetermined time.

このようにすると、防水性容器自体に活性化鉱水と同様の鉱物質が保持されまたはその特性が保持される。また、容器に接した水分は、浸透性の高い活性化状態を維持しやすくなるから、放射性核種汚染物に当初より含まれている水分によってもより効率の良い放射線透過力低減化作用を受けるものと考えられる。   If it does in this way, the mineral substance similar to activated mineral water will be hold | maintained in the waterproof container itself, or its characteristic will be hold | maintained. In addition, since the moisture in contact with the container is easy to maintain an activated state with high permeability, the moisture that is contained in the radionuclide pollutant from the beginning is subjected to a more efficient radiation transmission power reducing effect. it is conceivable that.

上記のように放射線透過力低減化作用を発揮させることが好ましい処理対象の放射線核種としては、ヨウ素131(131 53I)、セシウム134(134 55Cs)およびセシウム137(137 55Cs)、ストロンチウム90(90 38Sr)から選ばれる一種以上の放射線核種である。 Examples of the radionuclide to be treated that preferably exhibits the effect of reducing the radiation transmission power as described above include iodine 131 ( 131 53 I), cesium 134 ( 134 55 Cs), cesium 137 ( 137 55 Cs), and strontium 90. One or more radionuclides selected from ( 90 38 Sr).

この発明は、防水性容器内の放射性核種汚染物に所定の製法で得られる活性化鉱水を放射性核種汚染物に浸潤させるので、原子力発電プラントから放出された放射性核種を含む土壌またはそれを含む汚染物質であるガレキなどの放射性核種汚染物について、その放射能を弱めることにより安全性を高め、可及的速やかに処理の容易な放射性核種汚染物にでき、充分に放射能が弱まった場合には二次処理を不要にすることも可能である。   In this invention, the radioactive nuclide pollutant in the waterproof container is infiltrated into the radionuclide pollutant by the activated mineral water obtained by a predetermined production method. Therefore, the soil containing the radionuclide released from the nuclear power plant or the contamination containing the soil is contained. In the case of radioactive nuclide contaminants such as rubble, which is a substance, it is possible to increase safety by reducing its radioactivity, making it easy to process radionuclide contaminants as soon as possible, and if the radioactivity is sufficiently weakened It is also possible to eliminate the secondary processing.

また、所定活性処理を経た樹脂材を用いて形成された防水性容器を用いて上記同様に放射性核種汚染物を処理することにより、上記同様に放射性核種汚染物の放射能を効率よく弱め、隔離などの二次処理もしくは最終処理の容易または不要な放射性核種汚染物にできるという利点がある。   In addition, by treating the radionuclide pollutant in the same manner as described above using a waterproof container formed using a resin material that has undergone a predetermined activation treatment, the radioactivity of the radionuclide pollutant is effectively attenuated and isolated as above. There is an advantage that secondary or final treatment such as can be easily performed or unnecessary radionuclide contamination can be obtained.

実施例1〜6および対応する比較例1〜6の放射線量を比較して示す図表The chart which compares and shows the radiation dose of Examples 1-6 and corresponding Comparative Examples 1-6

この発明の実施形態である放射性核種汚染物の放射線透過力低減化処理方法は、容器に収容した放射性核種汚染物に下記の製法で得られる活性化鉱水を浸潤させることを必須工程とする。   In the radionuclide contaminant reducing treatment method according to the embodiment of the present invention, it is an essential step to infiltrate the activated mineral water obtained by the following manufacturing method into the radionuclide contaminant contained in the container.

この発明の処理対象となる放射性核種汚染物は、汚染された放射性核種を限定するものではなく、放射線の種類のα線、β線、γ線または中性子線のいずれを含む放射線を発散するものであっても処理対象とすることができる。   The radionuclide contaminant to be treated in this invention is not limited to the contaminated radionuclide, but emits radiation including any kind of radiation, α-rays, β-rays, γ-rays or neutron rays. Even if it exists, it can be made into a process target.

この発明に用いる活性化鉱水は、前記した特許文献2、3などにおいて周知なものであり、上記活性化鉱水は、5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱などの鉱物性無機物質に接触通過させる工程と、この工程を経た水を前記加圧された所定気圧未満の雰囲気下に貯留する工程を交互に繰り返して製造された活性化鉱水である。   The activated mineral water used in the present invention is well known in Patent Documents 2 and 3 described above, and the activated mineral water is made of minerals such as basalt, andesite, magnetite, etc., pressurized to 5 to 30 atmospheres. It is activated mineral water produced by alternately repeating a step of passing through an inorganic substance and a step of storing the water passed through this step in the pressurized atmosphere of less than a predetermined atmospheric pressure.

上記方法で製造された活性化鉱水は、接触通過した鉱物性無機物質から溶出した無機イオン(例えば2価または3価の無機イオン)を含んでいるほか、水素結合が切れて水分子が5〜6クラスター程度となり、通常の水分子の20〜30分子の場合に比べて小さいことなど、分子レベルで水の状態が変化していると考えられ、種々の物質によく浸透する物性が備わっている鉱水である。   The activated mineral water produced by the above method contains inorganic ions (for example, divalent or trivalent inorganic ions) eluted from the mineral inorganic material that has passed through the contact, and the hydrogen bond is broken and the water molecules are 5 to 5. It is considered that the state of water is changing at the molecular level, such as being smaller than the case of 20-30 molecules of normal water molecules, and has physical properties that penetrate well into various substances. Mineral water.

因みに、鉱物性無機物質の代表例である玄武岩、安山岩、磁鉄鉱の主な成分としては、SiO2、TiO2、Al23、Fe23、FeO、MnO、MgO、CaO、Na2O、K2Oが挙げられる。 Incidentally, the main components of basalt, andesite, and magnetite, which are representative examples of mineral inorganic materials, include SiO 2 , TiO 2 , Al 2 O 3 , Fe 2 O 3 , FeO, MnO, MgO, CaO, and Na 2 O. , K 2 O.

上記所定の製造工程において、5〜30気圧に加圧された水を使用して鉱物性無機物質に接触通過させる理由は、5気圧未満の低圧では活性化鉱水の製造効率が悪く、生成された鉱水の浸透性向上などの作用が不充分だからであり、また加圧の上限は、30気圧を越える加圧水を接触させても活性化鉱水にそれ以上に変化が見られず、却って実用性を失するからである。   In the predetermined manufacturing process, the reason why the water pressurized to 5 to 30 atm is contacted and passed through the mineral inorganic substance is that the production efficiency of the activated mineral water is poor at a low pressure of less than 5 atm. This is because the effect of improving the permeability of the mineral water is insufficient, and the upper limit of the pressurization is not changed even more in the activated mineral water even when contacted with the pressurized water exceeding 30 atm. Because it does.

また、5〜30気圧という加圧時の気圧未満の雰囲気下に貯留する工程を設け、例えば曝気などによって好ましくは大気圧以下に減圧する理由は、加圧された水を一旦減圧し、再び加圧するという工程を繰り返すことによって、水の水素結合を切って変性させ、それまで水素結合に寄与していた電子を還元性に寄与させるためである。このような減圧と加圧を繰り返す製造工程は、活性化鉱水に特有の物性を付与するために必要な工程であると考えられる。   In addition, a process of storing in an atmosphere of 5 to 30 atmospheres below the atmospheric pressure at the time of pressurization is provided, and the reason for reducing the pressure to preferably atmospheric pressure or less by aeration, for example, is that the pressurized water is temporarily reduced and then added again. This is because by repeating the step of pressing, the hydrogen bond of water is cut and denatured, and the electrons that have previously contributed to the hydrogen bond contribute to the reducibility. Such a production process in which pressure reduction and pressurization are repeated is considered to be a process necessary for imparting specific physical properties to the activated mineral water.

上記の所定方法で製造された活性化鉱水を用いて、樹脂材のモノマーまたはペレット状もしくはフレーク状であるポリマーを所定時間浸漬すると、樹脂材を活性化処理することができる。   The resin material can be activated by immersing the monomer of the resin material or the polymer in the form of pellets or flakes for a predetermined time using the activated mineral water produced by the above-described predetermined method.

所定活性処理を経た樹脂材は、樹脂ペレットなどの形態であってもよく、これに活性化鉱水およびこれに溶出した鉱物性無機物質からの無機イオン性物質が添加され、また接触した水分子の振動エネルギーが電磁場と同様に伝播すれば、その結果として樹脂ペレット等からなる処理対象物の分子内のエネルギーは変化し、活性化鉱水の電磁気的な性質が樹脂に転移した状態になるとものと推定される。   The resin material that has been subjected to the predetermined activation treatment may be in the form of resin pellets, etc., to which the activated mineral water and the inorganic ionic substance eluted from the mineral inorganic substance are added, and the water molecules that have come into contact with it. If vibration energy propagates in the same way as an electromagnetic field, the energy in the molecule of the processing object consisting of resin pellets changes as a result, and it is estimated that the electromagnetic properties of activated mineral water are transferred to the resin. Is done.

放射性核種汚染物に下記の製法で得られる活性化鉱水を浸潤させるには、土壌などを含む放射性核種汚染物を収容した容器内に、活性化鉱水を噴霧器で噴霧するか、またはタンクのような大型の容器を用いる場合には、容器内でスプリンクラーなどを用いて散水するなどの手段を採れば、効率がよくて均一に浸潤させるためにも好ましい。
また、特定の放射性核種汚染物に対して活性化鉱水を浸潤させるには、防水性の容器内で放射性核種汚染物を浸漬してもよい。
In order to infiltrate the radionuclide pollutant with the activated mineral water obtained by the following method, the activated mineral water is sprayed with a sprayer or in a tank in a container containing the radionuclide pollutant including soil. In the case of using a large container, it is preferable to use a sprinkler or the like in the container to sprinkle water for efficient and uniform infiltration.
Further, in order to infiltrate the activated mineral water with respect to a specific radionuclide contaminant, the radionuclide contaminant may be immersed in a waterproof container.

容器は、活性化鉱水を浸潤させる場合には、通常の防水性容器を使用することもできるが、前記した所定活性処理を経た樹脂材として、熱可塑性の樹脂ペレットを採用し、加熱成形された容器を採用することもできる。このような容器は、新紀産業社製のMICA加工されたポットなど市販の容器を採用することができる。   When the container is infiltrated with activated mineral water, a normal waterproof container can be used. However, as a resin material that has undergone the above-described predetermined activation treatment, a thermoplastic resin pellet is used and is heat-molded. Containers can also be employed. As such a container, a commercially available container such as a MICA processed pot manufactured by Shinki Sangyo Co., Ltd. can be used.

[実施例1、4、5]
上面開口の容器(新紀産業社製:MICAポット 1リットル容)に福島県郡山市で採取された放射性核種汚染土壌800gを入れ、その土壌表面にスプレーで活性化鉱水を噴霧し、表面を浸潤させた。
[Examples 1, 4, 5]
Put 800g of radionuclide contaminated soil collected in Koriyama City, Fukushima Prefecture into a container with a top opening (manufactured by Shinki Sangyo Co., Ltd .: MICA pot 1 liter), spray activated mineral water with a spray on the soil surface, and infiltrate the surface I let you.

因みに、上記の容器は、MICA加工と称される処理により、ポリプロピレン樹脂ペレットに活性化鉱水およびこれに溶出した鉱物性無機物質からの無機イオン性物質が添加されたもので成形された樹脂製容器である。   Incidentally, the above-mentioned container is a resin container formed by adding an activated ionic water and an inorganic ionic substance from a mineral inorganic substance eluted to polypropylene resin pellets by a process called MICA processing. It is.

そして、前記浸潤処理の後、表中に示す所定累積時間だけ放置し、その後、表面土壌に対してガイガーカウンタ(米国 S.E.International社製:ハロゲンガス封入式GM係数管、雲母窓密度1.4-2.1mg/cm2、口径45mm、感度:Sr-90 38%、C-14 5.3%)を近づけてヨウ素131の放射能(μSv/h)を計測し、この結果を表1および図1中に示した。 And after the said infiltration process, it is left only for the predetermined accumulation time shown in a table | surface, Then, Geiger counter (US SEInternational company make: halogen gas enclosure type GM coefficient tube, mica window density 1.4-2.1mg / cm 2 , caliber 45 mm, sensitivity: Sr-90 38%, C-14 5.3%), and the radioactivity (μSv / h) of iodine 131 was measured. The results are shown in Table 1 and FIG.

[実施例2、3、6]
実施例1、4、5において、土壌表面にスプレーで活性化鉱水を噴霧しなかったこと以外は全く同様にして放射能(μSv/h)を計測し、この結果を表1および図1中に示した。
[Examples 2, 3, and 6]
In Examples 1, 4, and 5, the radioactivity (μSv / h) was measured in the same manner except that the activated mineral water was not sprayed on the soil surface. The results are shown in Table 1 and FIG. Indicated.

[比較例1〜6]
実施例1〜6のブランクテストとして、それぞれMICA加工された容器を用いずに、通常のポリプロピレン樹脂製ポットを用い、かつ土壌表面にスプレーで活性化鉱水を噴霧せず、それ以外は、全く実施例1〜6と同様にして放射能(μSv/h)を計測し、この結果を表1および図1中に示した。
[Comparative Examples 1-6]
As blank tests of Examples 1 to 6, without using MICA processed containers, normal polypropylene resin pots were used, and activated mineral water was not sprayed on the soil surface. The radioactivity (μSv / h) was measured in the same manner as in Examples 1 to 6, and the results are shown in Table 1 and FIG.

Figure 2013113716
Figure 2013113716

表1および図1の結果からも明らかなように、32〜56時間の所定の放射線透過力低減化処理方法により、ヨウ素131の放射線量は、63.1〜89.3%に低下したことが認められ、これより安全性の高い処理の容易な放射性核種汚染物になったことがわかる。   As is clear from the results of Table 1 and FIG. 1, the radiation dose of iodine 131 was reduced to 63.1 to 89.3% by the predetermined radiation transmission power reducing treatment method for 32 to 56 hours. It is recognized that it has become a radionuclide contaminant that is safer and easier to process.

[実施例7]
上面開口の容器(新紀産業社製:MICAポット 1リットル容)に福島県浪江町で採取された放射性核種汚染土壌800gを入れ、その土壌表面にスプレーで活性化鉱水を噴霧し、表面を浸潤させた。
[Example 7]
Put 800g of radionuclide contaminated soil collected in Namie Town, Fukushima Prefecture into a container with an open top surface (manufactured by Shinki Sangyo Co., Ltd .: MICA pot 1 liter), spray activated mineral water with spray on the soil surface, and infiltrate the surface I let you.

上記の容器は、MICA加工と称される処理により、ポリプロピレン樹脂ペレットに活性化鉱水およびこれに溶出した鉱物性無機物質からの無機イオン性物質が添加されたもので成形された樹脂製容器である。   The container is a resin container formed by adding an activated mineral water and an inorganic ionic substance from a mineral inorganic substance eluted to polypropylene resin pellets by a process called MICA processing. .

そして、前記浸潤処理の後、56時間放置し、その後、表面土壌に対してガイガーカウンタ(米国 S.E.International社製:ハロゲンガス封入式GM係数管、雲母窓密度1.4-2.1mg/cm2、口径45mm、感度:Sr-90 38%、C-14 5.3%)を近づけてセシウム137およびセシウム134の放射能(μSv/h)を計測し、この結果を表2中に示した。 Then, after the infiltration treatment, left for 56 hours, and then the Geiger counter (manufactured by SEInternational, USA: halogen gas-sealed GM coefficient tube, mica window density 1.4-2.1 mg / cm 2 , aperture 45 mm, The radioactivity (μSv / h) of cesium 137 and cesium 134 was measured by bringing the sensitivity (Sr-90 38%, C-14 5.3%) close to each other, and the results are shown in Table 2.

[比較例7]
実施例7のブランクテストとして、MICA加工された容器を用いずに、通常のポリプロピレン樹脂製ポットを用い、かつ土壌表面にスプレーで活性化鉱水を噴霧せず、それ以外は、全く実施例7と同様にしてセシウム137およびセシウム134の放射能(μSv/h)を計測し、この結果を表2中に示した。
[Comparative Example 7]
As a blank test of Example 7, a normal polypropylene resin pot was used without using a MICA-processed container, and the activated mineral water was not sprayed on the soil surface. Similarly, the radioactivity (μSv / h) of cesium 137 and cesium 134 was measured, and the results are shown in Table 2.

Figure 2013113716
Figure 2013113716

表2の結果からも明らかなように、56時間の所定の放射線透過力低減化処理方法により、セシウム137の放射線量は、36.9%低下し、セシウム134の放射線量は40.8%低下したことが認められ、これより安全性を高めて処理の容易な放射性核種汚染物にできたことがわかる。   As is clear from the results of Table 2, the radiation dose of cesium 137 is reduced by 36.9% and the radiation dose of cesium 134 is reduced by 40.8% by the predetermined treatment method for reducing radiation transmission power for 56 hours. It can be seen that the radionuclide pollutant was made safer and easier to handle.

Claims (3)

容器に収容した放射性核種汚染物に下記の製法で得られる活性化鉱水を浸潤させることからなる放射性核種汚染物の放射線透過力低減化処理方法。

5〜30気圧に加圧された水を玄武岩、安山岩、磁鉄鉱から選ばれる鉱物性無機物質に接触通過させる工程と、この工程を経た水を前記加圧された所定気圧未満の雰囲気下に貯留する工程を交互に繰り返して製造された活性化鉱水。
A radionuclide contaminant reduction method for radionuclide contamination, which comprises infiltrating activated mineral water obtained by the following method into a radionuclide contaminant contained in a container.
A process of passing water pressurized to 5 to 30 atmospheres in contact with a mineral inorganic substance selected from basalt, andesite, and magnetite, and storing the water that has undergone this process in an atmosphere of less than a predetermined atmospheric pressure. Activated mineral water produced by alternately repeating the process.
上記活性化鉱水を浸潤させる処理に代えて、またはこの処理と共に上記容器として、下記の所定活性処理を経た樹脂材で形成された容器を採用する請求項1に記載の放射性核種汚染物の放射線透過力低減化処理方法。

樹脂材のモノマーまたはペレット状もしくはフレーク状であるポリマーを、請求項1に記載の活性化鉱水に浸漬する樹脂材の活性化処理。
The radionuclide contaminant radiation transmission according to claim 1, wherein a container formed of a resin material that has been subjected to the following predetermined activation process is adopted as the container instead of or in addition to the process of infiltrating the activated mineral water. Force reduction processing method.
The activation treatment of the resin material which immerses the monomer of a resin material, or the polymer which is a pellet form or flake form in the activated mineral water of Claim 1.
上記放射性核種汚染物の放射線核種が、ヨウ素131(131 53I)、セシウム134(134 55Cs)、セシウム137(137 55Cs)およびストロンチウム90(90 38Sr)から選ばれる一種以上の放射線核種である請求項1または2に記載の放射性核種汚染物の放射線透過力低減化処理方法。 The radionuclide of the radionuclide contaminant is one or more radionuclides selected from iodine 131 ( 131 53 I), cesium 134 ( 134 55 Cs), cesium 137 ( 137 55 Cs) and strontium 90 ( 90 38 Sr). The method for reducing the radiation transmission power of a radionuclide contaminant according to claim 1 or 2.
JP2011260208A 2011-11-29 2011-11-29 Method for treating radioactive nuclide contaminant Pending JP2013113716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260208A JP2013113716A (en) 2011-11-29 2011-11-29 Method for treating radioactive nuclide contaminant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260208A JP2013113716A (en) 2011-11-29 2011-11-29 Method for treating radioactive nuclide contaminant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015176651A Division JP2016014680A (en) 2015-09-08 2015-09-08 Treatment method of radioactive nuclide contaminant

Publications (1)

Publication Number Publication Date
JP2013113716A true JP2013113716A (en) 2013-06-10

Family

ID=48709376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260208A Pending JP2013113716A (en) 2011-11-29 2011-11-29 Method for treating radioactive nuclide contaminant

Country Status (1)

Country Link
JP (1) JP2013113716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051479A1 (en) * 2015-09-25 2017-03-30 株式会社コアライト Decontamination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105298A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Producing method for solidified body of radioactive waste
JPH04370798A (en) * 1991-06-19 1992-12-24 Tokyo Electric Power Co Inc:The Decontamination of radioactively contaminated object
JPH07328418A (en) * 1994-06-03 1995-12-19 Shinki Sangyo Kk Catalytic reaction method using activated mineral water and device therefor
JPH0959402A (en) * 1995-08-23 1997-03-04 Shinki Sangyo Kk Method for activating resin material
JP2004243195A (en) * 2003-02-13 2004-09-02 Mn Engineering Kk Polluted soil purifying method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105298A (en) * 1989-09-20 1991-05-02 Hitachi Ltd Producing method for solidified body of radioactive waste
JPH04370798A (en) * 1991-06-19 1992-12-24 Tokyo Electric Power Co Inc:The Decontamination of radioactively contaminated object
JPH07328418A (en) * 1994-06-03 1995-12-19 Shinki Sangyo Kk Catalytic reaction method using activated mineral water and device therefor
JPH0959402A (en) * 1995-08-23 1997-03-04 Shinki Sangyo Kk Method for activating resin material
JP2004243195A (en) * 2003-02-13 2004-09-02 Mn Engineering Kk Polluted soil purifying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017051479A1 (en) * 2015-09-25 2017-03-30 株式会社コアライト Decontamination method
JPWO2017051479A1 (en) * 2015-09-25 2018-07-26 株式会社コアライト Decontamination method

Similar Documents

Publication Publication Date Title
Tiwari et al. Biosorptive behaviour of Mango (Mangifera indica) and Neem (Azadirachta indica) bark for Hg2+, Cr3+ and Cd2+ toxic ions from aqueous solutions: a radiotracer study
Shamshad et al. Removal and bioaccumulation of heavy metals from aqueous solutions using freshwater algae
Adeola et al. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review
Adebiyi et al. Occurrence and remediation of naturally occurring radioactive materials in Nigeria: a review
Lin et al. Performance study of ion exchange resins solidification using metakaolin-based geopolymer binder
Eskander et al. Cementation of bioproducts generated from biodegradation of radioactive cellulosic-based waste simulates by mushroom
Ibrahim et al. Adsorption of Cd (II), Cu (II) and Pb (II) using recycled waste glass: equilibrium and kinetic studies
Watson et al. The removal of the pertechnetate ion and actinides from radioactive waste streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: the role of iron-sulfide-containing adsorbent materials
Arnal et al. Treatment of 137Cs contaminated water by selective adsorption
Ferreira et al. The use of rice and coffee husks for biosorption of U (total), 241 Am, and 137 Cs in radioactive liquid organic waste
Asmussen et al. Review of recent developments in iodine wasteform production
CN102774924A (en) Method for removing radiocesium 137 with titanium potassium ferrocyanide spherical particles
JP2013113716A (en) Method for treating radioactive nuclide contaminant
Rodrigues Silva et al. Uranium biosorption under dynamic conditions: Preliminary tests with Sargassum filipendula in real radioactive wastewater containing Ba, Cr, Fe, Mn, Pb, Ca and Mg
Eskander et al. Capability of Lemna gibba to biosorb cesium-137 and cobalt-60 from simulated hazardous radioactive waste solutions
JP2016014680A (en) Treatment method of radioactive nuclide contaminant
Moattar et al. Application of chitin and zeolite adsorbents for treatment of low level radioactive liquid wastes
JP5946044B2 (en) Decontamination method for radioactive material contaminated soil
Mishra et al. Biosorptive behavior of some dead biomasses in the removal of Sr (85+ 89) from aqueous solutions
Dyer Applications of natural zeolites in the treatment of nuclear wastes and fall-out
Tiwari et al. Inorganic and bio-materials in the removal/speciation of radiocesium and radiostrontium: an overview
Laili et al. Influence of humic acids on radium adsorption by coir pith in aqueous solution
Helal et al. Sorption of radiocobalt on pottery
Youssef et al. Assessment removal of tritium radionuclide from liquid waste using sequential ion exchange resin
KR101502492B1 (en) Bentonite buffer for promoting iodide biomineralization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140715

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150609