JPH03105229A - Abnormality detector for structural body - Google Patents

Abnormality detector for structural body

Info

Publication number
JPH03105229A
JPH03105229A JP1243048A JP24304889A JPH03105229A JP H03105229 A JPH03105229 A JP H03105229A JP 1243048 A JP1243048 A JP 1243048A JP 24304889 A JP24304889 A JP 24304889A JP H03105229 A JPH03105229 A JP H03105229A
Authority
JP
Japan
Prior art keywords
circuit
output
calculation
pattern
outputs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1243048A
Other languages
Japanese (ja)
Inventor
Masahisa Kaneda
正久 金田
Hitoshi Kano
狩野 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1243048A priority Critical patent/JPH03105229A/en
Publication of JPH03105229A publication Critical patent/JPH03105229A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Abstract

PURPOSE:To enable detection of abnormality in a structural object even when an object to be inspected is changed by providing a judging circuit for judging a maximum of a pattern output of a calculation circuit with a learning means to adjust the weight of calculation so that abnormality in the structural object is obtained accurately. CONSTITUTION:A structural object to be inspected is struck with a hammer to detect vibration thereof with a vibration detection circuit 1 and an electric output signal corresponding to a vibration waveform is inputted into a frequency analysis circuit 2, which measures an intensity of (n) frequency components of an input signal and values of the components are inputted into an input calculation circuit 7 of a pattern sorting circuit 3 in parallel. The circuit 7 converts the component values inputted to non-linearity to be sent to an intermediate calculation circuit 8, which 8 multiplies the input signal by a specified value of weight for conversion to non-linearity to be sent to an output calculation circuit 9. The circuit 9 multiplies the results by a specified weight for conversion to non-linearity to be sent to a maximum judging circuit 11, with which 11 the maximum output node is specified among those of the circuit 9 to be fed to a display circuit 4 and an alarm circuit 5. When the results of judgment of the circuit 11 are different from an actual condition, a correct output value is inputted from the circuit 6 to perform a learning with a weight.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、学習機能を有する構造物の異常検出装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an abnormality detection device for a structure having a learning function.

[従来の技術] 一般に、構造物の異常検出は、綱造物をハンマーで叩い
たときの音を熟練者が耳で聞き、熟練者の経験に基づい
て判断している。
[Prior Art] Generally, abnormalities in structures are detected by having an expert listen to the sound made when a steel structure is hit with a hammer, and making judgments based on the experience of the expert.

これを自動化しようとすると、次のようなことが考えら
れる。即ち、構造物をハンマーで叩いたときの音の周波
数分析データと、予め記録しておいた様々な異常時の周
波数分析データとを比較し、異常を検出することである
. また、異常時の周波数分布の詳細な解析を予め行ってお
き、そのデータと観測データを比較し、異常を検出する
方法などが考えられる.[発明が解決しようとする課題
] しかし前者の場合は、非常に多くの周波数分布データを
蓄積しておかなければならない.検査対象を変えると、
改めて周波数分布データを蓄積しておかなければならな
いという欠点がある.また後者の場合には、周波数の分
布の詳細な分析は難しいという欠点がある. 発明の目的は、検査対象が変わった場合においても、構
造物の異常を検出することが可能な構造物の異常検出装
置を提供することにある.[課題を解決するための手段
] 本発明の構造物の異常検出装置は、構造物の振動を検出
する回路と、検出された振動の周波数成分を分析しn個
の周波数戒分値を個々に出力する分析回路と、該分析回
路の各出力を受けて1個のパターン出力に分類するパタ
ーン分類回路と、該パターン分類回路に必要に応じ比較
目標値を入力する回路とを具備し、上記パターン分類回
路が、分析回路の各出力を重みづけ及び非線形変換して
1個のパターン出力とする計算回路と、それらパターン
出力のうち最大値をとるパターン出力を判定する判定回
路と、上記入力回路からの比較目標値によ・り、上記判
定回路に構造物の異常に関する正しい結果が得られるよ
うに、上記計算回路の重みを調整する学習手段とを備え
た構成のものである. 上記パターン分類回路の計算回路は、非線形交換をする
n個の入力計算回路と、その入力計算回路の出力にそれ
ぞれ重みをつけて合計した後非線形交換を行うn個の中
間計算回路と、その中間計算回路の出力にそれぞれ重み
をつけて合計した後非線形交換を行う1個の出力計算回
路とから成ることが好ましい.この出力計算回路は異常
の種別の数だけ設けることができる. [作用] 周波数分析回路で分析された振動のn個の周波数成分値
の情報は、パターン分類回路の計算回路にそれぞれ入力
され、重みづけ及び非線形変換された後出力される.こ
こで非線形変換とは、入力をXとすると、例えば、 t (x) = 1/(1+l3Xl)(−X))  
   = (1)の関数を計算することをいう. 上記計算回路の作用を、該回路が入力計算回路,中間計
算回路,出力計算回路の3部分から構成され、重みづけ
は中間計算回路,出力計算回路の2箇所でなされる場合
について説明すると、次のようになる. 即ち、入力計算回路の出力xiは xi=f(x)         ・・・(2)となる
, 次に中間計算回路では、この入力計算回路の出力にそれ
ぞれ重みをつけて合計した後非線形変換して出力する.
すなわち、中間計算回路の出力をyjとすると、 yj=f(gUji  xi)   (j=1.2,”
−11)・・・(3) である. 但し、Uji:中間計算回路の重みづけパラメー夕であ
る. そして出力計算回路では、これら中間計算回路の出力に
それぞれ重みをつけて合計した後非線形変換して出力す
る.すなわち、出力計算回路の出力をZkとすると、 Zk=f(ΣWkj  yj)  (k=1.2,・・
・A)♂ ・・・(4) となる. 但し、Wkj:出力計算回路の重みづけパラメー夕であ
る. 判定回路では、この1個の出力計算回路の出力のうちで
、出力値が最大となったパターン出力のものを判定し特
定する.J個の出力計算回路の出力は、そのまま検査対
象の故障或いは欠陥等の異常の種別に対応しており、異
常が検出される.入力計算回路、中間計算回路及び出力
計算回路は3層#t遣のネットワーク(多層ネットワー
クンを襦或しており、桐造物の楕成等を予め加味して、
上記重みづけパラメータが設定される.従って、上記判
定回路の判定結果から直接に異常が検出される, ここで、検査対象たる構造物が変更された場合は、入力
回路から比較基準値を入力計算回路に入力する.多層ネ
ットワークを構成する入力計X回路、中間計算回路、出
力計算回路を経て或る判定結果が得られるが、その結果
が、学習機能により自動的に正しい判定結果となるよう
に、中間計算回路,出力計算回路の重みづけパラメータ
が自動的に修正されて行き、適正な修正値となる.従っ
て、別の楕造物でも直ちに異常検出ができるようになり
、装置の適用性が大幅に向上する.[実施例] 以下、本発明を図示の実施例に基づいて説明する。
If you try to automate this, you can consider the following: In other words, abnormalities are detected by comparing the frequency analysis data of the sound when a structure is hit with a hammer with the frequency analysis data of various abnormalities that have been recorded in advance. Another possible method is to perform a detailed analysis of the frequency distribution during anomalies in advance and compare that data with observed data to detect anomalies. [Problem to be solved by the invention] However, in the former case, a large amount of frequency distribution data must be accumulated. If you change the inspection target,
The disadvantage is that the frequency distribution data must be stored again. In addition, the latter case has the disadvantage that detailed analysis of the frequency distribution is difficult. An object of the invention is to provide an abnormality detection device for a structure that can detect abnormalities in a structure even when the object to be inspected changes. [Means for Solving the Problems] The structure abnormality detection device of the present invention includes a circuit that detects vibrations of a structure, and a circuit that analyzes the frequency components of the detected vibrations and individually calculates n frequency division values. The pattern classification circuit includes an analysis circuit that outputs an output, a pattern classification circuit that receives each output of the analysis circuit and classifies it into one pattern output, and a circuit that inputs a comparison target value to the pattern classification circuit as necessary, The classification circuit includes a calculation circuit that weights and non-linearly transforms each output of the analysis circuit into one pattern output, a determination circuit that determines the pattern output that takes the maximum value among those pattern outputs, and a The present invention has a learning means for adjusting the weight of the calculation circuit so that the determination circuit obtains a correct result regarding the abnormality of the structure based on the comparative target value of . The calculation circuit of the pattern classification circuit described above consists of n input calculation circuits that perform nonlinear exchange, n intermediate calculation circuits that perform nonlinear exchange after weighting and summing the outputs of the input calculation circuits, and It is preferable to consist of one output calculation circuit that weights and sums the outputs of the calculation circuits, and then performs nonlinear exchange. This output calculation circuit can be provided as many as the number of abnormalities. [Operation] Information on the n frequency component values of the vibration analyzed by the frequency analysis circuit is input to the calculation circuit of the pattern classification circuit, and is output after being weighted and nonlinearly transformed. Here, nonlinear transformation means, if the input is X, for example, t (x) = 1/(1+l3Xl)(-X))
= Calculating the function of (1). The operation of the calculation circuit described above is explained as follows when the circuit is composed of three parts: an input calculation circuit, an intermediate calculation circuit, and an output calculation circuit, and the weighting is done in two parts: the intermediate calculation circuit and the output calculation circuit. become that way. In other words, the output xi of the input calculation circuit is xi=f(x) (2).Next, in the intermediate calculation circuit, the outputs of the input calculation circuit are weighted and summed, and then non-linearly transformed. Output.
That is, if the output of the intermediate calculation circuit is yj, then yj=f(gUji xi) (j=1.2,"
-11)...(3). However, Uji is the weighting parameter of the intermediate calculation circuit. Then, in the output calculation circuit, the outputs of these intermediate calculation circuits are weighted and summed, and then nonlinearly transformed and output. That is, if the output of the output calculation circuit is Zk, then Zk=f(ΣWkj yj) (k=1.2,...
・A) ♂ ...(4) becomes. However, Wkj is the weighting parameter of the output calculation circuit. The determination circuit determines and specifies the pattern output with the maximum output value among the outputs of this one output calculation circuit. The outputs of the J output calculation circuits directly correspond to the type of abnormality such as a failure or defect to be inspected, and the abnormality is detected. The input calculation circuit, intermediate calculation circuit, and output calculation circuit are a three-layer network (a multilayer network), taking into account the ellipse of paulownia wood, etc.
The above weighting parameters are set. Therefore, an abnormality is detected directly from the judgment result of the above-mentioned judgment circuit. If the structure to be inspected is changed, the comparison reference value is input from the input circuit to the input calculation circuit. A certain judgment result is obtained through the input meter X circuit, intermediate calculation circuit, and output calculation circuit that make up the multilayer network, and the intermediate calculation circuit, The weighting parameters of the output calculation circuit are automatically corrected, resulting in appropriate correction values. Therefore, it becomes possible to immediately detect abnormalities even in other elliptical objects, greatly improving the applicability of the device. [Examples] The present invention will be described below based on illustrated examples.

本検出装置は、第1図に示すように、振動検出回路1,
周波数分析回路2,パターン分類回路3,表示回N 4
 , g報回路5及び目標値入力回路6より構成される
。これら異常検出装置を構成する各回路l〜6はリニア
IC等の通常の電子部品またはマイクロコンピュータを
用いて梢成される。
As shown in FIG. 1, this detection device includes a vibration detection circuit 1,
Frequency analysis circuit 2, pattern classification circuit 3, display times N 4
, a g-information circuit 5, and a target value input circuit 6. Each of the circuits 1 to 6 constituting the abnormality detection device is formed using ordinary electronic components such as a linear IC or a microcomputer.

振動検出回路1は、検査対象たる′Jff4造物をハン
マーで叩いたときに生ずる振動を検出し、その検出され
た振動を電気信号に変換して出力する回路である.周波
数分析回路2は、振動検出回#I1の出力を受け、その
信号の幾つかの特定の周波数成分(n個)の強度を測定
する回路であり、それぞれの周波数成分に応じた出力端
子を備えている.パターン分類回路3は、第2図に示す
如く、n個の入力計算回FI@7,m個の中間計算回路
8.1個の出力計算回1i189及びこれらを結ぶ結合
部10,出力計算回路9に接続した最大値判定回v1I
llにより構成されている。このパターン分類回路3は
、電子口路またはコンピュータによって構成できる。
The vibration detection circuit 1 is a circuit that detects the vibration that occurs when a 'Jff4 structure to be inspected is hit with a hammer, converts the detected vibration into an electrical signal, and outputs the signal. The frequency analysis circuit 2 is a circuit that receives the output of the vibration detection circuit #I1 and measures the intensity of several specific frequency components (n pieces) of the signal, and is equipped with an output terminal corresponding to each frequency component. ing. As shown in FIG. 2, the pattern classification circuit 3 includes n input calculation circuits FI @ 7, m intermediate calculation circuits 8, 1 output calculation circuit 1i 189, a coupling unit 10 connecting these circuits, and an output calculation circuit 9. Maximum value judgment time v1I connected to
It is composed of ll. This pattern classification circuit 3 can be constructed by an electronic circuit or a computer.

入力計算回路7の入力側には目標値入力回路6が設けら
れ、周波数分析回路2の出力の代りに、目標値入力回路
6の出力が選択できるようになっている。
A target value input circuit 6 is provided on the input side of the input calculation circuit 7, so that the output of the target value input circuit 6 can be selected instead of the output of the frequency analysis circuit 2.

入力計算回路7は、入力されたn個の周波数或分値をそ
れぞれ非線形変換して、m個の中間計算回路8の全てに
出力する機能を有する.m個の中間計算回Iil88の
各々は、この1番目からn番目までの入力計算回路7の
個々の出力を受け、それらの出力にそれぞれ重みをつけ
て合計した後非線形変換して、1個の出力計算回路9の
全てに出力する..l!個の出力計算回路9の各々は、
この1番目から1番目までの中間計算回路8の個々の出
力を受け、それらの出力にそれぞれ更に重みをつけて合
計した後非線形変換して、最大値判定回路11へ出力す
る.このj個の出力計算回路9の各出力は、それぞれ1
個の周波数或分に分けて観測した異常パターンの種類、
つまり故障.欠陥等の異常の種別又は異常原因候補に対
応したものとなっている.i大値判定回路11は1個の
出力計算回路9の各出力のうち、出力が最大のノードを
識別し、表示回N4及び警報回N5へ出力する.今、検
査対象たる桶造物をハンマーで叩くと、その振動が振動
検出回路1で拾われ、その振動波形に対応する電気出力
信号が周波数分析回路2に加えられる.周波数分析回路
2は、入力された電気信号のn個の周波数成分につき各
々の強度を測定し、それぞれの周波数或分値を並列にパ
ターン分類回路3の入力計算回路7に入力する。
The input calculation circuit 7 has a function of nonlinearly converting each of the n input frequency partial values and outputting the result to all of the m intermediate calculation circuits 8. Each of the m intermediate calculation circuits 88 receives the individual outputs of the first to nth input calculation circuits 7, weights the outputs, sums them up, and non-linearly transforms them into one Output to all output calculation circuits 9. .. l! Each of the output calculation circuits 9 is
The individual outputs of the first to first intermediate calculation circuits 8 are received, each of these outputs is further weighted, summed, nonlinearly transformed, and output to the maximum value determination circuit 11. Each output of these j output calculation circuits 9 is 1
Types of abnormal patterns observed at different frequencies,
In other words, it's a failure. It corresponds to the type of abnormality such as a defect or the candidate cause of the abnormality. The i large value determination circuit 11 identifies the node with the maximum output among the outputs of one output calculation circuit 9, and outputs it to the display time N4 and the alarm time N5. Now, when the tub structure to be inspected is struck with a hammer, the vibration is picked up by the vibration detection circuit 1, and an electrical output signal corresponding to the vibration waveform is applied to the frequency analysis circuit 2. The frequency analysis circuit 2 measures the intensity of each of the n frequency components of the input electrical signal, and inputs the respective frequency fraction values in parallel to the input calculation circuit 7 of the pattern classification circuit 3.

入力計算回路7は、入力された各周波数成分値を非線形
変換して中間計算回路8へ送る。中間計算回路8は、入
力信号にある重みの値が乗じ、非線形変換して出力計算
回路9へ送る.出力計算回路9は、この入力信号に更に
またある重みの値を乗じ、非線形変換して最大値判定回
路11へ送る。
The input calculation circuit 7 nonlinearly transforms each input frequency component value and sends it to the intermediate calculation circuit 8. The intermediate calculation circuit 8 multiplies the input signal by a certain weight value, performs nonlinear transformation, and sends the signal to the output calculation circuit 9. The output calculation circuit 9 further multiplies this input signal by a certain weight value, performs nonlinear transformation, and sends the signal to the maximum value determination circuit 11 .

最大値判定回路11は、出力計算回路9の各ノード(異
常の種類)のうち最大出力のノードを特定し、その出力
信号を表示回F#I4及び警報回路5へ送る。
The maximum value determination circuit 11 identifies the node with the maximum output among each node (type of abnormality) of the output calculation circuit 9 and sends its output signal to the display circuit F#I4 and the alarm circuit 5.

表示回路4は、上記1個の出力計算回路9の各ノードの
うち、最大値判定回#111で最大出力と判定されたノ
ードにつき、その出力値を表示する.また警報回路5は
、この最大出力値のノードが判定された時に、警報を発
生する. 次に、上記最大値判定回路11で最大出力と判定された
ノードが、既知の!R造物の異常等の実際状態に照らし
誤っていた場合には、目標値入力回路6より、正しい出
力値を入力することにより、パターン分類回路3におけ
る結合部の計算の重みづけを変化させる学習を行う. 上記計算回路7,8.9の演算内容を、より具体的に説
明しよう. まず、n個の入力計算回路7の各々は、それぞれ対応す
る周波数分析回路2で計測されるn個の周波数成分値を
非線形変換し、m個の中間計算回路8の全てに出力する
.周波数成分値をF r(r=1.2,・・・n)とす
れば、入力計算回路の出力は、 x i  = f (Fi)            
 −(2)’但し、f (X) =1/(1+l3XE
l(−X))となる. 次に、m個の中間計算回路8の各々は、次の演算を行い
、出力yj(j=1.2,・・1)をA個の出力計算回
路9の全てに出力する. yj=f(ΣUji  xi)      =13)但
し、Uji:中間計算回路における重みづけパラメータ
である. そして、1個の出力計算回路9の各々は、次の演算を行
い、出力Zk(k=1.2,・・・A)を出力する。
The display circuit 4 displays the output value of the node determined to have the maximum output in the maximum value determination step #111 among the nodes of the one output calculation circuit 9. The alarm circuit 5 also generates an alarm when the node with the maximum output value is determined. Next, the node determined to have the maximum output by the maximum value determination circuit 11 is the known! If it is incorrect in light of the actual state such as an abnormality of the R structure, the correct output value is input from the target value input circuit 6 to perform learning to change the weighting of the calculation of the connection part in the pattern classification circuit 3. conduct. Let us explain the calculation contents of the calculation circuits 7, 8.9 in more detail. First, each of the n input calculation circuits 7 nonlinearly transforms the n frequency component values measured by the corresponding frequency analysis circuit 2, and outputs it to all of the m intermediate calculation circuits 8. If the frequency component value is F r (r=1.2,...n), the output of the input calculation circuit is x i = f (Fi)
-(2)' However, f (X) = 1/(1+l3XE
l(-X)). Next, each of the m intermediate calculation circuits 8 performs the following calculation and outputs the output yj (j=1.2, . . . 1) to all of the A output calculation circuits 9. yj=f(ΣUji xi) =13) However, Uji: weighting parameter in the intermediate calculation circuit. Each of the output calculation circuits 9 performs the following calculation and outputs an output Zk (k=1.2, . . . A).

Zk =f (各Wkj  yj)      ・(4
)夕 但し、Wkj:出力計算回路における重みづけパラメー
タである. 最大値判定回路11は、これら1個の出力計算回路の出
力Zkのうち最大値を選択するが、このZkは、周波数
分布からみた構造物の異常パターン即ち構造物の異常の
種別を示す特徴量にそのまま対応しており、異常が検出
されることになる。
Zk = f (each Wkj yj) ・(4
) However, Wkj is a weighting parameter in the output calculation circuit. The maximum value determination circuit 11 selects the maximum value among the outputs Zk of these one output calculation circuit, and this Zk is an abnormality pattern of the structure as seen from the frequency distribution, that is, a feature value indicating the type of abnormality of the structure. This corresponds directly to the above, and an anomaly will be detected.

前記中間計算回路8及び出力計算回路9の演算における
各ノードの重みづけパラメータUji及びWkjは、検
査対象である構造物の構戒から異常時に予想値として計
算される様々な周波数成分情報を与えた場合に、正しく
その異常を検出するよう予め設定記憶されている. ところで、検査対象である構造物が変わった場合には、
上記予め設定された関数のみでは対処しきれず、異常検
出を誤ることがある。このような場合は、変更後の椙遺
物に関する比較目標値を目標値入力回路6から入力する
ことにより、多層ネットワークの中間計算回路8及び出
力計算回路9の各ノード内に記憶された重みづけパラメ
ータを修正し、新しい構造物でも異常検出ができるよう
にする.この修正は、パターン分類回路3の最大値判定
回路11から得られた結果に基づく学習機能により自動
的に調整される. 詳述するに、検査対象のm造物が変更された場合には、
パターン分類回路3が目標値入力回路6の出力側を選択
するように切換えられる.まず、目標値入力回路6で変
更後の構造物における異常時の予想値(比較目標値)が
算出されて、パターン分類回路3の最大値判定回路11
に与えられる.この比較目標値に基づき、最大値判定回
路11は、出力計算回路9のどのノードが最大値をとる
ようなネットワークであるべきかの目標値、すなわち中
間計算回路8及び出力計算回路9の各ノードの重みづけ
パラメータ値に関する目標値を設定する. 一方、中間計算回路8及び出力計算回路9の各ノードの
具体的な計算内容ないし関数は、自己がその時点で記憶
している重みづけパラメータの値により決定づけられる
.従って、一時的な形として、まず出力計算回路9のう
ちのいずれかが最大値をとることになり、そのノードが
最大値判定回路11で認識される.そこで、最大値判定
回路11は、上記比較基準値から設定した目標値に対し
、実際に最大値をとった出力計算回路9のノードが異な
る限り、重みづけパラメータ値についての修正指令を多
層ネットワークに出力して、出力計算回路9.中間計算
回路8の順に各ノードに与え続ける. 中間計算回路8及び出力計算回路9の各ノードは、この
修正指令に基づき、内部の重みづけパラメータをある方
向に調整し、その結果としての判断が再び最大値判定回
路1lに得られて、その修正指令に基づき各ノード内部
の重みづけパラメータが更に調整される.このような繰
返し即ち学習機能により、最終的には、最大値判定回路
11に上記目標値と同じ判断結果が得られ、各ノード内
部の重みづけパラメータの調整が終了する.ここでの調
整は学習機能によるため、調整方向が正しい方向に始ま
るか試行錯誤的に行われるか否かは問題ではなく、いず
れであっても、結果として正しい修正が行われる. このような学習機能により、中間計算回路8及び出力計
算回路9の各ノードの重みづけパラメータがn常時の予
想値に自動的に修正されるので、検査対象たる構造物の
変更や装置設置時点で全く予想できなかった情況にも迅
速に対処できる。これによって装置の性能、適用範囲は
格段に向上する. 上記実施例の検出装置は、建造物をハンマーで叩いたと
きの振動を振動検出回路1で検出し、次にその信号を周
波数分析し、その後にパターン分類同路3により構造物
に異常があるか否かを判断する.パターン分類回路は学
習機能を持っているので、判断を誤った場合には、正し
い判断をするように学習させることが可能である。また
学習機能があるので、様々な状態に対応可能である. 上記実施例においては、パターン分類回#I3はl組だ
けであったが、第3図のように、パターン分類回路を複
数個並列に設けることにより、更に適用範囲を拡大する
ことができる.[発明の効果] 以上述べたように、本発明の構造物の異常検出装置は、
学習機能を有するので、自動的な異常検出ができると共
に、検査対象である構造物が変わった場合にも対処でき
る.これによって装置の性能、適応性は格段に向上する
The weighting parameters Uji and Wkj of each node in the calculations of the intermediate calculation circuit 8 and the output calculation circuit 9 give various frequency component information that is calculated as an expected value in the event of an abnormality based on the structure of the structure to be inspected. The settings are stored in advance so that the abnormality can be detected correctly when the abnormality occurs. By the way, if the structure to be inspected changes,
The above-mentioned preset function alone may not be enough to deal with the problem, resulting in incorrect abnormality detection. In such a case, the weighting parameters stored in each node of the intermediate calculation circuit 8 and the output calculation circuit 9 of the multilayer network can be inputted from the target value input circuit 6 by inputting the comparison target value regarding the modified Sugi relics from the target value input circuit 6. Modified so that anomalies can be detected even in new structures. This modification is automatically adjusted by a learning function based on the result obtained from the maximum value determination circuit 11 of the pattern classification circuit 3. To be more specific, if the structure to be inspected is changed,
The pattern classification circuit 3 is switched to select the output side of the target value input circuit 6. First, the target value input circuit 6 calculates an expected value (comparison target value) at the time of abnormality in the structure after the change, and the maximum value determination circuit 11 of the pattern classification circuit 3
is given to. Based on this comparison target value, the maximum value determination circuit 11 determines a target value for determining which node of the output calculation circuit 9 should be the network that takes the maximum value, that is, each node of the intermediate calculation circuit 8 and the output calculation circuit 9. Set the target value for the weighting parameter value of . On the other hand, the specific calculation content or function of each node of the intermediate calculation circuit 8 and the output calculation circuit 9 is determined by the value of the weighting parameter stored at that time. Therefore, temporarily, one of the output calculation circuits 9 takes the maximum value, and that node is recognized by the maximum value determination circuit 11. Therefore, the maximum value determination circuit 11 issues a correction instruction for the weighting parameter value to the multilayer network as long as the node of the output calculation circuit 9 that actually takes the maximum value is different from the target value set from the comparison reference value. Output and output calculation circuit 9. It continues to be given to each node in the order of intermediate calculation circuit 8. Each node of the intermediate calculation circuit 8 and the output calculation circuit 9 adjusts the internal weighting parameters in a certain direction based on this correction command, and the resulting judgment is again obtained by the maximum value judgment circuit 1l, and the Based on the modification command, the weighting parameters inside each node are further adjusted. Through such repetition or learning function, the maximum value determination circuit 11 finally obtains the same determination result as the target value, and the adjustment of the weighting parameters inside each node is completed. Since the adjustment here is based on the learning function, it does not matter whether the adjustment direction starts in the correct direction or is performed by trial and error; in either case, the correct correction will be made as a result. With such a learning function, the weighting parameters of each node of the intermediate calculation circuit 8 and the output calculation circuit 9 are automatically corrected to the expected values at all times. Ability to quickly respond to completely unexpected situations. This greatly improves the performance and range of application of the device. The detection device of the above embodiment uses a vibration detection circuit 1 to detect vibrations when a building is hit with a hammer, then frequency-analyzes the signal, and then uses a pattern classification circuit 3 to determine whether there is an abnormality in the structure. Determine whether or not. The pattern classification circuit has a learning function, so if it makes a mistake in judgment, it can be trained to make the correct judgment. It also has a learning function, so it can respond to various situations. In the above embodiment, the pattern classification circuit #I3 consists of only one set, but the range of application can be further expanded by providing a plurality of pattern classification circuits in parallel as shown in FIG. [Effects of the Invention] As described above, the structure abnormality detection device of the present invention has the following effects:
Since it has a learning function, it can automatically detect abnormalities and can also deal with changes in the structure being inspected. This greatly improves the performance and adaptability of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の楕戒図、第2図はパターン分類回路の
構成図、第3図は本発明の他の実施例におけるパターン
分類回路の構戒図を示す。 図中、1は振動検出回路、2は周波数分析回路、3はパ
ターン分類回路、4は表示回路、5は警報回路、6は目
標値入力回路、7は入力計X回路、8は中間計算回路、
9は出力計算回路、10は結合部を示す。
FIG. 1 shows an elliptical diagram of the present invention, FIG. 2 shows a configuration diagram of a pattern classification circuit, and FIG. 3 shows a configuration diagram of a pattern classification circuit in another embodiment of the invention. In the figure, 1 is a vibration detection circuit, 2 is a frequency analysis circuit, 3 is a pattern classification circuit, 4 is a display circuit, 5 is an alarm circuit, 6 is a target value input circuit, 7 is an input meter X circuit, and 8 is an intermediate calculation circuit. ,
Reference numeral 9 indicates an output calculation circuit, and 10 indicates a coupling section.

Claims (1)

【特許請求の範囲】 1、構造物の振動を検出する回路と、検出された振動の
周波数成分を分析しn個の周波数成分値を個々に出力す
る分析回路と、該分析回路の各出力を受けてl個のパタ
ーン出力に分類するパターン分類回路と、該パターン分
類回路に必要に応じ比較目標値を入力する回路とを具備
し、上記パターン分類回路が、分析回路の各出力を重み
づけ及び非線形変換してl個のパターン出力とする計算
回路と、それらパターン出力のうち最大値をとるパター
ン出力を判定する判定回路と、上記入力回路からの比較
目標値により、上記判定回路に構造物の異常に関する正
しい結果が得られるように、上記計算回路の重みを調整
する学習手段とを備えたことを特徴とする構造物の異常
検出装置。 2、前記パターン分類回路の計算回路が、非線形交換を
するn個の入力計算回路と、その入力計算回路の出力に
それぞれ重みをつけて合計した後非線形交換を行うn個
の中間計算回路と、その中間計算回路の出力にそれぞれ
重みをつけて合計した後非線形交換を行うl個の出力計
算回路とから成ることを特徴とする請求項1記載の構造
物の異常検出装置。 3、異常の種類の数だけ前記出力計算回路を設けたこと
を特徴とする請求項2記載の構造物の異常検出装置。
[Claims] 1. A circuit that detects vibrations of a structure, an analysis circuit that analyzes frequency components of the detected vibrations and outputs n frequency component values individually, and each output of the analysis circuit. The pattern classification circuit includes a pattern classification circuit for classifying the received output into l pattern outputs, and a circuit for inputting a comparison target value to the pattern classification circuit as necessary, and the pattern classification circuit weights and classifies each output of the analysis circuit. A calculation circuit that performs nonlinear transformation to produce l pattern outputs, a judgment circuit that judges the pattern output that takes the maximum value among those pattern outputs, and a comparative target value from the input circuit. An abnormality detection device for a structure, comprising: learning means for adjusting the weights of the calculation circuit so as to obtain correct results regarding the abnormality. 2. n input calculation circuits in which the calculation circuit of the pattern classification circuit performs nonlinear exchange, and n intermediate calculation circuits that perform nonlinear exchange after weighting and summing the outputs of the input calculation circuits; 2. The abnormality detection device for a structure according to claim 1, further comprising l output calculation circuits that weight and sum the outputs of the intermediate calculation circuits and then perform nonlinear exchange. 3. The abnormality detection device for a structure according to claim 2, wherein the number of output calculation circuits is equal to the number of types of abnormalities.
JP1243048A 1989-09-19 1989-09-19 Abnormality detector for structural body Pending JPH03105229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243048A JPH03105229A (en) 1989-09-19 1989-09-19 Abnormality detector for structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243048A JPH03105229A (en) 1989-09-19 1989-09-19 Abnormality detector for structural body

Publications (1)

Publication Number Publication Date
JPH03105229A true JPH03105229A (en) 1991-05-02

Family

ID=17098043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243048A Pending JPH03105229A (en) 1989-09-19 1989-09-19 Abnormality detector for structural body

Country Status (1)

Country Link
JP (1) JPH03105229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010054A1 (en) * 1993-10-04 1995-04-13 Maeran Boverio, Pia Device for sensing a change of condition in a mechanical assembly, method for monitoring the condition of a mechanical assembly, and use of said device
US20150268092A1 (en) * 2014-03-19 2015-09-24 Kabushiki Kaisha Toshiba Inspection apparatus, and abnormality detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924217A (en) * 1982-07-30 1984-02-07 Toyota Motor Corp Noise analyzer for vehicle
JPS59222900A (en) * 1983-06-02 1984-12-14 沖電気工業株式会社 Voice recognition
JPS6138426A (en) * 1984-07-31 1986-02-24 Japan Tobacco Inc Apparatus for diagnosis of abnormality of machinery
JPH01199127A (en) * 1988-02-04 1989-08-10 Ishikawajima Harima Heavy Ind Co Ltd Method for diagnosing facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924217A (en) * 1982-07-30 1984-02-07 Toyota Motor Corp Noise analyzer for vehicle
JPS59222900A (en) * 1983-06-02 1984-12-14 沖電気工業株式会社 Voice recognition
JPS6138426A (en) * 1984-07-31 1986-02-24 Japan Tobacco Inc Apparatus for diagnosis of abnormality of machinery
JPH01199127A (en) * 1988-02-04 1989-08-10 Ishikawajima Harima Heavy Ind Co Ltd Method for diagnosing facility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010054A1 (en) * 1993-10-04 1995-04-13 Maeran Boverio, Pia Device for sensing a change of condition in a mechanical assembly, method for monitoring the condition of a mechanical assembly, and use of said device
US20150268092A1 (en) * 2014-03-19 2015-09-24 Kabushiki Kaisha Toshiba Inspection apparatus, and abnormality detection method
US9702754B2 (en) * 2014-03-19 2017-07-11 Kabushiki Kaisha Toshiba Inspection apparatus, and abnormality detection method

Similar Documents

Publication Publication Date Title
CN109060817B (en) Artificial intelligence reinspection system and method thereof
JP4600823B2 (en) Electronic circuit analysis program, method and apparatus
JPH06186136A (en) Fault diagnostic apparatus for ball-and-roller bearing
US20080301073A1 (en) Method for wafer analysis with artificial neural network and system thereof
WO2019176988A1 (en) Inspection system, identification system, and device for evaluating identification apparatus
TWI677844B (en) Product testing system with assistance judgment function and assistance method applied thereto
JPH03105229A (en) Abnormality detector for structural body
JP3056026B2 (en) Logic simulation method
CN113435699A (en) Intelligent quality control method and system
JPH0519028A (en) Device and method for testing logic circuit
KR20190115622A (en) Cost-effectiveness and optimized test design method and apparatus of mass production weapon system Environmental stress screening
CN110046067A (en) Interface test method and device
JP2008083866A (en) Emergency monitoring device
TWI736999B (en) Data analyzing device, data analyzing method and associated quality improvement system
CN107831402A (en) A kind of analogue means and method of distribution overhead line ultrasonic defect signal
TW202001627A (en) Method and system for establishing reliability simplified model applicable to design stage of mechanical equipment which significantly reduces time and costs for developing a reliability model of mechanical equipment
JPH05164803A (en) Open test device for in-circuit tester
US20230281453A1 (en) Creating method of classification model about hard disk efficiency problem, analyzing method of hard disk efficiency problem and classification model creating system of hard disk efficiency problem
JP3295124B2 (en) Device evaluation test apparatus and method
JPH04328669A (en) Unified neural network and its learning system
WO1992007325A1 (en) Apparatus and method for on-line prediction of unmeasurable process information
JPH0696053A (en) Method for predicting fault of product
JP3072985B2 (en) Logic simulation method
JPS63234173A (en) Partial electric discharge measuring instrument
JPH0675935A (en) Multivariable system construction method and its device