JPH01199127A - Method for diagnosing facility - Google Patents

Method for diagnosing facility

Info

Publication number
JPH01199127A
JPH01199127A JP2474588A JP2474588A JPH01199127A JP H01199127 A JPH01199127 A JP H01199127A JP 2474588 A JP2474588 A JP 2474588A JP 2474588 A JP2474588 A JP 2474588A JP H01199127 A JPH01199127 A JP H01199127A
Authority
JP
Japan
Prior art keywords
spectrum
acceleration
diagnostic index
multiple component
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2474588A
Other languages
Japanese (ja)
Other versions
JPH076831B2 (en
Inventor
Hisamori Tofuji
東藤 久盛
Hideo Shibata
柴田 秀夫
Mitsuru Chizuwa
千頭和 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2474588A priority Critical patent/JPH076831B2/en
Publication of JPH01199127A publication Critical patent/JPH01199127A/en
Publication of JPH076831B2 publication Critical patent/JPH076831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately diagnose periods of regular inspection of a facility and improve its reliability by a method wherein a diagnostic index is obtained by a specific calculation based on a spectrum pattern on basic revolutions which are set from an oscillation spectrum of a rotator. CONSTITUTION:During operation of an LNG pump 1, acceleration or displacement is detected by an acceleration detector or a displacement detector, and frequency analysis of this data is carried out to calculate an oscillation spectrum such as acceleration or amplitude. On the basis of this spectrum, a spectrum pattern on basic revolutions of the pump 1 is set. Then by integrating a specific range of gauss distribution, which has been specified according to an integral multiple component of the spectrum pattern, multiplied by the oscillation spectrum at the frequency according to the integral multiple component over a predefined range and by averaging it; at the same time, the diagnostic index is calculated to forecast periods of regular inspection.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、公共性の高いLNGプラント、火力発電所、
その他の設備に設置されるポンプ、送風機等の回転機械
に適用される設備診断方法に関するものである。 [従来の技術] LNGプラント等の大型プラント又は設備の中に占める
回転機械の比率は非常に高く、その役割も重要である。 これら回転機械に異常又は故障が生じた場合、経済的損
失を生じることは当然のことながら、事故が拡大すると
大きな社会的問題に発展する。 例えば、LNGプラントは都市ガス、発電設備等の供給
源として使用されているため、タンクからLNGを圧送
するLNGポンプが故障するとユーザー側に大きな損失
を与えると共に一般需要者にも被害を及ぼすことになる
。そこで、斯かる問題を解決するために、ポンプケーシ
ングの代表的な部分に振動センサーを取付けて一定時間
間隔で振動計測を行い、計測した振動データについてフ
ーリエ解析を行って周波数軸上のデータに移し、処理し
て診断指標を求め、診断指標からポンプの異常診断や劣
化の予知を行っている。 回転機械に適用される従来の設備診断方法をLNGポン
プに適用する場合について第4図〜第6図0)(ロ)Q
Oにより説明すると、第4図中1はLNGポンプ、2は
ケーシング、3はケーシング2内に上下部軸受4.4゛
を介して回転自在に支持された垂直軸、5は垂直軸3に
複数段固着されたインペラー、6は垂直軸3及びインペ
ラー5を駆動する駆動装置、7はケーシング2外周の下
部軸受4°に近い位置に配設された加速度検出器或いは
変位検出器、8はLNGである。 LNGポンプlの運転中に加速度検出器或いは変位検出
器7により加速度或いは変位を検出し、このデータの周
波数分析を行い、第5図に示すように加速度又は振幅等
の振動スペクトル分布を求める。 一般に、ポンプ等の回転機械の振動は、軸系(垂直軸3
及びインペラー5)、軸受系(軸受4.4°)、内部流
体系(LNG8 )が起振源になって発生しており、軸
系、軸受系、内部流体系が発生する振動周波数は、主と
してθ〜500Hz 。 500Hz −10KHz 、 10KHz 〜20K
Hzの周波数帯域に分布する。そこで、第5図に示す振
動スペクトル分布を0〜500Hz 、 500Hz 
−10KHz 5IOKHz〜20KHzに区分して軸
系による周波数帯域A1軸受系による周波数帯域B1内
部流体系による周波数帯域Cに分け、計測した成る時点
の各周波数帯域A、B、Cによる振動レベルの平均値s
、b。 Cを求め、この振動レベルを第6図(イXO)&\)に
示すように時系列に表示する。第6図(イ)は軸系、第
6図(0)は軸受系、第6図(10は内部流体系の診断
指標を示している。 而して、第6図(イバ0)(A>の診断指標は軸系、軸
受系、内部流体系の劣化の状態を経時的に示すから、L
NGポンプの正常運転時に計測したデータを基として、
注意、異常の診断レベルL C+LDを定めておき、L
NGポンプの実際の運転において上述の手順で求められ
た診断指標と注意、異常の診断レベルLC,LDと比較
してLNGポンプに異常が発生したか否かを診断する。 [発明が解決しようとする課題] しかしながら、上述の従来手段では診断指標を求める際
に、所定の周波数帯域の加速度又は振幅の全平均を使用
しているために、外乱等の影響で部分的に平均値診断結
果の高い部分が生じると、診断指標の誤差が大きくなり
、精度の良い正確な診断を行うことができなくなる虞れ
があるという問題がある。 本発明は上述の実情に鑑み、正確な設備診断を行えるよ
うにすることを目的としてなしたものである。 [課題を解決するための手段] 本発明は、回転体の回転により発生する加速度或いは変
位を基に振動スペクトルを求めると共に前記回転体の基
本回転数によるスペクトルパターンを設定し、該スペク
トルパターンの整数倍成分に対応して予め定めた所定の
範囲のガウス分布を前記整数倍成分に対する周波数にお
ける前記振動スペクトルに掛け合せたものを、前記予め
定めた所定の範囲にわたり積分すると共に平均化して診
断指標を求め、該診断指標を時系列的に求めて定検時期
を予知するものである。 [作   用コ 回転体の回転により発生した加速度或いは変位から求め
られた振動スペクトルから回転体の基本回転数によるス
ペクトルパターンが設定され、該スペクトルパターンの
整数倍成分に対応して予め定められた所定範囲のガウス
分布が前記整数倍成分に対する周波数における振動スペ
クトルに掛け合わさせたものが所定範囲にわたり積分さ
れて平均化され、診断指標が求められ、該診断指標が時
系列的に求められ、この時系列的に求められた診断指標
から定検時期が予知されるため、定検時期の正確な判断
が可能となり、設備の信頼性が向上する。 [実 施 例] 以下、本発明の実施例を添付図面を参照しつつ説明する
。 第1図〜第3図は本発明の一実施例である。 従来の場合と同様にして第4図に示す加速度検出器或い
は変位検出器7により、LNGポンプ等の回転体の運転
中に加速度或いは変位を検出し、周波数分析を行って第
1図に示すように、加速度又は振幅等の振動スペクトル
分布を求める。 回転体により発生する振動は基本回転数による成分が最
も多く、軸系、軸受系(特にブツシュベアリング)の異
常による情報を含むことが多い。又異常による情報は、
基本回転数の整数倍或いは整数分の1の部分にも派生成
分として生じ、この派生成分は負荷の変動による回転数
の「ゆらぎ」となる場合が多い。 しかるに、基本回転数によるスペクトルパターンを設定
し、この整数倍成分に対してnf0±Afの範囲にガウ
ス分布のフィルターを掛けることによりスペクトルの「
ゆらぎ」が防止される。各成分は、nfo=!:Af内
の平均値を診断指標Znとして により評価する。 ここで、Sp  (f);振動スペクトルfo −基本
周波数 Af、基本周波数或いはその 周波数の整数倍の周波 数を中心としてスペク トルパターンを求める ための幅 f;周波数 W;係数 に;定数 e;自然対数 (+)式で求めた診断指標Z。(n−1,2,3゜・・
・)を時系列に表示すると第3図のようになり、このグ
ラフから定検の時期Toを予知できる。 従って、診断指標の誤差が少くなるため、定検時期を正
確に診断することが可能となり、定検後の設備の安定性
を知ることができる。 なお、本発明は上述の実施例に限定されるものではなく
、本発明の要旨を逸脱しない範囲内で種々変更を加え得
ることは勿論である。 [発明の効果] 本発明の設備診断方法によれば、設備の定検時期を正確
に診断することができるため、設備の信頼性が向上する
、という優れた効果を奏し得る。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to highly public LNG plants, thermal power plants,
The present invention relates to an equipment diagnosis method applied to rotating machines such as pumps and blowers installed in other equipment. [Prior Art] The proportion of rotating machines in large plants or equipment such as LNG plants is very high, and their role is also important. When abnormalities or breakdowns occur in these rotating machines, it goes without saying that economic losses will occur, but if the accident spreads, it will develop into a major social problem. For example, LNG plants are used as a supply source for city gas, power generation equipment, etc., so if the LNG pump that pumps LNG from the tank breaks down, it will cause a large loss to the user and also cause damage to general users. Become. Therefore, in order to solve this problem, we installed vibration sensors on representative parts of the pump casing and measured vibrations at regular time intervals, performed Fourier analysis on the measured vibration data, and transferred it to data on the frequency axis. , is processed to obtain a diagnostic index, and from the diagnostic index, pump abnormality diagnosis and deterioration prediction are performed. Figures 4 to 6 0) (b) Q When applying the conventional equipment diagnosis method applied to rotating machinery to LNG pumps
In Fig. 4, 1 is an LNG pump, 2 is a casing, 3 is a vertical shaft rotatably supported in the casing 2 via upper and lower bearings 4.4'', and 5 is a plurality of vertical shafts 3. The impeller is fixed in stages, 6 is a drive device that drives the vertical shaft 3 and the impeller 5, 7 is an acceleration detector or displacement detector disposed at a position close to 4° of the lower bearing on the outer periphery of the casing 2, and 8 is an LNG be. During operation of the LNG pump 1, acceleration or displacement is detected by an acceleration detector or displacement detector 7, frequency analysis of this data is performed, and vibration spectrum distribution such as acceleration or amplitude is determined as shown in FIG. In general, vibrations in rotating machines such as pumps are caused by shaft system (vertical shaft 3
The vibration frequencies generated by the shaft system, bearing system, and internal fluid system are mainly θ~500Hz. 500Hz -10KHz, 10KHz ~20K
Distributed in the Hz frequency band. Therefore, the vibration spectrum distribution shown in Fig. 5 is
-10KHz 5 IOKHz - 20KHz divided into frequency band A1 due to shaft system, frequency band B1 frequency band due to bearing system, frequency band C due to internal fluid system, average value of vibration level in each frequency band A, B, C at the time of measurement. s
,b. C is determined and the vibration levels are displayed in chronological order as shown in Figure 6 (IXO) &\). Figure 6 (A) shows the shaft system, Figure 6 (0) shows the bearing system, and Figure 6 (10) shows the diagnostic indicators for the internal fluid system. >The diagnostic index indicates the state of deterioration of the shaft system, bearing system, and internal fluid system over time, so L
Based on data measured during normal operation of the NG pump,
Caution: Define abnormality diagnostic level L C + LD, and set L
During the actual operation of the NG pump, it is determined whether or not an abnormality has occurred in the LNG pump by comparing the diagnostic index, precautions, and abnormality diagnostic levels LC and LD determined by the above-described procedure. [Problems to be Solved by the Invention] However, since the above-mentioned conventional means uses the total average of acceleration or amplitude in a predetermined frequency band when determining a diagnostic index, it may be partially affected by disturbances etc. When a portion with a high average value diagnostic result occurs, there is a problem in that the error in the diagnostic index becomes large, and there is a possibility that accurate and accurate diagnosis cannot be performed. The present invention has been made in view of the above-mentioned circumstances, and is intended to enable accurate equipment diagnosis. [Means for Solving the Problems] The present invention obtains a vibration spectrum based on the acceleration or displacement generated by the rotation of a rotating body, sets a spectrum pattern based on the basic rotational speed of the rotating body, and calculates an integer of the spectrum pattern. The vibration spectrum at the frequency for the integer multiple component is multiplied by a Gaussian distribution in a predetermined range corresponding to the multiple component, and the product is integrated over the predetermined range and averaged to obtain a diagnostic index. , the diagnostic index is obtained in chronological order to predict the periodic inspection time. [Action] A spectral pattern based on the basic rotational speed of the rotating body is set from the vibration spectrum obtained from the acceleration or displacement generated by the rotation of the rotating body, and a predetermined predetermined pattern corresponding to the integral multiple component of the spectral pattern is set. The Gaussian distribution of the range multiplied by the vibration spectrum at the frequency for the integer multiple components is integrated over a predetermined range and averaged to obtain a diagnostic index, and the diagnostic index is determined in a time series. Since the period of periodic inspection can be predicted from the diagnostic index determined by the system, it is possible to accurately judge the period of periodic inspection, improving the reliability of the equipment. [Example] Hereinafter, an example of the present invention will be described with reference to the accompanying drawings. 1 to 3 show an embodiment of the present invention. Similar to the conventional case, acceleration or displacement is detected during operation of a rotating body such as an LNG pump using the acceleration detector or displacement detector 7 shown in FIG. 4, and frequency analysis is performed to detect the Then, find the vibration spectrum distribution such as acceleration or amplitude. The vibrations generated by a rotating body have the largest component due to the basic rotational speed, and often contain information about abnormalities in the shaft system and bearing system (particularly bush bearings). Also, information regarding abnormalities is
Derived components also occur at integral multiples or fractions of the basic rotational speed, and these derived components often become "fluctuations" in the rotational speed due to load fluctuations. However, by setting a spectral pattern based on the basic rotational speed and applying a Gaussian distribution filter to the integer multiple component in the range nf0±Af, the spectral "
"Fluctuation" is prevented. Each component is nfo=! : The average value within Af is evaluated as a diagnostic index Zn. Here, Sp (f); vibration spectrum fo - fundamental frequency Af, width f for finding a spectrum pattern centered around the fundamental frequency or an integral multiple of the frequency; frequency W; coefficient; constant e; natural logarithm ( +) Diagnostic index Z calculated using the formula. (n-1, 2, 3°...
) is displayed in chronological order as shown in Figure 3, and the period To for regular inspections can be predicted from this graph. Therefore, since the error in the diagnostic index is reduced, it becomes possible to accurately diagnose the period of regular inspection, and the stability of the equipment after the regular inspection can be known. It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention. [Effects of the Invention] According to the equipment diagnosis method of the present invention, it is possible to accurately diagnose the periodic inspection period of the equipment, and therefore, the excellent effect of improving the reliability of the equipment can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を行う際に求める周波数と振動スペ
クトルの関係を表わすグラフ、第2図は同周波数とガウ
ス分布の関係を表わすグラフ、第3図は同診断指標を時
系列に表示したグラフ、第4図はLNGポンプの一般的
な説明図、第5図は従来方法を行う際に求める周波数と
振動スペクトルの関係を表わすグラフ、第6図(イ)(
ロ)<A>は従来方法における診断指標を時系列番ト表
示したグラフである。 図中1はLNGポンプ、7は加速度検出器或いは変位検
出器である。 第6図 (イ) 時間 (ロ) (ハ) 萌間 RJ77A”(へ−憂
Figure 1 is a graph showing the relationship between the frequency and vibration spectrum obtained when performing the method of the present invention, Figure 2 is a graph showing the relationship between the same frequency and Gaussian distribution, and Figure 3 is a graph showing the same diagnostic index in time series. Graph, Figure 4 is a general explanatory diagram of an LNG pump, Figure 5 is a graph showing the relationship between the frequency and vibration spectrum obtained when performing the conventional method, and Figure 6 (A) (
B) <A> is a graph showing diagnostic indicators in a conventional method in chronological order. In the figure, 1 is an LNG pump, and 7 is an acceleration detector or a displacement detector. Figure 6 (a) Time (b) (c) Moema RJ77A”

Claims (1)

【特許請求の範囲】[Claims] 1)回転体の回転により発生する加速度或いは変位を基
に振動スペクトルを求めると共に前記回転体の基本回転
数によるスペクトルパターンを設定し、該スペクトルパ
ターンの整数倍成分に対応して予め定めた所定の範囲の
ガウス分布を前記整数倍成分に対する周波数における前
記振動スペクトルに掛け合せたものを、前記予め定めた
所定の範囲にわたり積分すると共に平均化して診断指標
を求め、該診断指標を時系列的に求めて定検時期を予知
することを特徴とする設備診断方法。
1) Obtain a vibration spectrum based on the acceleration or displacement generated by the rotation of the rotating body, set a spectrum pattern based on the basic rotational speed of the rotating body, and set a predetermined predetermined value corresponding to the integral multiple component of the spectrum pattern. Multiplying the vibration spectrum at the frequency for the integer multiple component by a Gaussian distribution in the range is integrated and averaged over the predetermined range to obtain a diagnostic index, and the diagnostic index is determined in time series. An equipment diagnosis method characterized by predicting periodic inspection timing.
JP2474588A 1988-02-04 1988-02-04 Equipment diagnosis method Expired - Lifetime JPH076831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2474588A JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2474588A JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Publications (2)

Publication Number Publication Date
JPH01199127A true JPH01199127A (en) 1989-08-10
JPH076831B2 JPH076831B2 (en) 1995-01-30

Family

ID=12146680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2474588A Expired - Lifetime JPH076831B2 (en) 1988-02-04 1988-02-04 Equipment diagnosis method

Country Status (1)

Country Link
JP (1) JPH076831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105229A (en) * 1989-09-19 1991-05-02 Hitachi Cable Ltd Abnormality detector for structural body
US11921566B2 (en) 2015-12-01 2024-03-05 Preferred Networks, Inc. Abnormality detection system, abnormality detection method, abnormality detection program, and method for generating learned model

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105229A (en) * 1989-09-19 1991-05-02 Hitachi Cable Ltd Abnormality detector for structural body
US11921566B2 (en) 2015-12-01 2024-03-05 Preferred Networks, Inc. Abnormality detection system, abnormality detection method, abnormality detection program, and method for generating learned model

Also Published As

Publication number Publication date
JPH076831B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
Scheffer et al. Practical machinery vibration analysis and predictive maintenance
EP2434266B1 (en) Sideband energy ratio method for gear mesh fault detection
US7089154B2 (en) Automatic machinery fault diagnostic method and apparatus
JP6410572B2 (en) Current diagnostic device and current diagnostic method
US20190301975A1 (en) Abnormality diagnostic method and abnormality diagnostic device for rolling bearing
JP3609982B2 (en) Fault diagnosis method and apparatus
KR101498527B1 (en) Diagnosis system using vibration frequency analysis program for rotation equipment of power plant
Senapaty et al. Vibration based condition monitoring of rotating machinery
JPH07324974A (en) Apparatus for diagnosing vibration of rotary machine
JPH01199127A (en) Method for diagnosing facility
JP3103193B2 (en) Diagnostic equipment for rotating machinery
US20230152178A1 (en) Rotating machine speed estimation
Galar et al. Application of dynamic benchmarking of rotating machinery for e-maintenance
JPH01270623A (en) Apparatus for diagnosing vibration of rotary machine
Liska et al. Measurement and evaluation of shaft torsional vibrations using shaft instantaneous angular velocity
JPH01199126A (en) Device for diagnosing rotating machine
Grządziela et al. An application of order tracking procedure for diagnosis technical state of rotor system in shut-down process
JPS6157491B2 (en)
EP4266139A1 (en) Monitoring machines
JPS628023A (en) Diagnosis of rotary machine
JPS60122351A (en) Fault diagnosing device
JPH06241880A (en) Device and method for monitoring bearing of rotary machine
Cox et al. Detecting generalized roughness faults in synchronous-generator bearings using the energy in the current spectrum
Wu et al. Modulation Signal Bispectrum Based Monitoring of Tooth Surface Wear for Modification Spiral Bevel Gear
Monitoring Vibration diagnostic guide