JPH031049A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH031049A
JPH031049A JP13520589A JP13520589A JPH031049A JP H031049 A JPH031049 A JP H031049A JP 13520589 A JP13520589 A JP 13520589A JP 13520589 A JP13520589 A JP 13520589A JP H031049 A JPH031049 A JP H031049A
Authority
JP
Japan
Prior art keywords
compressor
operating capacity
time period
electric expansion
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13520589A
Other languages
Japanese (ja)
Other versions
JPH0810086B2 (en
Inventor
Koji Ishikawa
石川 孝治
Masahiko Sugino
雅彦 杉野
Shuichi Tani
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13520589A priority Critical patent/JPH0810086B2/en
Publication of JPH031049A publication Critical patent/JPH031049A/en
Publication of JPH0810086B2 publication Critical patent/JPH0810086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To keep an adequate flow rate of return oil for maintaining a compressor under good operating conditions even when the operating capacity of the compressor is changed, by a method wherein in case the time period counted by a timer is more than a specified one, the operating capacity of the compressor is lowered for a certain time period by an operating capacity controller, and the valve lift of an electric expansion valve is increased to a specified value or more for a certain time period by a valve lift controller. CONSTITUTION:When the load on a refrigerant circuit is large and so the operating capacity CP of a compressor 1 becomes large, it is judged whether the operating capacity is less than the pre-set control value CPO or not, and if it is larger than the control value CPO, a timer 10 begins to count the time, and when the accumulated time period T1 becomes larger than the pre-set control value T01, an oil recovery action takes place. That is, the operating capacity CP of the compressor 1 is temporarily reduced by an operating capacity controller 13 and the valve lift of an electric expansion valve 9 is increased by a valve lift controller 14. When the oil recovery action starts, the timer 10 counts the oil recovery time period T2, and when the accumulated time period T2 reaches the oil recovery action maximum limit time period T01, the oil recovery action finishes, the operating capacity CP of the compressor is returned to the original state, and the valve lift of the electric expansion valve is reset to the original state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気調和機の冷凍サイクル及び制御装置に関
するものであり、特に、圧縮容量調整可能な圧縮機を用
いた空気調和機の返油システムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a refrigeration cycle and control device for an air conditioner, and in particular, an oil return system for an air conditioner using a compressor with adjustable compression capacity. It is related to.

〔従来の技術〉 従来この種の装置として第3図に示すものがある。[Conventional technology] A conventional device of this type is shown in FIG.

図において、+11は圧縮機、(2)は四方弁、(3)
は室外熱交換器、(4)は減圧装置、(5)は室内熱交
換器、(6)はアキュムレータ、(6a)は前記アキュ
ムレータ(6)の流出管途中にキリ穴をあけて構成され
る返油装置、■および側はそれぞれガス側延長配管およ
び源側延長配管である0図中、実線矢印は冷房運転時の
冷媒流れ方向を、また破線矢印は暖房運転時の冷媒流れ
方向を示している。
In the figure, +11 is the compressor, (2) is the four-way valve, and (3)
is an outdoor heat exchanger, (4) is a pressure reducing device, (5) is an indoor heat exchanger, (6) is an accumulator, and (6a) is configured by drilling a hole in the middle of the outflow pipe of the accumulator (6). The oil return device, ■ and side are the gas side extension piping and the source side extension piping, respectively. There is.

次に、冷房運転時の動作について説明する。圧縮機(1
)でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
は、四方弁(2)を介して室外熱交換器(3)に流入し
、室外空気に放熱する一方、冷媒は凝縮して高圧の液冷
媒となり、減圧装置(4)で減圧され、低圧の気液混合
冷媒となって、室内熱交換器(5)に供給される。室内
熱交換器(5)では、室内空気から採熱して冷房する一
方、冷媒は蒸発して低圧のガス冷媒となり、ガス側延長
配管αυおよび四方弁口)を介してアキュムレータ(6
)に流入する。アキエムレータ(6)では、室内熱交換
器(5)で蒸発し切れなかった液冷媒とガス冷媒を分離
して圧縮機(11に吸入させる一方、アキエムレータ(
6)の底部に溜っている冷媒と冷凍機油の混合液を返油
装置(6a)を介して圧縮機(1)に吸入させ、圧縮機
(11内部の潤滑に必量な油量を適正に保持する。
Next, the operation during cooling operation will be explained. Compressor (1
), the discharged high-temperature, high-pressure gas refrigerant flows into the outdoor heat exchanger (3) via the four-way valve (2) and radiates heat to the outdoor air, while the refrigerant condenses and becomes high-pressure. The refrigerant becomes a liquid refrigerant, is depressurized by the pressure reducing device (4), becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger (5). In the indoor heat exchanger (5), heat is collected from the indoor air for cooling, while the refrigerant evaporates to become a low-pressure gas refrigerant, which is then transferred to the accumulator (6) via the gas side extension pipe αυ and four-way valve port.
). In the Akyemulator (6), the liquid refrigerant and gas refrigerant that were not completely evaporated in the indoor heat exchanger (5) are separated and sucked into the compressor (11).
6) The mixed liquid of refrigerant and refrigeration oil accumulated at the bottom of the compressor (1) is sucked into the compressor (1) through the oil return device (6a), and the amount of oil necessary for lubricating the inside of the compressor (11) is adjusted appropriately. Hold.

次に、暖房運転時の動作について説明する。圧縮機+1
1でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
は、四方弁(2)およびガス側延長配管αDを介して室
内熱交換器(5)に供給され、室内空気に放熱して暖房
する一方、冷媒は凝縮して高圧の液冷媒となる。この液
冷媒は、減圧装置(4)に流入し、減圧装置(4)で減
圧され低圧の気液混合冷媒となり室外熱交換器(3)に
供給され、室外空気より採熱して、低圧のガス冷媒とな
って、四方弁(2)を介してアキュムレータ(6)に流
入する。アキエムレータ(6)では冷房運転時と同様に
、ガス冷媒と液冷媒を分離する一方、圧縮機(11に必
要な冷凍機油を返油する。
Next, the operation during heating operation will be explained. compressor +1
The gas refrigerant is compressed in step 1, and the discharged high-temperature, high-pressure gas refrigerant is supplied to the indoor heat exchanger (5) via the four-way valve (2) and the gas side extension pipe αD, and radiates heat to indoor air for heating. Meanwhile, the refrigerant condenses and becomes a high-pressure liquid refrigerant. This liquid refrigerant flows into the pressure reducing device (4), where it is depressurized and becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the outdoor heat exchanger (3), where it collects heat from the outdoor air and converts it into a low-pressure gas. It becomes a refrigerant and flows into the accumulator (6) via the four-way valve (2). The Akiemulator (6) separates gas refrigerant and liquid refrigerant as in the cooling operation, and returns the refrigerating machine oil necessary for the compressor (11).

また、アキュムレータ(6)は冷房運転時と暖房運転時
に必要な冷媒量の差により発生する余剰冷媒量を回収す
るa能がある。つまり、第3図に示す如き冷媒回路構成
の場合、暖房運転時には、液側延長配管@内の冷媒状態
は低圧の気液混合冷媒であるため、必要な冷媒量は比較
的少ない、これに対して、冷房運転時には、淡側延長配
管■内の冷媒状態は高圧の液冷媒となるため、比重量も
大きく、必要な冷媒量が多くなる。従って、暖房運転時
には、多量の冷媒液がアキュムレータ(6)内に停滞す
る。この停滞する余剰冷媒量は、延長配管ODおよびO
の配管長が長くなる程多くなる。
Further, the accumulator (6) has the ability to recover the surplus amount of refrigerant generated due to the difference in the amount of refrigerant required during cooling operation and heating operation. In other words, in the case of the refrigerant circuit configuration shown in Fig. 3, during heating operation, the refrigerant state in the liquid side extension pipe @ is a low-pressure gas-liquid mixed refrigerant, so the amount of refrigerant required is relatively small. During cooling operation, the state of the refrigerant in the light side extension pipe (2) becomes a high-pressure liquid refrigerant, so the specific weight is also large and the required amount of refrigerant increases. Therefore, during heating operation, a large amount of refrigerant liquid remains in the accumulator (6). This stagnant surplus refrigerant amount is
The number increases as the piping length increases.

なお、返油装置(6a)を介して圧縮機(1)に流入す
る液冷媒と冷凍機油の混合液流量は簡易的に下に示す圧
力式により求まる。
The flow rate of the mixture of liquid refrigerant and refrigerating machine oil flowing into the compressor (1) via the oil return device (6a) is simply determined by the pressure equation shown below.

Δ Pl +Δ Pt−ΔP3 ΔPI :ガス冷媒がアキエム流出管に流入する際に発
生する損失および流出管内 の管摩擦損失 ΔP8 :アキエムレータ内液面高さによる液柱圧 △P、:返油装置(キリ穴)前後に発生する差圧 つまり、ガス冷媒の流速が速くなる程ΔP自が大きくな
り、かつアキエムレータ(6)内部の余剰冷媒液量が多
くなる程へPIが大きくなるので、返油装置(6a)前
後の差圧が大きくなり、結果的に混合液流量が増加する
Δ Pl + Δ Pt - ΔP3 ΔPI: Loss generated when the gas refrigerant flows into the Akiem outflow pipe and pipe friction loss in the outflow pipe ΔP8: Liquid column pressure due to the liquid level height inside the Akiem unit, ΔP: Oil return device (Kiri In other words, the faster the flow rate of the gas refrigerant, the larger ΔP becomes, and the larger the amount of surplus refrigerant inside the Akiemulator (6), the larger PI becomes. 6a) The differential pressure before and after increases, resulting in an increase in the flow rate of the mixed liquid.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように従来の空気調和機では、アキエムレータ(
6)の返油装置(6a)を一義的に構成しているので、
負荷が太き(、冷媒の循環量が多い場合、圧縮機からの
油の吐出量が増大し、圧縮機内の油が不足して故障に至
る場合があった。
As mentioned above, in conventional air conditioners, Akiemulator (
Since it uniquely constitutes the oil return device (6a) in 6),
When the load is heavy (or the amount of refrigerant circulated is large), the amount of oil discharged from the compressor increases, which can lead to a lack of oil in the compressor, leading to failure.

尚、空気調和機に使用する圧縮機(1)を容量可変形と
した場合には、圧縮機の容量制御範囲が広くなり、重負
荷時の油の吐出量が著しく、油不足の状態も顕著になる
In addition, when the compressor (1) used in the air conditioner is of a variable capacity type, the capacity control range of the compressor becomes wider, the amount of oil discharged under heavy loads is significant, and oil shortage conditions are also noticeable. become.

また返油量を多(するだけならば前記アキュムレータ返
油装置(6a)のキリ穴を大きくすれば良いが、その場
合は、アキエムレータがら冷媒が液状態で圧m機へ吸入
されやすくなり、液圧縮による圧縮機の故障の可能性が
生じる。
In addition, if you just want to increase the amount of oil returned, you can make the drill hole of the accumulator oil return device (6a) larger, but in that case, the refrigerant from the accumulator will be easily sucked into the pressure machine in a liquid state, and the liquid There is a possibility of compressor failure due to compression.

この発明は、かかる問題点を解決するためになされたも
ので、圧縮機の運転容量が変化しても、適度な返油量を
確保して圧縮機の運転状態を良好に維持する空気調和機
を得ることを目的としている。
This invention was made to solve this problem, and is an air conditioner that maintains a good operating condition of the compressor by ensuring an appropriate amount of oil return even if the operating capacity of the compressor changes. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる空気調和機は、圧縮機の運転容量が所
定値以上の場合に計時する計時手段により、前記計時時
間が所定値以上の場合には、前記圧縮機の運転容量を所
定の時間低下させると共にアキュムレータ底部より前記
圧縮機の吸入配管の間に接続された電気式膨張弁の弁開
度を所定値以上とするようにしたものである。
In the air conditioner according to the present invention, the operating capacity of the compressor is reduced by a predetermined time when the measured time is greater than or equal to a predetermined value, using a timing means that measures when the operating capacity of the compressor is greater than or equal to a predetermined value. At the same time, the valve opening degree of an electric expansion valve connected between the bottom of the accumulator and the suction pipe of the compressor is set to a predetermined value or more.

〔作用〕[Effect]

この発明では、圧縮機の運転容量が所定値以上の状態が
所定時間以上継続した場合、前記圧縮機の運転容量を所
定の時間低下させると共に、所定の時間、アキエムレー
タ底部より前記圧縮機の吸入配管の間に接続された電気
式膨張弁の弁開度を所定値以上としたので、圧縮機から
の油吐出量が低下すると共に、アキエムレータからの油
の戻りが多くなり、圧縮機内の油量が適度に確保できる
In this invention, when the operating capacity of the compressor continues to be at or above a predetermined value for a predetermined time or more, the operating capacity of the compressor is reduced for a predetermined time, and the suction pipe of the compressor is opened from the bottom of the Akiemulator for a predetermined time. Since the opening of the electric expansion valve connected between A reasonable amount can be secured.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による空気調和機の全体構
成図である1図において、fl) 、 +21 、 +
31 。
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention. In FIG. 1, fl), +21, +
31.

(41(51,(61,及びOD、@は第3図に示す空
気調和機と同様のものであり、(7)は吸入配管、(8
)はアキュムレータ(6)と前記吸入配管(7)との間
に接続された返油回路であり、(9)は前記返油回路の
冷媒の流れを制御する電気式膨張弁で、顛は圧縮機の運
転容量が所定以上の時に、計時する計時手段、α簿は前
記圧縮機の運転容量制御手段、(ロ)は前記電気式膨張
弁(9)の弁開度を制御する弁開度制御手段である。
(41 (51, (61, and OD, @ are the same as the air conditioner shown in Figure 3, (7) is the suction pipe, (8
) is an oil return circuit connected between the accumulator (6) and the suction pipe (7), and (9) is an electric expansion valve that controls the flow of refrigerant in the oil return circuit; A timing means for timing when the operating capacity of the machine is above a predetermined value, α is an operating capacity control means for the compressor, and (b) is a valve opening degree control for controlling the valve opening degree of the electric expansion valve (9). It is a means.

尚、図中実線矢印は冷房運転時の冷媒流れ方向を示し、
破線矢印は暖房運転時の冷媒流れ方向を示す、冷房運転
並びに暖房運転時の冷媒の流れについては第3図に示す
従来の空気調和機と全く同様なので説明を省略し、圧縮
機大容1i!!転時の動作について説明する。
In addition, the solid line arrow in the figure indicates the refrigerant flow direction during cooling operation.
The broken line arrow indicates the refrigerant flow direction during heating operation.The refrigerant flow during cooling operation and heating operation is exactly the same as that of the conventional air conditioner shown in Fig. 3, so the explanation will be omitted. ! The operation during rotation will be explained.

第2図は運転容量制御手段Q31 、弁開度制御手段。Figure 2 shows the operating capacity control means Q31 and the valve opening control means.

計時手段O1の制御状態を示すフローチャートである。It is a flowchart which shows the control state of the time measurement means O1.

ステップa!9で運転が開始すると、運転状態に合わせ
て圧縮機は運転容量を制御していく、またアキュムレー
タ底部から前記圧m機の吸入配管の途中に接続された電
気式膨張弁(9)の弁開度を、圧縮機の運転容量に応じ
て増減するようにしている。
Step a! When the operation starts at step 9, the compressor controls the operating capacity according to the operating condition, and the electric expansion valve (9) connected from the bottom of the accumulator to the middle of the suction pipe of the compressor is opened. The temperature is increased or decreased depending on the operating capacity of the compressor.

つまり、圧縮機の運転容量が太き(油吐出量が多い場合
には弁開度を大きく設定して返油量を増加させ、逆に運
転容量が小さ(油吐出量が少ない場合は、弁開度を小さ
く設定して返油量を減少させるようにしである。この様
に圧縮機への油の戻しはアキエムレータ内の返油装置(
6a)及び、前記電気式膨張弁からなる返油回路(8)
から成り立っている。
In other words, if the operating capacity of the compressor is large (the amount of oil discharged is large), the valve opening degree is set large to increase the amount of oil returned; The opening degree is set small to reduce the amount of oil returned.In this way, oil is returned to the compressor using the oil return device (
6a) and an oil return circuit (8) consisting of the electric expansion valve.
It consists of

この様な冷媒回路において、負荷が大きく、圧縮機の運
転容量C2が大きくなると、予め設定しである制御値C
2゜以下か否かをステップO1で判定し、制御値C,。
In such a refrigerant circuit, when the load is large and the operating capacity C2 of the compressor becomes large, the preset control value C2 increases.
It is determined in step O1 whether or not the angle is 2° or less, and the control value C, is determined.

以上であれば計時手段Qlにより時間のカウントを開始
し、ステップαηで積算時間T1が予め設定しである制
御値701以上となった場合は、ステップQllで示す
油回収動作、つまり一時的な圧縮機の運転容量C9の低
下と、電気式膨張弁の弁開度の増加を行なう、前記油回
収動作が開始すると前記計時手段α偉により、油回収時
間T2をカウントし、ステップQlで前記積算時間T3
が所定の油回収動作最大規制時間T。8に達すると、ス
テップ(至)に示す如く、前記油回収動作を終了し、圧
縮機運転容量C2を初期状態に戻すと共に、電気式膨張
弁の弁開度も初期状態にセントし直す。
If this is the case, the timer Ql starts counting the time, and if the cumulative time T1 reaches a preset control value 701 or more in step αη, the oil recovery operation shown in step Qll is performed, that is, temporary compression. When the oil recovery operation starts, which reduces the operating capacity C9 of the machine and increases the opening degree of the electric expansion valve, the timer α counts the oil recovery time T2, and in step Ql the accumulated time is counted. T3
is the maximum regulation time T for the predetermined oil recovery operation. 8, as shown in step (to), the oil recovery operation is ended, the compressor operating capacity C2 is returned to the initial state, and the valve opening of the electric expansion valve is also reset to the initial state.

つまり、本実施例による冷媒回路においては、圧縮機の
運転容量が太き(なり、圧縮機からの油吐出量が増大し
、圧縮機内の油量が不足した場合、−時的に圧縮機の運
転容量を低下させ、油吐出量を抑える・と共に、電気式
膨張弁(9)の弁開度を増加させ、アキエムレータ(6
)から油を回収するように構成している。
In other words, in the refrigerant circuit according to this embodiment, if the operating capacity of the compressor is large (and the amount of oil discharged from the compressor increases, and the amount of oil in the compressor becomes insufficient), - In addition to reducing the operating capacity and suppressing the oil discharge amount, the valve opening degree of the electric expansion valve (9) is increased, and the
) is configured to recover oil from

さらに、油回収動作を一定時間行なって油量を確保した
後、通常の運転状態に復帰する。
Furthermore, after the oil recovery operation is performed for a certain period of time to ensure the amount of oil, the normal operating state is restored.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように構成されているので、以
下に記載されるような効果を奏する。
Since this invention is configured as described above, it produces the effects described below.

圧縮機の運転容量に応じて、返油回路の電気式膨張弁の
弁開度を制御し、返油量を確保しているが、単に運転容
量で一義的に決定される弁開度では、運転容it h<
大きく油吐出量が大きい場合の弁開度設定を大きくして
おくと、圧縮機への冷媒の戻りも多くなり、過渡的な液
バツク状態時等に対応しきれず、液圧縮を起こし圧縮機
が故障する危険があり、ユニットのバラツキも考慮する
と対応負荷であったが、本発明における制御においては
、圧縮機の運転容量が所定値以上の状態が所定時間以上
継続した場合、−時的に圧縮機の運転容量を低下させ、
油の吐出量を抑えると共に、電気式膨張弁の弁開度を増
加させ、アキュムレータから油を回収する油回収動作を
行うことにより、圧縮機が油不足になる事がなく圧縮機
の故障がなくなり信軌性が向上する。
The valve opening of the electric expansion valve in the oil return circuit is controlled according to the operating capacity of the compressor to ensure the amount of oil returned, but the valve opening is determined solely by the operating capacity. Driving capacity it h<
If the valve opening is set large when the oil discharge amount is large, more refrigerant will return to the compressor, making it impossible to cope with transient liquid back-up conditions, causing liquid compression, and causing the compressor to shut down. There was a risk of failure, and the load was a corresponding load considering unit variations. However, in the control of the present invention, if the operating capacity of the compressor continues to be at or above a predetermined value for a predetermined period of time, the compression reduce the operating capacity of the machine,
By suppressing the amount of oil discharged, increasing the valve opening of the electric expansion valve, and performing an oil recovery operation to recover oil from the accumulator, the compressor will never run out of oil and will not malfunction. Improves reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による空気調和機の全体構
成図、第2図は本空気調和機の油回収動作に関する制御
フローチャート、第3図は従来の空気調和機の船隊構成
図である。 図中、+11は圧縮機、(2)は四方弁、(3)は室外
熱交換器、(4)は減圧装置、り5)は室内熱交換器、
(6)はアキュムレータ、(7)は返油回路、(9)は
電気式膨張弁、aSは計時手段、(lは運転容量制御手
段、(14)は弁開度制御手段である。 なお、各図中同一符号は、同−又は相当部分を示す。 代理人   大  岩  増  雄 第2図 第3図
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention, FIG. 2 is a control flowchart regarding the oil recovery operation of this air conditioner, and FIG. 3 is a diagram of a fleet configuration of a conventional air conditioner. . In the figure, +11 is a compressor, (2) is a four-way valve, (3) is an outdoor heat exchanger, (4) is a pressure reducing device, and 5) is an indoor heat exchanger.
(6) is an accumulator, (7) is an oil return circuit, (9) is an electric expansion valve, aS is a timing means, (l is an operating capacity control means, and (14) is a valve opening degree control means. The same reference numerals in each figure indicate the same or equivalent parts. Agent Masuo Oiwa Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 圧縮容量調整可能な圧縮機、四方弁、室外熱交換器、減
圧装置、室内熱交換器、並びにアキュムレータにより構
成された冷媒回路、前記アキュムレータ底部より電気式
膨張弁を介して上記圧縮機の吸入側に配管接続された返
油回路、上記圧縮機の運転容量を制御する運転容量制御
手段、上記返油回路に設けられた電気式膨張弁の弁開度
を制御する弁開度制御手段及び上記圧縮機の運転容量が
所定値以上の場合に計時する計時手段とを備え、前記計
時手段による計時時間が所定時間が所定時間以上の場合
には、上記運転容量制御手段により所定の時間上記圧縮
機の運転容量を低下させると共に、上記弁開度制御手段
により所定の時間電気式膨張弁の弁開度を所定値以上と
するようにしたことを特徴とする空気調和機。
A refrigerant circuit consisting of a compressor with adjustable compression capacity, a four-way valve, an outdoor heat exchanger, a pressure reduction device, an indoor heat exchanger, and an accumulator, and a suction side of the compressor from the bottom of the accumulator through an electric expansion valve. an oil return circuit pipe-connected to the compressor, an operating capacity control means for controlling the operating capacity of the compressor, a valve opening degree control means for controlling the valve opening degree of the electric expansion valve provided in the oil return circuit, and the compressor. and a timer for timing when the operating capacity of the compressor is equal to or greater than a predetermined value, and when the time measured by the timer is equal to or greater than the predetermined time, the operating capacity control means controls the compressor for a predetermined time. An air conditioner characterized in that the operating capacity is reduced and the valve opening degree of the electric expansion valve is kept at a predetermined value or more for a predetermined time by the valve opening degree control means.
JP13520589A 1989-05-30 1989-05-30 Air conditioner Expired - Lifetime JPH0810086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13520589A JPH0810086B2 (en) 1989-05-30 1989-05-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13520589A JPH0810086B2 (en) 1989-05-30 1989-05-30 Air conditioner

Publications (2)

Publication Number Publication Date
JPH031049A true JPH031049A (en) 1991-01-07
JPH0810086B2 JPH0810086B2 (en) 1996-01-31

Family

ID=15146309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13520589A Expired - Lifetime JPH0810086B2 (en) 1989-05-30 1989-05-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0810086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085112A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Cold source unit and refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085112A1 (en) * 2020-10-21 2022-04-28 三菱電機株式会社 Cold source unit and refrigeration cycle device

Also Published As

Publication number Publication date
JPH0810086B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US5953934A (en) Refrigerant circulating apparatus and method of assembling a refrigerant circuit
AU2005267347B2 (en) Improved lubricant return schemes in refrigerant cycle
KR20130028474A (en) An air conditioner and a control method for the same
JP4440883B2 (en) Air conditioner
JP2018013286A (en) Control device, air conditioner, and control method
KR100614364B1 (en) Refrigeration equipment
JP2018013287A (en) Air conditioner and control method of air conditioner
JP2003240310A (en) Air conditioner and outdoor machine used in the same
JPH085169A (en) Air conditioner
JPH031049A (en) Air conditioner
JP2508842B2 (en) Air conditioner
JPH07190455A (en) Refrigerating/air-conditioning system
KR100743719B1 (en) Process for preventing rising of pressure in multi type air conditioner
KR100733313B1 (en) Process for controling pressure and calculating target pressure of indoor heat exchanger in air conditioner
JPH01302072A (en) Heat pump type air conditioner
JPH08200856A (en) Operation controller for refrigerator
JP3143141B2 (en) Refrigeration equipment
JPH1183223A (en) Air conditioner
KR20130124256A (en) An air conditioner and a control method for the same
JPH0320571A (en) Air conditioner
JP3538936B2 (en) Refrigerant refrigerant recovery method
JPS63290355A (en) Method of controlling refrigerant for heat pump type air conditioner
KR20010048816A (en) Control method of operating heat for airconditioner
JPH04320763A (en) Freezer
JP2508811B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14