JPH0310343B2 - - Google Patents

Info

Publication number
JPH0310343B2
JPH0310343B2 JP58067950A JP6795083A JPH0310343B2 JP H0310343 B2 JPH0310343 B2 JP H0310343B2 JP 58067950 A JP58067950 A JP 58067950A JP 6795083 A JP6795083 A JP 6795083A JP H0310343 B2 JPH0310343 B2 JP H0310343B2
Authority
JP
Japan
Prior art keywords
sterilization
membrane
ray irradiation
gamma ray
sterilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58067950A
Other languages
Japanese (ja)
Other versions
JPS59192373A (en
Inventor
Morio Myagi
Hitoshi Oono
Kyoshi Fukui
Toshiaki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58067950A priority Critical patent/JPS59192373A/en
Publication of JPS59192373A publication Critical patent/JPS59192373A/en
Publication of JPH0310343B2 publication Critical patent/JPH0310343B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)
  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は半透膜を使用した浸透装置の滅菌法に
関し、詳細には該半透膜を劣化させることなく滅
菌することができ、且つ滅菌状態の浸透装置につ
いてその取扱性並びに保存性を良好なものとする
ことのできる浸透装置の滅菌法に関するものであ
る。 浸透装置は人工腎臓による血液浄化、透析、逆
浸透あるいはガス分離等の分野に広く利用されて
いるが、このうち血液浄化や飲食品の逆浸透等の
用途に適用されるもの、特に前者の人工透析用浸
透装置については使用前に完全な滅菌処理を施す
必要がある。該滅菌処理にはホルマリン、エチレ
ンオキサイド、高圧蒸気或はガンマ線等が用いら
れており、夫々特有の効果を発揮しているが、こ
のうちガンマ線照射による滅菌法は被処理物を包
装状態のまま処理できると共に滅菌効果が優れて
いるので特に好ましい滅菌法であるとの評価を受
けている。 しかしながら浸透装置に使用されている半透膜
については、ガンマ線の照射によつて劣化すると
いうことが知られており、劣化を防止しつつ滅菌
を行ない得る方法として例えば特公昭55−23620
号に記されている様な滅菌方法が提案されてい
る。該提案発明はガンマ線照射による滅菌を行な
うに当り、半透膜を飽和含水率以上の湿潤状態と
するもので劣化防止という目的自体はある程度達
成されている様である。しかるに該提案発明にお
いては半透膜を湿潤状態に保持する必要があるの
で浸透装置の重量が自ずと大きくなり、輸送や取
扱いが不便で更にはたくさんの滅菌水の準備など
高コスト化要因を有している。しかも半透膜をわ
ざわざバクテリアを繁殖し易い湿潤状態にするも
のであるから包装後、滅菌処理するまでの僅かな
時間の間にもバクテリアが増殖することが考えら
れ、その結果完全な滅菌状態を得る迄にかなりの
長時間を要して更に高コスト化或は安全上の問題
を生じる場合もあり得ると共に、時によつては滅
菌不完全のままでガンマ線の照射を終了する場合
もあり、必ずしも満足できない。又滅菌前に生菌
数が増大していると代謝産物や死菌等の大量の発
熱性物質が残存する恐れもあり、直ちに実用化で
きる方法とは言えない。そこでこの様な問題を解
消する為に滅菌処理に付すまでの待ち時間を低温
保存状態にする等の煩雑な付属処置が必要とな
り、極めて非経済的である。 本発明者等はこうした事情に着目し、上記欠点
を伴なわずに、しかも所期の目的である半透膜を
劣化させないという新規な滅菌法を提供すべく研
究を重ね、ガンマ線を照射した浸透装置に体液等
を通して得られた抽出液のPH並びに紫外線吸収ス
ペクトル等の測定結果から、半透膜の劣化は膜材
料が酸化されることに基づくものではないかとい
う推論を得るに至つた。 本発明は上記推論を基に更に研究を進めた結果
完成されたものであつて、その要旨は半透膜を容
器に収容してなる浸透装置内を不活性ガス雰囲気
とした後、ガンマ線を照射する点に存在する。 即ち本発明は浸透装置内に不活性ガスを封入す
ることによつて、ガンマ線照射中の雰囲気を膜材
料の酸化劣化が進行しない条件におくと共に、浸
透装置内を前記過剰湿潤状態から解放してガンマ
線照射前におけるバクテリアの増殖を防止し、且
つ軽量性、安全性、経済性等の向上を達成したも
のである。 本発明において使用される不活性ガスとして
は、膜材料と実質的に反応しないあらゆる種類の
ガス及びその混合ガスを例示することができ、具
体的にはN2、CO2、He、Ar等を挙げることがで
きる。これらの内殊にCO2等の水溶性ガスは、浸
透装置に導入される血液等の充填液に迅速に溶解
して充填液中に気泡を発生しないのでもつとも好
ましい不活性ガスとして推奨される。 又半透膜材料としては、セルロースジアセテー
ト、セルローストリアセテート等の酢酸セルロー
スの他、酢酸セルロースけん化セルロース、銅ア
ンモニア法セルロースポリスルホン、ポリウレタ
ン、ポリアクリロニトリル、ポリメチルメタクリ
レート、ポリエチレン、酢酸ビニル共重合体、ポ
リビニルアルコール及びポリプロピレン等を挙げ
ることができる。 尚膜材料以外の浸透装置を構成する部品には当
然ガンマ線による劣化を生じないものを使用す
る。 本発明は概略以上の様に構成されており、以下
要約する様な効果を得ることができる。 (1) 半透膜等へのガンマ線照射が不活性ガス雰囲
気中で行なわれるので、膜が酸化劣化すること
がない。 (2) 浸透装置内を湿潤状態とする必要がないので
浸透装置の重量を小さくすることができ、取扱
いが容易になると共に、包装後ガンマ線照射ま
でのバクテリアの繁殖も殆んど皆無とすること
ができるので、低温保存等の特別の保存処理を
施す必要がない。 (3) これらによりガンマ線照射による滅菌処理を
効果的に行なうことができ、人工腎臓等の用途
に安全に適用できる浸透装置を得ることができ
る。 以下実施例について説明する。 〔試験方法〕 日本医療用プラスチツク協会:人工腎臓装置基準
案の透析膜の溶出物試験 上記試験方法に準じ、雰囲気ガスを種々変更し
て酢酸セルロース膜に5.0メガラドのガンマ線を
照射した場合の、照射前後における諸特性を第1
表に示した。
The present invention relates to a method for sterilizing an osmosis device using a semipermeable membrane, and more specifically, a method that enables sterilization of the osmosis device without deteriorating the semipermeable membrane, and that improves the ease of handling and storage of the sterilized osmosis device. The present invention relates to a method of sterilizing an infiltration device that can be used as a method of sterilization. Osmosis devices are widely used in fields such as blood purification using artificial kidneys, dialysis, reverse osmosis, and gas separation. Dialysis osmosis devices must be completely sterilized before use. Formalin, ethylene oxide, high-pressure steam, gamma rays, etc. are used for this sterilization treatment, and each of them has its own unique effects. Among these, the sterilization method using gamma ray irradiation is a method that treats the object in its packaged state. It has been evaluated as a particularly preferred sterilization method because it is highly effective and has an excellent sterilization effect. However, it is known that the semipermeable membranes used in osmosis devices deteriorate due to gamma ray irradiation.
Sterilization methods such as those described in this issue have been proposed. In the proposed invention, when sterilizing by gamma ray irradiation, the semipermeable membrane is brought into a wet state with a moisture content higher than the saturated moisture content, and the purpose of preventing deterioration itself seems to have been achieved to some extent. However, in the proposed invention, since it is necessary to maintain the semipermeable membrane in a wet state, the weight of the osmosis device becomes large, and transportation and handling are inconvenient, and furthermore, a large amount of sterilized water must be prepared, leading to high costs. ing. Moreover, since the semi-permeable membrane is purposefully kept in a moist state where bacteria can easily grow, it is thought that bacteria can grow even in the short time between packaging and sterilization, resulting in complete sterilization. It may take a considerable amount of time to obtain the product, which may result in higher costs or safety issues, and in some cases, gamma ray irradiation may be completed before sterilization is complete. I'm not satisfied. Furthermore, if the number of viable bacteria increases before sterilization, there is a risk that a large amount of pyrogenic substances such as metabolic products and dead bacteria will remain, so it cannot be said that this method can be immediately put into practical use. Therefore, in order to solve this problem, complicated additional measures such as keeping the product in a low temperature storage state for a waiting period before sterilization processing are required, which is extremely uneconomical. The present inventors focused on these circumstances and conducted research to provide a new sterilization method that does not have the above disadvantages and does not deteriorate the semipermeable membrane, which is the intended purpose. Based on the measurement results of the pH and ultraviolet absorption spectra of the extract obtained by passing body fluids through the device, it was concluded that the deterioration of the semipermeable membrane was due to oxidation of the membrane material. The present invention was completed as a result of further research based on the above reasoning, and its gist is that after creating an inert gas atmosphere inside the infiltration device, which is a semipermeable membrane housed in a container, gamma rays are irradiated. It exists at the point where it does. That is, the present invention creates an atmosphere during gamma ray irradiation under conditions in which oxidative deterioration of the membrane material does not progress by filling the inert gas in the infiltration device, and also releases the inside of the infiltration device from the above-mentioned excessively wet state. This prevents the growth of bacteria before gamma ray irradiation, and also achieves improvements in weight, safety, economic efficiency, etc. Examples of the inert gas used in the present invention include all kinds of gases and mixed gases thereof that do not substantially react with the membrane material, and specific examples include N 2 , CO 2 , He, Ar, etc. can be mentioned. Among these, water-soluble gases such as CO 2 are recommended as particularly preferred inert gases because they rapidly dissolve in the filling liquid such as blood introduced into the infiltration device and do not generate bubbles in the filling liquid. Semipermeable membrane materials include cellulose acetate such as cellulose diacetate and cellulose triacetate, as well as cellulose acetate saponified cellulose, cuprammonium cellulose polysulfone, polyurethane, polyacrylonitrile, polymethyl methacrylate, polyethylene, vinyl acetate copolymer, and polyvinyl. Examples include alcohol and polypropylene. Naturally, the parts constituting the infiltration device other than the membrane material should be made of materials that do not deteriorate due to gamma rays. The present invention is roughly configured as described above, and can obtain the effects as summarized below. (1) Gamma ray irradiation to semipermeable membranes, etc. is carried out in an inert gas atmosphere, so there is no oxidative deterioration of the membrane. (2) Since there is no need to keep the inside of the infiltration device in a wet state, the weight of the infiltration device can be reduced, making it easier to handle, and there is almost no bacterial growth between packaging and gamma ray irradiation. Therefore, there is no need for special preservation treatment such as low-temperature preservation. (3) With these, sterilization by gamma ray irradiation can be effectively performed, and a penetration device that can be safely applied to applications such as artificial kidneys can be obtained. Examples will be described below. [Test method] Japan Medical Plastics Association: Dialysis membrane eluate test for draft standards for artificial kidney devices According to the test method above, cellulose acetate membrane was irradiated with 5.0 Megarad gamma rays with various atmospheric gases. Characteristics before and after
Shown in the table.

【表】【table】

【表】 上記表に見られる通り不活性ガスの封入によつ
てガンマ線照射後の膜材料の溶出物試験結果は該
ガスの種類に関係なくほぼ一定であつて前記基準
に合格し、空気封入によつて得られた結果よりも
大巾な改善が認められる。 また不活性ガスを封入してガンマ線照射を行な
つた後の膜材料の尿素、クレアチニンおよびビタ
ミンB12 クリアランスおよび限外過能は照射
前の値と比較して有意差は認められず照射による
膜材料の性能の変化も認められなかつた。 なお、照射前のものは一応合格であつたが、ガ
ンマ線を照射して滅菌しておかないと人工腎臓用
の装置としては到底用いることはできない。
[Table] As shown in the table above, the results of the eluate test of the membrane material after gamma ray irradiation with inert gas filling were almost constant regardless of the type of gas, and passed the above criteria. This is a significant improvement over the results previously obtained. Furthermore, after gamma ray irradiation with inert gas sealed in the membrane material, no significant difference was observed in the urea, creatinine, and vitamin B 12 clearance and ultracapacity of the membrane material compared to the values before irradiation. No change in material performance was observed. Although the device before irradiation passed the test, it cannot be used as an artificial kidney device unless it is sterilized by gamma ray irradiation.

Claims (1)

【特許請求の範囲】 1 半透膜を容器に収容してなる浸透装置内を不
活性ガス雰囲気とした後、ガンマ線を照射するこ
とを特徴とする浸透装置の減菌法。 2 特許請求の範囲第1項において、不活性ガス
が炭酸ガス又は窒素である浸透装置の減菌法。 3 特許請求の範囲第1又は2項において、半透
膜が酢酸セルロース膜である浸透装置の減菌法。
[Scope of Claims] 1. A method for sterilizing an infiltration device, which comprises creating an inert gas atmosphere inside the infiltration device in which a semipermeable membrane is housed in a container, and then irradiating it with gamma rays. 2. The method for sterilizing a permeation device according to claim 1, wherein the inert gas is carbon dioxide or nitrogen. 3. A method for sterilizing an osmosis device according to claim 1 or 2, wherein the semipermeable membrane is a cellulose acetate membrane.
JP58067950A 1983-04-18 1983-04-18 Pasturization of osmosis apparatus Granted JPS59192373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067950A JPS59192373A (en) 1983-04-18 1983-04-18 Pasturization of osmosis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067950A JPS59192373A (en) 1983-04-18 1983-04-18 Pasturization of osmosis apparatus

Publications (2)

Publication Number Publication Date
JPS59192373A JPS59192373A (en) 1984-10-31
JPH0310343B2 true JPH0310343B2 (en) 1991-02-13

Family

ID=13359729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067950A Granted JPS59192373A (en) 1983-04-18 1983-04-18 Pasturization of osmosis apparatus

Country Status (1)

Country Link
JP (1) JPS59192373A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211459A (en) * 1983-05-17 1984-11-30 帝人株式会社 Pasturization of blood treating device
JPH0675667B2 (en) * 1985-04-17 1994-09-28 東レ株式会社 Method for producing semi-permeable membrane of polysulfone resin
JPS63111878A (en) * 1986-10-30 1988-05-17 日機装株式会社 Sterilization of semipermeable membrane module
US5035858A (en) * 1989-10-13 1991-07-30 Stericycle, Inc. Method for disinfecting medical materials
IN173642B (en) * 1990-03-26 1994-06-18 Hampshire Advisory Tech Serv
EP0672424A1 (en) * 1994-03-16 1995-09-20 Teijin Limited Method of sterilizing a blood dialyzer having semipermeable polymeric membranes by gamma-ray irradiation
JP2001205057A (en) * 2000-01-27 2001-07-31 Toyobo Co Ltd Hollow fiber membrane

Also Published As

Publication number Publication date
JPS59192373A (en) 1984-10-31

Similar Documents

Publication Publication Date Title
CN101102802B (en) Hemopurifier package and process for producing the same
CN101072594B (en) Method of hemopurifier sterilization and hemopurifier package
TWI354571B (en) Hollow fiber blood-processing device and method fo
CN102205209A (en) Antibacterial macromolecular ultra-filtration membrane and preparation method thereof
JP2004305840A (en) Method for preserving hollow fiber membrane
JPH0310343B2 (en)
DE3817906A1 (en) METHOD AND CONTAINER FOR FREEZING DRYING UNDER STERILE CONDITIONS
JPS62204754A (en) Radiation sterilization of medical instrument
WO2006041124A1 (en) Blood purification device and blood purification device package
JPS59211459A (en) Pasturization of blood treating device
US5658466A (en) Method of sterilizing a blood dialyzer having semipermeable polymeric membranes by γ-ray irradiation
JP2876320B2 (en) Radiation sterilization method for medical equipment
JP2672051B2 (en) Method for manufacturing blood purification device
JPH06285162A (en) Sterilized dialyzer
WO2015093160A1 (en) Separation membrane for blood treatment and blood treatment device provided with same
JP2001205057A (en) Hollow fiber membrane
JP3193262B2 (en) Blood processing device manufacturing method and blood processing device
JP3918784B2 (en) Storage pack and storage method for selectively permeable separation membrane
JP2008272352A (en) Hollow fiber membrane type blood purifier
GB2230248A (en) Method of eliminating gas in an airtight package
JP2008173287A (en) Radiation sterilization method for hollow fiber membrane type blood purifier and hollow fiber membrane type blood purifier
JP4738729B2 (en) Sterilization packaging method for hollow fiber blood processor
JPS63111878A (en) Sterilization of semipermeable membrane module
JP2779257B2 (en) Blood processing equipment sterilization method
JPH10211256A (en) Coupled body for medical bag