JP2001205057A - Hollow fiber membrane - Google Patents

Hollow fiber membrane

Info

Publication number
JP2001205057A
JP2001205057A JP2000018193A JP2000018193A JP2001205057A JP 2001205057 A JP2001205057 A JP 2001205057A JP 2000018193 A JP2000018193 A JP 2000018193A JP 2000018193 A JP2000018193 A JP 2000018193A JP 2001205057 A JP2001205057 A JP 2001205057A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
fiber membrane
hydrophilic polymer
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000018193A
Other languages
Japanese (ja)
Inventor
Motoki Kyo
基樹 京
Koyo Mabuchi
公洋 馬淵
Noriaki Kato
典昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000018193A priority Critical patent/JP2001205057A/en
Publication of JP2001205057A publication Critical patent/JP2001205057A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a safe hollow fiber membrane which comprises a hydrophobic polymer and a hydrophilic polymer and indicates a very small amount of substances eluted from the dry membrane. SOLUTION: In the hollow fiber membrane to be sterilized by being irradiated with γ rays, the water content of the membrane after the irradiation is 10% or below, and when the membrane is dissolved in a common solvent for both polymers, the content of insoluble components of the membrane is 10 wt.% or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は滅菌が必要な中空糸
膜に関する。特にガンマ線照射による滅菌を行う医療用
中空糸膜であり、膜からの溶出成分が低減された中空糸
膜に関する。
[0001] The present invention relates to a hollow fiber membrane requiring sterilization. In particular, the present invention relates to a medical hollow fiber membrane that is sterilized by gamma ray irradiation, and relates to a hollow fiber membrane in which components eluted from the membrane are reduced.

【0002】[0002]

【従来の技術】疎水性高分子を素材として用いた医療用
膜が数多く発明されている。医療用に用いる膜の中で患
者の血液と接触する膜は、血漿蛋白の膜への吸着をコン
トロールするのが大きな問題である。疎水性高分子単独
で膜に成形した場合、血漿蛋白が多量に吸着するため、
膜性能が経時的に劣化する欠点をもつ。その欠点を克服
するため、疎水性高分子に親水性高分子をブレンドした
医療用膜が開発されている。親水性高分子を膜にブレン
ドすることで膜の親水性が向上し、膜への蛋白吸着が抑
制される。その結果、得られる膜は経時変化が少なく、
分画特性がシャープな膜となる。
2. Description of the Related Art Many medical films using a hydrophobic polymer as a material have been invented. Among membranes used for medical purposes, a membrane that comes into contact with the blood of a patient has a major problem in controlling adsorption of plasma proteins to the membrane. When formed into a membrane with a hydrophobic polymer alone, plasma proteins are adsorbed in large quantities,
There is a disadvantage that the film performance deteriorates with time. In order to overcome the drawback, medical films in which a hydrophilic polymer is blended with a hydrophobic polymer have been developed. By blending a hydrophilic polymer with the membrane, the hydrophilicity of the membrane is improved, and protein adsorption to the membrane is suppressed. As a result, the resulting film has little change over time,
A film having a sharp fractionation characteristic is obtained.

【0003】しかし、親水性高分子は水溶性であり、血
液と接触すると血液中へと溶出する可能性がある。溶出
した親水性高分子はアナフィラキシー様反応などを引き
起こす可能性が示唆されており、膜から血液中へと溶出
される親水性高分子の量は少ないほど好ましい。そこ
で、特開昭61−238306に記載されているよう
に、ポリスルホン系樹脂と親水性高分子を混和溶解した
溶液に非溶媒もしくは膨潤剤なる添加剤を加えた系を製
膜原液として用い、成形した膜を湿潤状態に保ち、ガン
マ線によって架橋する方法が示されている。
[0003] However, hydrophilic polymers are water-soluble and may elute into blood when they come into contact with blood. It has been suggested that the eluted hydrophilic polymer may cause an anaphylactic reaction or the like, and the smaller the amount of the hydrophilic polymer eluted from the membrane into the blood, the better. Therefore, as described in JP-A-61-238306, a system prepared by adding a non-solvent or an additive as a swelling agent to a solution in which a polysulfone-based resin and a hydrophilic polymer are mixed and dissolved is used as a stock solution for film formation. A method is shown in which the coated membrane is kept moist and crosslinked by gamma radiation.

【0004】この方法では中空糸膜をモジュールに充填
し、接着した後、モジュール内に水を充填し、水を充填
した状態でガンマ線を照射し、親水性高分子を架橋する
ことで不溶化し、溶出量を低減させる効果がみられてい
る。ただしこの方法では、膜を湿潤状態に保ったままガ
ンマ線照射する必要があり、出荷形態もモジュールに水
を充填した状態である。これでは出荷する際に重量が大
きくなるために、運搬時のエネルギー消費が大きく、地
球温暖化ガスの生成を促す。また梱包単位は12本程度
となり、梱包資材の消費量も大きくなる。さらに寒冷地
では充填した水が凍ることもありうるので、保管庫を暖
房する必要があるなど、モジュールに水を充填した状態
で出荷するのはエネルギー消費が大きく、好ましくな
い。 よって、疎水性高分子と親水性高分子からなる中
空糸膜で、ドライ状態において膜からの溶出量が非常に
少ない安全な膜は得られていない。
In this method, a hollow fiber membrane is filled in a module, and after bonding, the module is filled with water, and the module is irradiated with gamma rays while being filled with water to insolubilize the hydrophilic polymer by cross-linking. The effect of reducing the amount of elution has been observed. However, in this method, it is necessary to irradiate the film with gamma rays while keeping the film in a wet state, and the module is filled with water in the shipping mode. In this case, since the weight increases at the time of shipment, energy consumption during transportation is large, and generation of global warming gas is promoted. In addition, the number of packing units is about 12, and the consumption of packing materials increases. Further, since the filled water may freeze in a cold region, it is not preferable to ship the module filled with water, for example, it is necessary to heat the storage, since the energy consumption is large because the module is filled with water. Therefore, a safe membrane, which is a hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer and has a very small amount of elution from the membrane in a dry state, has not been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、疎水
性高分子と親水性高分子からなる中空糸膜においてドラ
イ状態の膜から溶出する物質の量が非常に少なく、安全
な中空糸膜を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a hollow fiber membrane comprising a hydrophobic polymer and a hydrophilic polymer, in which the amount of substances eluted from the dry state membrane is extremely small and the hollow fiber membrane is safe. Is to get

【0006】[0006]

【課題を解決するための手段】本発明は以下のものであ
る。 (1)疎水性高分子と親水性高分子からなり、ガンマ線
照射によって滅菌を行う中空糸膜において、ガンマ線照
射後の中空糸膜の水分率が10wt%以下であり、かつ
中空糸膜を疎水性ポリマーと親水性ポリマーの共通溶媒
に溶解したとき、膜の不溶化成分が10wt%以下であ
ることを特徴とする中空糸膜。 (2)40%エタノール水溶液で抽出される膜の被処理
液接触側膜面積1m2あたりの親水性高分子の量が2.0
mg/m2以下である上記(1)記載の中空糸膜。
The present invention is as follows. (1) In a hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer and sterilized by gamma ray irradiation, the moisture content of the hollow fiber membrane after gamma ray irradiation is 10 wt% or less, and the hollow fiber membrane is hydrophobic. A hollow fiber membrane characterized in that when dissolved in a common solvent of a polymer and a hydrophilic polymer, an insolubilizing component of the membrane is 10% by weight or less. (2) The amount of the hydrophilic polymer per 1 m 2 of the membrane area of the membrane extracted with a 40% aqueous ethanol solution on the liquid contact side of the membrane is 2.0
mg / m 2 or less.

【0007】[0007]

【発明の実施の形態】本発明の中空糸膜は疎水性高分子
と親水性高分子からなる。疎水性高分子にはポリアクリ
ロニトリル、ポリスルホン系ポリマー、ポリメチルメタ
クリレート、ポリアミドなどが挙げられるが、ポリスル
ホン系ポリマーが好ましく、好ましい水分率量に制御で
きる点でポリエーテルスルホンが特に好ましい。親水性
高分子にはポリビニルピロリドン、ポリビニルアルコー
ル、ポリエチレングリコールなどが挙げられるが、ポリ
ビニルピロリドン(PVP)が好ましい。疎水性高分子
を血液透析膜に使用する場合、血漿蛋白の膜への付着を
抑制するため膜の親水化剤としてPVPなどの親水性高
分子を使用することが多い。PVPを膜内に含ませて親
水化することで血液透析膜としての実力を発揮すること
ができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The hollow fiber membrane of the present invention comprises a hydrophobic polymer and a hydrophilic polymer. Examples of the hydrophobic polymer include polyacrylonitrile, polysulfone-based polymer, polymethyl methacrylate, and polyamide. Among them, a polysulfone-based polymer is preferable, and polyether sulfone is particularly preferable in that it can be controlled to a preferable moisture content. Examples of the hydrophilic polymer include polyvinyl pyrrolidone, polyvinyl alcohol, and polyethylene glycol, and polyvinyl pyrrolidone (PVP) is preferable. When a hydrophobic polymer is used for a hemodialysis membrane, a hydrophilic polymer such as PVP is often used as a hydrophilic agent for the membrane in order to suppress the adhesion of plasma proteins to the membrane. The ability as a hemodialysis membrane can be exhibited by including PVP in the membrane and making it hydrophilic.

【0008】しかし、PVPが膜から溶出し透析患者の
血液に入るとアナフィラキシーショック反応を引き起こ
す危険性がある。すなわちPVPは性能発現の点で非常
に重要であるにもかかわらず、必要以上のPVPは安全
性の面で問題がある。
However, when PVP elutes from the membrane and enters the blood of a dialysis patient, there is a risk of causing an anaphylactic shock reaction. That is, although PVP is very important in terms of performance, PVP more than necessary has a problem in safety.

【0009】ウェット状態で、PVPをガンマ線によっ
て架橋し、不溶化することによって溶出物を低減する技
術は既知であるが、ドライ状態では試みられていない。
筆者らは疎水性高分子と親水性高分子からなる中空糸膜
をドライ状態でガンマ線照射することで、膜を改質し、
溶出物を低減できることを見出した。これは膜を構成す
る高分子物質の一部がクラスター化しているためと考え
られる。
[0009] Techniques for reducing the eluate by cross-linking and insolubilizing PVP in the wet state by gamma rays are known, but no attempt has been made in the dry state.
The authors modified the hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer by irradiating it with gamma rays in a dry state,
It has been found that the eluate can be reduced. This is presumably because some of the polymer substances constituting the film are clustered.

【0010】中空糸膜の水分率は10wt%以下である
ことが、モジュールが軽くなり、運搬が容易になる点、
寒冷地での使用や飛行機での運搬においても凍結しない
点で好ましい。水分率が5wt%以下であることがさら
に好ましい。ガンマ線の照射量は20kGy以上が好ま
しい。その理由は20kGy以上でないと滅菌効果が確
実でないことと溶出物の低減の効果が十分でないためで
ある。また膜の性能を保持するためには50kGy以下
が好ましい。
[0010] When the moisture content of the hollow fiber membrane is 10 wt% or less, the module becomes lighter and the transport becomes easier.
It is preferable because it does not freeze even when used in cold regions or when transported by air. More preferably, the water content is 5 wt% or less. The dose of gamma rays is preferably 20 kGy or more. The reason is that unless it is 20 kGy or more, the sterilization effect is not reliable and the effect of reducing the eluted material is not sufficient. In order to maintain the performance of the film, it is preferably 50 kGy or less.

【0011】ガンマ線の照射の際には、実質的に酸素ガ
スを含まない雰囲気下で行うことが望ましい。酸素ガス
を含むと、ガンマ線照射の際に多量のラジカルが発生
し、膜を形成する高分子が分解し、溶出物の量が増大す
る。酸素ガスの量はガスクロマトグラフィーで容易に知
ることができる。本発明は酸素ガスが検出できない、実
質的に酸素ガスを含まない状態で実施可能である。ガン
マ線の照射の際、中空糸膜の水分率は10wt%以下で
あることが好ましく、5wt%以下であることがさらに
好ましい。
It is desirable that the irradiation of gamma rays be performed in an atmosphere containing substantially no oxygen gas. When oxygen gas is included, a large amount of radicals are generated during gamma ray irradiation, the polymer forming the film is decomposed, and the amount of eluted material increases. The amount of oxygen gas can be easily known by gas chromatography. The present invention can be carried out in a state where oxygen gas cannot be detected and substantially does not contain oxygen gas. At the time of gamma ray irradiation, the moisture content of the hollow fiber membrane is preferably 10 wt% or less, more preferably 5 wt% or less.

【0012】溶出物の量は少ないほど好ましい。特に膜
の性能を発現させるために必要である親水性高分子が膜
から血液中に溶出すると、アナフィラキシー様反応が起
こることが示唆されている。しかし、親水性高分子は不
可欠な要素であり、溶出する量を完全になくすことは技
術的に不可能である。本発明を適応することで、実質的
に乾燥状態にある疎水性高分子と親水性高分子からなる
中空糸膜から溶出する親水性高分子の量が中空糸膜の単
位膜面積あたりで2.0mg/m2以下を達成することが
非常に容易となった。
[0012] It is preferable that the amount of eluted material is small. In particular, it has been suggested that an anaphylactic reaction occurs when a hydrophilic polymer necessary for expressing the performance of the membrane is eluted from the membrane into the blood. However, the hydrophilic polymer is an indispensable element, and it is technically impossible to completely elute the amount eluted. By applying the present invention, the amount of the hydrophilic polymer eluted from the hollow fiber membrane composed of a hydrophobic polymer and a hydrophilic polymer in a substantially dry state is 2. per unit membrane area of the hollow fiber membrane. It was very easy to achieve 0 mg / m 2 or less.

【0013】本発明における手段は膜を不溶化するので
はないことは、膜を疎水性高分子と親水性高分子の共通
溶媒に溶解することで容易に確認できる。ウェット状態
でガンマ線照射した膜を共通溶媒に浸すと、白濁部分が
観察されたり、中空糸膜の形状が保たれたゲルが観察さ
れたりする。それに対し、ドライ状態でガンマ線照射し
た膜を共通溶媒に浸すと、白濁せずに溶解する。これは
架橋によってゲルが生成しているとは言えないが、一部
で高分子同士が結合してクラスターが形成されていると
考えることができる。
The fact that the means in the present invention does not insolubilize the membrane can be easily confirmed by dissolving the membrane in a common solvent of a hydrophobic polymer and a hydrophilic polymer. When the gamma ray-irradiated film is immersed in a common solvent in a wet state, a cloudy portion is observed, or a gel in which the shape of the hollow fiber membrane is maintained is observed. On the other hand, when the film irradiated with gamma rays in a dry state is immersed in a common solvent, it is dissolved without becoming cloudy. Although it cannot be said that a gel is generated by the cross-linking, it can be considered that the polymer is partially bonded to form a cluster.

【0014】不溶化成分の重量を測定する方法である
が、試験管の中に中空糸膜の共通溶媒を入れ、重量を測
定済みの膜を浸した後、振とうし十分な時間を放置して
から遠心分離機にかけて不溶成分を沈殿させ、水で洗浄
した後、凍結乾燥して不溶成分の重量を測定し、もとの
中空糸膜に対する比で求めることができる。本発明にお
ける膜の不溶化成分は10wt%以下であり、ほとんど
の場合において不溶化成分はみられなかった。
In this method, the weight of the insolubilized component is measured. A common solvent for the hollow fiber membrane is placed in a test tube, and the membrane whose weight has been measured is immersed. And then centrifuged to precipitate the insoluble components, washed with water, freeze-dried, and weighs the insoluble components, which can be determined by the ratio to the original hollow fiber membrane. In the present invention, the insolubilizing component of the membrane was 10 wt% or less, and almost no insolubilizing component was found.

【0015】膜からの溶出物の重量を測定する方法であ
るが、40%エタノール水溶液500mlを中空糸の血
液接触側に一時間、37℃にて還流し、膜からの溶出物
を含むエタノール水溶液を、ヨウ素を用いた比色法で定
量することができる(K.Mueller らによる方法1968
年)。
In this method, 500 ml of a 40% aqueous ethanol solution is refluxed for 1 hour at 37 ° C. on the blood contact side of the hollow fiber, and an aqueous ethanol solution containing the eluted material from the membrane is measured. Can be quantified by a colorimetric method using iodine (Method 1968 by K. Mueller et al.).
Year).

【0016】[0016]

【実施例】以下に実施例を挙げて、本発明を説明する
が、本発明はこれらに限定されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0017】〔実施例1〕ポリエーテルスルホン(PE
S)が17.0重量%、親水化剤にポリビニルピロリド
ン(K−90)を3.0重量%、非溶媒として水を5.
0重量%、溶媒にジメチルアセトアミド(DMAC)7
5.0%、内液濃度(DMAC+水)が51%として、
紡糸原液を40℃に保った二重紡糸口金の外側から、内
液を二重紡糸口金の内側から吐出し、エアーギャップ長
さ600mm、紡速60m/分でエアーギャップ部を通
過させた後、70℃の凝固浴濃度(DMAC+水)10
%の凝固浴へと浸漬した後、純水45℃にて1分間、純
水80℃にて90秒間洗浄し、カセへと巻き取り、内径
199.7μm 、膜厚29.6μmの中空糸膜を得た。
これらの中空糸膜10098本をポリエチレン製パイプ
に挿入し、所定の長さに切断した後、70℃の温風を1
2時間あてて乾燥させ、ドライ状態のバンドルとした。
バンドルを充填率59.8%でケースに充填し、端部を
ウレタン樹脂で接着し、樹脂を切り出すことでモジュー
ルとした。この中空糸膜の水分率を測定したところ、
2.4wt%であった。水分率は120℃で二時間中空
糸を加熱し絶乾状態とした重量を測定し、乾燥前の重量
との差を求め、乾燥前重量との比を計算して求めた。
Example 1 Polyether sulfone (PE
S) is 17.0% by weight, polyvinylpyrrolidone (K-90) is 3.0% by weight as a hydrophilizing agent, and water is used as a non-solvent.
0% by weight, dimethylacetamide (DMAC) 7
5.0%, the internal solution concentration (DMAC + water) is 51%,
The inner solution is discharged from the inside of the double spinneret from outside the double spinneret holding the spinning stock solution at 40 ° C., and after passing through the air gap at an air gap length of 600 mm and a spinning speed of 60 m / min, Coagulation bath concentration at 70 ° C (DMAC + water) 10
%, Washed with pure water at 45 ° C. for 1 minute and pure water at 80 ° C. for 90 seconds, wound up in a scalpel, and hollow fiber membrane having an inner diameter of 199.7 μm and a film thickness of 29.6 μm. I got
10098 of these hollow fiber membranes were inserted into a polyethylene pipe and cut into a predetermined length.
The dried bundle was dried for 2 hours.
The case was filled with the bundle at a filling rate of 59.8%, the ends were bonded with urethane resin, and the resin was cut out to form a module. When the moisture content of this hollow fiber membrane was measured,
It was 2.4 wt%. The moisture content was determined by heating the hollow fiber at 120 ° C. for 2 hours and measuring the weight in a completely dried state, calculating the difference from the weight before drying, and calculating the ratio to the weight before drying.

【0018】こうして得られたドライのモジュールを2
0kGyでガンマ線照射して滅菌済み完成品とした。こ
のモジュールの膜の不溶化成分はまったくなく、0wt
%とみなされた。この膜からの溶出物の量は0.8mg
/m2であり、未照射品の2.3mg/m2に比べ65.7
%の低減となるとともに2.0mg/m2以下を達成して
いた。これらの中空糸膜をジメチルスルホキシドに溶解
し、ゲルパーミネーションクロマトグラフィーにて分子
量分布を測定したところ、未照射とガンマ線照射でほと
んど差はみられず、架橋はほとんどなく、一部で部分的
にクラスターが形成されているのみでGPCカーブには
検出されていないと考えられる(図1)。
The dry module thus obtained was
The finished product was sterilized by gamma irradiation at 0 kGy. There is no insolubilizing component in the membrane of this module,
%. 0.8 mg of eluate from this membrane
A / m 2, 65.7 as compared to 2.3 mg / m 2 of non-irradiated product
% And 2.0 mg / m 2 or less. When these hollow fiber membranes were dissolved in dimethyl sulfoxide and the molecular weight distribution was measured by gel permeation chromatography, there was almost no difference between non-irradiated and gamma-ray irradiated, almost no cross-linking, and partial cross-linking. It is considered that only the cluster was formed and was not detected in the GPC curve (FIG. 1).

【0019】〔比較例1〕実施例1で得られたドライの
モジュールをガンマ線照射による滅菌を行わずに、12
1℃20分間オートクレーブによる滅菌を行った。この
モジュールの膜の不溶化成分はまったくなく、0wt%
とみなされた。この膜からの溶出物の量は3.6mg/
m2であり、未滅菌品の2.3mg/m2に比べ溶出量は低
減せずにむしろ増加していた。
Comparative Example 1 The dry module obtained in Example 1 was subjected to 12 g
Autoclave sterilization was performed at 1 ° C. for 20 minutes. There is no insolubilizing component in the membrane of this module, 0 wt%
Was considered. The amount of eluate from this membrane was 3.6 mg /
m 2, and elution compared to 2.3 mg / m 2 of non-sterile products had increased rather without reduction.

【0020】[0020]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】ゲルパーミネーションクロマトグラフィーにて
測定した、中空糸を形成する高分子の分子量分布を示
す。
FIG. 1 shows the molecular weight distribution of a polymer forming a hollow fiber as measured by gel permeation chromatography.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA01 KK01 LL05 PP07 PP09 PP10 PP13 PP15 4D006 GA13 HA02 MA01 MA31 MA33 MA40 MC32 MC33 MC37 MC39 MC40X MC54 MC62 MC63X MC85 MC86 MC88 NA04 NA32 NA71 PA01 PB09 PB42 PC41 PC47 4L031 AB06 CB08 DA00  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA01 KK01 LL05 PP07 PP09 PP10 PP13 PP15 4D006 GA13 HA02 MA01 MA31 MA33 MA40 MC32 MC33 MC37 MC39 MC40X MC54 MC62 MC63X MC85 MC86 MC88 NA04 NA32 NA71 PA01 PB09 PB42 PC41 PC47 4L03 AB DA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 疎水性高分子と親水性高分子からなり、
ガンマ線照射によって滅菌を行う中空糸膜において、ガ
ンマ線照射後の中空糸膜の水分率が10wt%以下であ
り、かつ中空糸膜を疎水性ポリマーと親水性ポリマーの
共通溶媒に溶解したとき、膜の不溶化成分が10wt%
以下であることを特徴とする中空糸膜。
1. A method comprising: a hydrophobic polymer and a hydrophilic polymer;
In a hollow fiber membrane sterilized by gamma ray irradiation, when the moisture content of the hollow fiber membrane after gamma ray irradiation is 10 wt% or less and the hollow fiber membrane is dissolved in a common solvent of a hydrophobic polymer and a hydrophilic polymer, 10% by weight of insolubilized component
A hollow fiber membrane characterized by the following.
【請求項2】 40%エタノール水溶液で抽出される膜
の被処理液接触側膜面積1m2あたりの親水性高分子の量
が2.0mg/m2以下である請求項1記載の中空糸膜。
2. The hollow fiber membrane according to claim 1, wherein the amount of the hydrophilic polymer per 1 m 2 of the membrane area of the membrane extracted with the 40% aqueous ethanol solution is 2.0 mg / m 2 or less. .
JP2000018193A 2000-01-27 2000-01-27 Hollow fiber membrane Pending JP2001205057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018193A JP2001205057A (en) 2000-01-27 2000-01-27 Hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018193A JP2001205057A (en) 2000-01-27 2000-01-27 Hollow fiber membrane

Publications (1)

Publication Number Publication Date
JP2001205057A true JP2001205057A (en) 2001-07-31

Family

ID=18545073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018193A Pending JP2001205057A (en) 2000-01-27 2000-01-27 Hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP2001205057A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009926A1 (en) * 2001-07-24 2003-02-06 Asahi Medical Co., Ltd. Hollow fiber membrane for purifying blood
JP2004305561A (en) * 2003-04-09 2004-11-04 Toyobo Co Ltd Hollow yarn type blood purification membrane
JPWO2003031533A1 (en) * 2001-10-04 2005-01-20 東レ株式会社 Hydrophilic material and method for producing the same
JP2005095271A (en) * 2003-09-24 2005-04-14 Nipro Corp Aseptic packaging method for hollow thread type blood treatment device
JP2005095270A (en) * 2003-09-24 2005-04-14 Nipro Corp Hollow thread type blood treatment device and its aseptic packaging method
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
WO2006016573A1 (en) * 2004-08-10 2006-02-16 Toyo Boseki Kabushiki Kaisha Polysulfone-base selectively permeable hollow-fiber membrane module and process for production thereof
JPWO2006025352A1 (en) * 2004-08-30 2008-05-08 東レ株式会社 Fractionation device
US9050410B2 (en) 2004-10-15 2015-06-09 Nipro Corporation Blood purifier and blood purifier package
US9056280B2 (en) 2004-10-15 2015-06-16 Nipro Corporation Method for sterilizing blood purifier and blood purifier package
US9067178B2 (en) 2004-12-22 2015-06-30 Nipro Corporation Blood purifier package and process for manufacturing the same
KR20160149216A (en) 2014-05-08 2016-12-27 도레이 카부시키가이샤 Hollow fiber membrane module and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417978A (en) * 1977-07-11 1979-02-09 Sumitomo Electric Ind Ltd Hydrophilic and porous composite structure and its production
JPS59192373A (en) * 1983-04-18 1984-10-31 東洋紡績株式会社 Pasturization of osmosis apparatus
JPS59211459A (en) * 1983-05-17 1984-11-30 帝人株式会社 Pasturization of blood treating device
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane
JPS63111878A (en) * 1986-10-30 1988-05-17 日機装株式会社 Sterilization of semipermeable membrane module
JPH0288074A (en) * 1988-09-27 1990-03-28 Teijin Ltd Manufacture of blood treating device
JPH04338223A (en) * 1991-05-16 1992-11-25 Asahi Chem Ind Co Ltd Treatment of permselective membrane
JPH06285162A (en) * 1993-04-05 1994-10-11 Asahi Chem Ind Co Ltd Sterilized dialyzer
JPH0852331A (en) * 1995-06-26 1996-02-27 Toray Ind Inc Plasma collecting membrane and production thereof
JPH09507154A (en) * 1994-10-17 1997-07-22 バクスター、インターナショナル、インコーポレイテッド Whole blood leukocyte removal and platelet filter
JPH1043292A (en) * 1996-08-06 1998-02-17 Teijin Ltd Manufacture of semi-wet or dry blood dialyzer
JP2000288085A (en) * 1999-04-12 2000-10-17 Asahi Medical Co Ltd Irradiation sterilization method of blood treating device and blood treating device subjected to irradiation sterilization

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417978A (en) * 1977-07-11 1979-02-09 Sumitomo Electric Ind Ltd Hydrophilic and porous composite structure and its production
JPS59192373A (en) * 1983-04-18 1984-10-31 東洋紡績株式会社 Pasturization of osmosis apparatus
JPS59211459A (en) * 1983-05-17 1984-11-30 帝人株式会社 Pasturization of blood treating device
JPS6397205A (en) * 1986-10-15 1988-04-27 Toray Ind Inc Treatment of polysulfone resin semipermeable membrane
JPS63111878A (en) * 1986-10-30 1988-05-17 日機装株式会社 Sterilization of semipermeable membrane module
JPH0288074A (en) * 1988-09-27 1990-03-28 Teijin Ltd Manufacture of blood treating device
JPH04338223A (en) * 1991-05-16 1992-11-25 Asahi Chem Ind Co Ltd Treatment of permselective membrane
JPH06285162A (en) * 1993-04-05 1994-10-11 Asahi Chem Ind Co Ltd Sterilized dialyzer
JPH09507154A (en) * 1994-10-17 1997-07-22 バクスター、インターナショナル、インコーポレイテッド Whole blood leukocyte removal and platelet filter
JPH0852331A (en) * 1995-06-26 1996-02-27 Toray Ind Inc Plasma collecting membrane and production thereof
JPH1043292A (en) * 1996-08-06 1998-02-17 Teijin Ltd Manufacture of semi-wet or dry blood dialyzer
JP2000288085A (en) * 1999-04-12 2000-10-17 Asahi Medical Co Ltd Irradiation sterilization method of blood treating device and blood treating device subjected to irradiation sterilization

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829692B1 (en) * 2001-07-24 2008-05-16 아사히 카세이 쿠라레 메디칼 가부시키가이샤 Hollow Fiber Membrane for Purifying Blood
WO2003009926A1 (en) * 2001-07-24 2003-02-06 Asahi Medical Co., Ltd. Hollow fiber membrane for purifying blood
JPWO2003031533A1 (en) * 2001-10-04 2005-01-20 東レ株式会社 Hydrophilic material and method for producing the same
JP2004305561A (en) * 2003-04-09 2004-11-04 Toyobo Co Ltd Hollow yarn type blood purification membrane
JP2005095271A (en) * 2003-09-24 2005-04-14 Nipro Corp Aseptic packaging method for hollow thread type blood treatment device
JP2005095270A (en) * 2003-09-24 2005-04-14 Nipro Corp Hollow thread type blood treatment device and its aseptic packaging method
JP4587024B2 (en) * 2004-05-20 2010-11-24 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane with excellent blood compatibility
JP2005329087A (en) * 2004-05-20 2005-12-02 Toyobo Co Ltd Polysulfone base permselective hollow fiber membrane excellent in hemocompatibility
WO2006016573A1 (en) * 2004-08-10 2006-02-16 Toyo Boseki Kabushiki Kaisha Polysulfone-base selectively permeable hollow-fiber membrane module and process for production thereof
US7837042B2 (en) 2004-08-10 2010-11-23 Nipro Corporation Polysulfone type selectively permeable hollow fiber membrane module and process for manufacturing the same
JP4846587B2 (en) * 2004-08-10 2011-12-28 東洋紡績株式会社 Polysulfone-based selectively permeable hollow fiber membrane module and method for producing the same
JPWO2006025352A1 (en) * 2004-08-30 2008-05-08 東レ株式会社 Fractionation device
US9056280B2 (en) 2004-10-15 2015-06-16 Nipro Corporation Method for sterilizing blood purifier and blood purifier package
US9050410B2 (en) 2004-10-15 2015-06-09 Nipro Corporation Blood purifier and blood purifier package
US9987409B2 (en) 2004-10-15 2018-06-05 Nipro Corporation Blood purifier and blood purifier package
US10137234B2 (en) 2004-10-15 2018-11-27 Nipro Corporation Method for sterilizing blood purifier and blood purifier package
US9067178B2 (en) 2004-12-22 2015-06-30 Nipro Corporation Blood purifier package and process for manufacturing the same
EP2962712A1 (en) 2004-12-22 2016-01-06 Nipro Corporation Hemopurifier package and process for producing the same
US9987408B2 (en) 2004-12-22 2018-06-05 Nipro Corporation Blood purifier package and process for manufacturing the same
EP3437670A1 (en) 2004-12-22 2019-02-06 Nipro Corporation Hemopurifier package and process for producing the same
KR20160149216A (en) 2014-05-08 2016-12-27 도레이 카부시키가이샤 Hollow fiber membrane module and manufacturing method thereof
US10994248B2 (en) 2014-05-08 2021-05-04 Toray Industries Hollow fiber membrane module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
EP1439212B1 (en) Hydrophilic material and process for producing the same
JP2006312009A (en) Blood purifier
JP2001205057A (en) Hollow fiber membrane
JPH0364544B2 (en)
CA2481865C (en) Hollow fiber blood-processing device and method for packaging and sterilizing such devices
US6010475A (en) Apparatus for the treatment of blood by extracorporeal circulation and process of manufacture
JP2004305840A (en) Method for preserving hollow fiber membrane
JPS59211459A (en) Pasturization of blood treating device
JP2006291193A (en) Reformed substrate and manufacturing method thereof
JP4843988B2 (en) Polysulfone hollow fiber membrane blood purifier
WO2013187396A1 (en) Separation membrane for blood treatment and blood treatment device having same membrane incorporated therein
JP3432240B2 (en) Sterilized dialyzer
JP2015116212A (en) Hollow fiber membrane for blood treatment and blood treatment device in which membrane is embedded
JP4010523B2 (en) Irradiation sterilization method of blood processing device and irradiation-sterilized blood processing device
JP3992185B2 (en) Method for producing hollow fiber membrane
JPS631406A (en) Nonadsorptive hydrophilic semipermeable membrane and its production
JP2006288415A (en) Bundle of polysulfone-based permselective hollow fiber membrane and hemocatharsis apparatus
JP4596171B2 (en) Blood purifier
JP2013009962A (en) Hollow fiber membrane type hemocatharsis apparatus
JP4876704B2 (en) Blood purifier
JP4433821B2 (en) Modified substrate
JP2003175321A (en) Method for manufacturing hollow fiber membrane
JP4738729B2 (en) Sterilization packaging method for hollow fiber blood processor
JP5062773B2 (en) Blood purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Effective date: 20090420

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100506