JPH03103005A - Capsule type linear traveling unit - Google Patents
Capsule type linear traveling unitInfo
- Publication number
- JPH03103005A JPH03103005A JP1239289A JP23928989A JPH03103005A JP H03103005 A JPH03103005 A JP H03103005A JP 1239289 A JP1239289 A JP 1239289A JP 23928989 A JP23928989 A JP 23928989A JP H03103005 A JPH03103005 A JP H03103005A
- Authority
- JP
- Japan
- Prior art keywords
- capsule
- pipe
- polarity
- electromagnet
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002775 capsule Substances 0.000 title claims abstract description 75
- 239000000696 magnetic material Substances 0.000 claims abstract description 6
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 6
- 230000002093 peripheral effect Effects 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 8
- 230000032258 transport Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 241000271897 Viperidae Species 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
Landscapes
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
- Linear Motors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、管路を利用して物資を効率良く、高速で搬
送するためのリニア式カプセル型走行装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a linear capsule-type traveling device for efficiently transporting materials at high speed using a conduit.
小荷物、ゴミなど種々の物資を搬送する物流システムと
して、従来からパイプからなる管路(パイプライン)を
利用したカプセル・パイプライン輸送システムが注目さ
れている。このシステムは、物流センターと配送センタ
ーとの間等、複数地点間に敷設されたパイプライン内を
カプセルを走行させて物資を目的地まで搬送するもので
ある。Capsule pipeline transportation systems that utilize pipelines made up of pipes have traditionally been attracting attention as a logistics system for transporting various materials such as parcels and garbage. This system transports goods to their destination by running capsules through pipelines laid between multiple points, such as between a distribution center and a distribution center.
このような、カプセル・パイプライン輸送システムの従
来技術として、気送式のカプセル型走行システムが既に
開発されている。このシステムは、大型のブロアによる
気流によってパイプ内のカプセルを走行させ、前記カプ
セルに積載した物資をカプセルとともに目的地まで搬送
するものである。As a conventional technology for such a capsule pipeline transportation system, a pneumatic capsule traveling system has already been developed. This system uses airflow from a large blower to move a capsule inside a pipe, and transports the materials loaded in the capsule to the destination together with the capsule.
しかしながら、従来の気送式のカプセル型走行システム
には、下記に示す欠点があった。However, the conventional pneumatic capsule type traveling system has the following drawbacks.
■ パイプ内において、カプセルを高速で走行させるた
め、シール材が磨耗し易く、カプセルの駆動力が落ちや
すい。■ Because the capsule is run at high speed inside the pipe, the sealing material tends to wear out and the driving force of the capsule tends to drop.
■ パイプの曲管部では、カプセルのシール性が落ち易
いため、パイプの曲率を大きくする必要があり、パイプ
ライン設計上不利である。■ In the curved portion of the pipe, the sealing performance of the capsule is likely to deteriorate, so the curvature of the pipe must be increased, which is disadvantageous in terms of pipeline design.
■ パイプの分岐部においては、空気圧を保つ必要から
複雑な構造の切替え駆動機器を配設しなければならない
。■ At pipe branching sections, complex switching drive equipment must be installed to maintain air pressure.
■ カプセルを走行させるために、パイプラインの全長
に渡って高速で空気を流さなければならないため大きな
圧損が生じる。しかも、長距離を搬送する場合にはブー
スタが必要であるとともに、大きなブロアも必要である
など、大規模な動力および設備が必要である。■ To move the capsule, air must flow at high speed along the entire length of the pipeline, resulting in a large pressure drop. Furthermore, when transporting over long distances, a booster is required, and a large blower is also required, requiring large-scale power and equipment.
■ カプセル体を発射させる場合に大きな圧力ドロップ
が生じるため、カプセルを連続で発射できない。■ Capsules cannot be fired continuously because a large pressure drop occurs when firing the capsule body.
■ カプセルの速度を高速にする場合には、設定したカ
プセルの速度以上に流速を上げる必要があるため、流速
の二乗で圧損が増大する。従って、カプセルの速度を2
0〜3 0 m / sec以上の高速にすることが困
難である。■ When increasing the capsule speed, it is necessary to increase the flow speed higher than the set capsule speed, so the pressure drop increases as the square of the flow speed. Therefore, the speed of the capsule is 2
It is difficult to achieve high speeds of 0 to 30 m/sec or higher.
■ カプセルを戻すために、パイプラインの両端にブロ
アステーションが必要である。■ Blower stations are required at both ends of the pipeline to return the capsules.
このように、従来の気送式カプセル型走行システムには
、上述したような欠点があるため、物資をより高速で、
効率よく搬送することができ、しかも設備費等の建設コ
ストもより安価なカプセル・パイプライン輸送システム
の開発が強く望まれているが、かかるシステムは未だ提
案されていない。In this way, the conventional pneumatic capsule type transport system has the drawbacks mentioned above, so it is possible to transport goods at higher speeds.
Although there is a strong desire to develop a capsule pipeline transportation system that can transport materials efficiently and has lower construction costs such as equipment costs, such a system has not yet been proposed.
従って、この発明の目的は、物資を高速で効率よく搬送
することができ、しかも建設コストも安価なリニア式カ
プセル型走行装置を提供することにある。Therefore, an object of the present invention is to provide a linear capsule-type traveling device that can efficiently transport materials at high speed and is inexpensive to construct.
この発明は、非磁性体からなるパイプと、前記パイプの
内周面に接触する車輪を介して前記パイプ内を走行自在
の、非磁性体からなるカプセルと、前記カプセルの外周
面に取り付けられた永久磁石と、前記パイプの外周面に
前記パイプの全長に渡って所定間隔毎に巻装された、そ
の極性が変換可能な電磁石と、前記電磁石の極性を変換
するための極性変換機構と、前記パイプの前記電磁石の
位置゛毎に取り付けられた、前記カプセルの位置を検知
するためのセンサとからなることに特徴を有し、さらに
、前記センサは、前記電磁石の上流側に取り付けられた
、前記電磁石の極性を前記永久磁石と異なる極性とする
ための第lセンサと、前記電磁石と同じ位置に取り付け
られた前記電磁石の極性を前記永久磁石と同一の極性と
するための第2センサとからなることに特徴を有するも
のである。The present invention provides a pipe made of a non-magnetic material, a capsule made of a non-magnetic material that can freely travel within the pipe via wheels that contact the inner peripheral surface of the pipe, and a capsule attached to the outer peripheral surface of the capsule. a permanent magnet, an electromagnet whose polarity is convertible and which is wound around the outer peripheral surface of the pipe at predetermined intervals over the entire length of the pipe, a polarity conversion mechanism for converting the polarity of the electromagnet; It is characterized by comprising a sensor for detecting the position of the capsule, which is attached to each position of the electromagnet of the pipe, and further, the sensor is attached to the upstream side of the electromagnet. It consists of a first sensor for setting the polarity of the electromagnet to be different from the polarity of the permanent magnet, and a second sensor for setting the polarity of the electromagnet, which is attached at the same position as the electromagnet, to be the same polarity as the permanent magnet. It has particular characteristics.
次に、この発明を図面を参照しながら説明する。第1図
はこの発明のl実施態様を示す側面図、第2図は第1図
のA−A線断面図である。Next, the present invention will be explained with reference to the drawings. FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line A--A in FIG. 1.
第1図および第2図に示すように、断面が円形のカプセ
ル1は断面が円形のバイプ2内に挿入される。As shown in FIGS. 1 and 2, a capsule 1 with a circular cross section is inserted into a pipe 2 with a circular cross section.
カプセル1は非磁性材、例えば、アルミニウムまたはS
US 3 0 4のカプセル体からなっている。カプセ
ルlの上流端および下流端にはカプセルlの周方向に永
久磁石4が環状に巻装されている。空気抜1ナのために
、永久磁石4は周方向に所定間隔をあけて配設してもよ
い。カプセルlの上流側および下流側にはカプセル1の
周方向に所定間隔ごとに車輪3がそれぞれ複数個(例え
ば10(W程度)づつ設けられている。カプセル1はパ
イブ2の内周面と接触する車輪3を介してバイプ2内を
走行自在である。カプセル1は図示しないが、ロック付
きの片ヒンジの開閉扉を有し、この中に磁気シールドさ
れたインナーカプセルが搭載される。そして、このイン
ナーカプセルも開閉が自在でこの中に荷物が積載される
。The capsule 1 is made of a non-magnetic material, for example aluminum or S
Consists of a US 3 0 4 capsule body. Permanent magnets 4 are annularly wound around the upstream and downstream ends of the capsule 1 in the circumferential direction of the capsule 1. In order to vent air, the permanent magnets 4 may be arranged at predetermined intervals in the circumferential direction. A plurality of wheels 3 (for example, 10 (about W)) are provided at predetermined intervals in the circumferential direction of the capsule 1 on the upstream and downstream sides of the capsule 1. The capsule 1 contacts the inner peripheral surface of the pipe 2. The capsule 1 can freely travel inside the viper 2 via wheels 3. Although not shown, the capsule 1 has a single-hinged opening/closing door with a lock, and a magnetically shielded inner capsule is mounted inside this. This inner capsule can also be opened and closed, and cargo can be loaded inside.
バイプ2はアルミニウム、SUS304、または、FR
P製等の非磁性体の管等を使用することができる。パイ
プ2の外周面には、電磁石のコイル5が環状に巻装され
ている。コイル5はパイプ2の全長に渡って所定間隔毎
に取り付けられている。Vipe 2 is aluminum, SUS304, or FR
A non-magnetic tube made of P or the like can be used. An electromagnetic coil 5 is wound around the outer peripheral surface of the pipe 2 in an annular manner. The coils 5 are attached at predetermined intervals along the entire length of the pipe 2.
バイプ2の外側には図示しない電源からコイル5に給電
するための電線6がバイプ2と近接してパイプ2の全長
に渡って架設されている。電線6には各コイル5の位置
毎にコントロールボックス7が接゛続されている。コン
トロールボックス7はコイル5に給電される電流を逆転
し電磁石の極性を変換するための極性変換機構を構成し
ている。Outside the pipe 2, an electric wire 6 for feeding power to the coil 5 from a power source (not shown) is installed in close proximity to the pipe 2 over the entire length of the pipe 2. A control box 7 is connected to the electric wire 6 at each position of each coil 5. The control box 7 constitutes a polarity conversion mechanism for reversing the current supplied to the coil 5 and changing the polarity of the electromagnet.
コントロールボックス7は水密構造とし、可動部分のな
い電子部品を使用することによりメンテナンスフリーと
することができる。The control box 7 has a watertight structure and can be maintenance-free by using electronic components without moving parts.
バイプ2には、各コイル5の位置毎に磁気センサが取り
付けられている。磁気センサは電磁石のコイル5の極性
を永久磁石4と異なる極性とするための第Iセンサ8a
,8bと、電磁石のコイル5の極性を永久磁石4と同一
の極性とするための第2センサ8cとからなっている。A magnetic sensor is attached to the pipe 2 at each position of each coil 5. The magnetic sensor is a No. I sensor 8a for setting the polarity of the electromagnetic coil 5 to a polarity different from that of the permanent magnet 4.
, 8b, and a second sensor 8c for making the polarity of the electromagnetic coil 5 the same as that of the permanent magnet 4.
第2センサ8Cはコイル5の中ほどの位置に取り付けら
れている。一方、第1センサ8aは第2センサ8cから
所定距離上流側(第1図に示す左側)に離れた位置に、
第1センサ8bは第2センサ8Cから所定距離下流側(
第1図に示す右側)に離れた位置に、それぞれ取り付け
られている。9はコントロールボックス7と第lセンサ
8a,8bおよび第2センサ8cとの間を接続する信号
線である。これらのセンサの信号線9がコントロールボ
ックス7内のサイリスタまたはパワートランジスタ等の
電気的なスイッチに繋がっている。また、電線6はコン
トロールボックスT内のサイリスク等の電気的スイッチ
を経てコイル5に繋がっている。The second sensor 8C is attached to the middle position of the coil 5. On the other hand, the first sensor 8a is located a predetermined distance upstream from the second sensor 8c (on the left side in FIG. 1).
The first sensor 8b is located a predetermined distance downstream from the second sensor 8C (
They are respectively attached at separate positions on the right side (as shown in FIG. 1). A signal line 9 connects the control box 7 to the first sensors 8a, 8b and the second sensor 8c. Signal lines 9 of these sensors are connected to electrical switches such as thyristors or power transistors in the control box 7. Further, the electric wire 6 is connected to the coil 5 through an electric switch such as a cyrisk in the control box T.
次に、カプセルlの走行原理について説明する。カプセ
ルlは第1図に示す左側から右側へ走行するものとする
。カプセルlに取り付けられた永久磁石4が第lセンサ
8aを通過すると第lセンサ8aがこれを検知し、その
直後からコイル5の電磁石が永久磁石4と異なる極性と
なるように電流が流れる。これにより、永久磁石4はコ
イル5の電磁石に吸引され、カプセルlは走行方向(第
1図に示す右側)へ移動する。次いで、永久磁石4が第
2センサ8cを通過すると第2センサ8Cがこれを検知
し、その直後からコイル5に流れる電流が逆転し、コイ
ル5の電磁石の極性が永久磁石4と同じ極性に変換する
。これによって、永久磁石4とコイル5の電磁石とが反
発し、カプセル1は走行方向へ押し出される。これを、
各コイル5毎に順次繰り返して行うことにより、カプセ
ルlはパイプ2内を走行方向へ連続して走行する。Next, the principle of running the capsule 1 will be explained. It is assumed that the capsule l travels from the left side to the right side as shown in FIG. When the permanent magnet 4 attached to the capsule l passes the l-th sensor 8a, the l-th sensor 8a detects this, and immediately thereafter, a current flows so that the electromagnet of the coil 5 has a polarity different from that of the permanent magnet 4. As a result, the permanent magnet 4 is attracted by the electromagnet of the coil 5, and the capsule l moves in the running direction (to the right in FIG. 1). Next, when the permanent magnet 4 passes the second sensor 8c, the second sensor 8C detects this, and immediately after that, the current flowing through the coil 5 is reversed, and the polarity of the electromagnet in the coil 5 is converted to the same polarity as the permanent magnet 4. do. As a result, the permanent magnet 4 and the electromagnet of the coil 5 repel each other, and the capsule 1 is pushed out in the running direction. this,
By sequentially repeating the process for each coil 5, the capsule 1 runs continuously in the running direction within the pipe 2.
一方、カプセル1が反対の走行方向(第1図に示す右側
から左側)へ移動する場合においては、第1せンサ8b
を使用し第lセンサ8aは使用しない。なお、所定区間
毎(50〜100m)に図示しない区間センサが配設さ
れ、カプセル1が通過しない区間には電磁石に電流は流
れない。On the other hand, when the capsule 1 moves in the opposite running direction (from the right side to the left side in FIG. 1), the first sensor 8b
is used, and the first sensor 8a is not used. Note that a section sensor (not shown) is provided for each predetermined section (50 to 100 m), and no current flows through the electromagnet in the section where the capsule 1 does not pass.
カプセルlの走行速度はコイル5に給電する周波数や電
流を制御することによって、コントロールすることがで
きる。また、カプセルlの発射時等走行状況に応じて、
あるいはパイプ2の傾斜角度に合わせて電流を制御する
こともできる。The traveling speed of the capsule 1 can be controlled by controlling the frequency and current supplied to the coil 5. Also, depending on the driving situation such as when launching the capsule l,
Alternatively, the current can also be controlled according to the inclination angle of the pipe 2.
この発明においては、カプセル1の車輪3のみがパイプ
2の内周面に接触し、しかもレール等のガイドを使用し
ないのでカプセルlの走行はスムースで、その走行速度
もかなりの高速にすることが可能であり、また、故障の
発生率も極めて低い〔発明の効果〕
この発明は上述したように構成されているので下記に示
す有用な効果を奏する。In this invention, only the wheels 3 of the capsule 1 come into contact with the inner circumferential surface of the pipe 2, and since no guide such as a rail is used, the capsule 1 runs smoothly and its running speed can be made quite high. possible, and the failure rate is extremely low. [Effects of the Invention] Since the present invention is configured as described above, it produces the following useful effects.
■ 非接触式のりニアモー夕を利用することによって、
パイプとカプセルとの接触部分が車輪のみと少なく高速
化が可能である。■ By using non-contact glue near mode,
The only part of contact between the pipe and capsule is the wheel, making it possible to achieve higher speeds.
■ カプセルを電気を使用して直接走行させるため効率
が良く、また長距離区間でも電気の供給が容易にできる
ため長距離搬送が容易にできる。■ It is efficient because the capsule is driven directly using electricity, and electricity can be easily supplied even over long distances, making it easy to transport long distances.
■ カプセルが走行している区間のみに電流を流すため
、消費電流が少なく経済的である。■ Since current is passed only to the section where the capsule is running, current consumption is low and economical.
■ カプセルの位置検知および速度コントロールが出来
るため、自動化が容易である。■ It is easy to automate because it can detect the position of the capsule and control its speed.
第1図はこの発明の1実施態様を示す側面図、第2図は
第1
おいて、
l...カプセル、
2...パイプ、
3・・・車輪、
4.・・永久磁石、
5,..コイル、
6.,,電線、
7・・・コントロールボックス、
8a,8b−第lセンサ、
8 c−−−第2センサ、
9・・・信号線。
図のA−A線断面図である。FIG. 1 is a side view showing one embodiment of the present invention, and FIG. 2 is a side view showing one embodiment of the present invention. .. .. capsule, 2. .. .. Pipe, 3...Wheel, 4. ...Permanent magnet, 5,. .. Coil, 6. ,, electric wire, 7... control box, 8a, 8b - 1st sensor, 8 c - - 2nd sensor, 9... signal line. It is a sectional view taken along the line AA in the figure.
Claims (1)
接触する車輪を介して、前記パイプ内を走行自在の、非
磁性体からなるカプセルと、前記カプセルの外周面に取
り付けられた永久磁石と、前記パイプの外周面に前記パ
イプの全長に渡って所定間隔毎に巻装された、その極性
が変換可能な電磁石と、前記電磁石の極性を変換するた
めの極性変換機構と、前記パイプの前記電磁石の位置毎
に取り付けられた、前記カプセルの位置を検知するため
のセンサとからなることを特徴とするリニア式カプセル
型走行装置。 2 前記センサは、前記電磁石の上流側に取り付けられ
た、前記電磁石の極性を前記永久磁石と異なる極性とす
るための第1センサと、前記電磁石と同じ位置に取り付
けられた前記電磁石の極性を前記永久磁石と同一の極性
とするための第2センサとからなる請求項1記載のリニ
ア式カプセル型走行装置。 3 前記パイプはアルミニウムからなる請求項1記載の
リニア式カプセル型走行装置。 4 前記パイプはSUS304からなる請求項1記載の
リニア式カプセル型走行装置。 5 前記パイプはFRPからなる請求項1記載のリニア
式カプセル型走行装置。 6 前記カプセルはアルミニウムからなる請求項1記載
のリニア式カプセル型走行装置。7 前記カプセルはS
US304からなる請求項1記載のリニア式カプセル型
走行装置。[Scope of Claims] 1. A pipe made of a non-magnetic material, a capsule made of a non-magnetic material that can freely travel within the pipe via wheels that contact the inner circumferential surface of the pipe, and an outer circumferential surface of the capsule. a permanent magnet attached to the pipe, an electromagnet whose polarity can be changed and which is wound around the outer peripheral surface of the pipe at predetermined intervals over the entire length of the pipe, and a polarity converter for changing the polarity of the electromagnet. A linear capsule type traveling device comprising: a mechanism; and a sensor for detecting the position of the capsule, which is attached to each position of the electromagnet of the pipe. 2. The sensor includes a first sensor installed upstream of the electromagnet for setting the polarity of the electromagnet to a different polarity from the permanent magnet, and a first sensor installed at the same position as the electromagnet for setting the polarity of the electromagnet to a different polarity from the permanent magnet. 2. The linear capsule type traveling device according to claim 1, further comprising a second sensor for making the polarity the same as that of the permanent magnet. 3. The linear capsule type traveling device according to claim 1, wherein the pipe is made of aluminum. 4. The linear capsule type traveling device according to claim 1, wherein the pipe is made of SUS304. 5. The linear capsule type traveling device according to claim 1, wherein the pipe is made of FRP. 6. The linear capsule type traveling device according to claim 1, wherein the capsule is made of aluminum. 7 The capsule is S
The linear capsule type traveling device according to claim 1, which is made of US304.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239289A JPH03103005A (en) | 1989-09-14 | 1989-09-14 | Capsule type linear traveling unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1239289A JPH03103005A (en) | 1989-09-14 | 1989-09-14 | Capsule type linear traveling unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03103005A true JPH03103005A (en) | 1991-04-30 |
Family
ID=17042523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1239289A Pending JPH03103005A (en) | 1989-09-14 | 1989-09-14 | Capsule type linear traveling unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03103005A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6155735A (en) * | 1998-03-20 | 2000-12-05 | Mitsubishi Pencil Kabushiki Kaisha | Liquid coating device |
-
1989
- 1989-09-14 JP JP1239289A patent/JPH03103005A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6155735A (en) * | 1998-03-20 | 2000-12-05 | Mitsubishi Pencil Kabushiki Kaisha | Liquid coating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5302872A (en) | Linear magnetization mover motor due to linear force resulting from the interaction between magnetostatic induction element and electromagnetic coil | |
JPH03112301A (en) | Conduit branching system for linear traveling capsule | |
JPH03103005A (en) | Capsule type linear traveling unit | |
CN106240580B (en) | A kind of ejecting type vacuum transport system | |
JPH0564314A (en) | Drive control method for linear capsule in linear capsule traveling unit | |
JP2767922B2 (en) | Linear capsule-type traveling device | |
JP2958988B2 (en) | How to restart capsule | |
JP3215608B2 (en) | Linear motor type capsule transfer device | |
JPH03103007A (en) | Traveling method of linear capsule | |
JP3206032B2 (en) | Linear capsule | |
JPH11116051A (en) | Capsule transportation method and device | |
JPH03112303A (en) | Slope traveling method for linear capsule | |
JPH03111333A (en) | Transportation control method for plurally connected capsules by means of linear capsule type traveling device | |
JPS62140928A (en) | Conveying system | |
JPH03112302A (en) | Capsule position detecting method | |
KR20190075230A (en) | The installation structure of a tube component in hypertube transportation system | |
JPH03111332A (en) | Transportation control method by means of linear capsule type traveling device | |
JPH03103003A (en) | Capsule type linear traveling unit | |
JP2982904B2 (en) | Loading and unloading equipment | |
JP3097214B2 (en) | Linear tube | |
JP2956078B2 (en) | Linear capsule-type traveling device | |
JPS6067326A (en) | Propulsion device of article transport device | |
JP3097215B2 (en) | Linear capsule-type traveling device | |
JPH0558284A (en) | Deverging device for linear system capsule type traveling device | |
WO2009072636A1 (en) | Magnetic levitation propulsion device |