JPH03102765A - Ni-h secondary battery - Google Patents

Ni-h secondary battery

Info

Publication number
JPH03102765A
JPH03102765A JP1240467A JP24046789A JPH03102765A JP H03102765 A JPH03102765 A JP H03102765A JP 1240467 A JP1240467 A JP 1240467A JP 24046789 A JP24046789 A JP 24046789A JP H03102765 A JPH03102765 A JP H03102765A
Authority
JP
Japan
Prior art keywords
electrode
nickel
positive electrode
pos
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240467A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hasebe
裕之 長谷部
Kazuhiro Takeno
和太 武野
Yuji Sato
優治 佐藤
Hiroyuki Takahashi
浩之 高橋
Harutaka Hayashida
林田 治孝
Ichiro Saruwatari
一郎 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1240467A priority Critical patent/JPH03102765A/en
Publication of JPH03102765A publication Critical patent/JPH03102765A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enhance the service rate of a pos. electrode by forming a Ni pos. electrode in non-sintered type from paste of a specific active substance, and forming a neg. electrode chiefly containing hydrogen absorption alloy. CONSTITUTION:A Ni-H secondary battery concerned includes a non-sintered type Ni. pos. electrode made from paste of an active substance formed by adding 5-20wt.% Co monoxide to Ni hydroxide, which contains 2-8mol% Cd in metal conversion by means of coprecipitation method, followed by mixing thoroughly, and a neg. electrode chiefly containing hydrogen absorption alloy. This improves the charging characteristic at high temp., suppresses expansion of the pos. electrode effectively, accomplishes stable existence in the pos. electrode without involvement of oxidation in the electrode manufacturing environment, allows easy dissolution in alkali electrolytic solution, and permits dispersion of Ni hydroxide and current collector to the part to be put in electric continuity. Thereby the service rate of a non-sintered type Ni pos. electrode is enhanced.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非焼結式ニッケル正極を改良したニッケル水
素二次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nickel-metal hydride secondary battery having an improved non-sintered nickel positive electrode.

(従来の技術) 近年、電子技術の進歩による省電力化、尖装技術の進歩
により従来は予想し得なかった電子機器がポータブル化
されてきた。これに伴って、これら電子機器の電源であ
る二次電池に対する高容量化の要求が高まっている。こ
の高容量化要求に対応する電池としては、ニッケル亜鉛
電池、リチウム二次電池等の新しい電池の開発が行われ
ている。しかしながら、サイクル寿命や信頼性、安全性
等の面でいくつかの問題を有するため、一部丈用化が開
始されているものの、広く使用されるに至っていないの
が現状である。
(Prior Art) In recent years, advances in electronic technology have led to power saving, and advancements in advanced mounting technology have made electronic devices portable, which was unimaginable in the past. Along with this, there is an increasing demand for higher capacity secondary batteries, which are the power source for these electronic devices. New batteries such as nickel-zinc batteries and lithium secondary batteries are being developed to meet this demand for higher capacity. However, it has some problems in terms of cycle life, reliability, safety, etc., so although it has started to be used in some cases, it has not yet been widely used.

このようなことから、近年、水索吸蔵合金を主成分とす
る負極を用いたアルカリ二次電池が堤案され、電池討論
会、電気化学協会大会等の学会で発表されるようになり
、脚光を浴び始めている。
For this reason, in recent years, an alkaline secondary battery using a negative electrode mainly composed of a water storage alloy has been proposed, and has been presented at academic conferences such as battery discussions and the Electrochemical Society of Japan conference, and has attracted attention. It is starting to be exposed to

前記水素吸蔵合金を主成分とする負極は、従来の代表的
なアルカリ二次電池用負極材料であるカドミウム負極に
比較して単位重量当り又はJll位容積当りのエネルギ
ー密度を大きくすることができ、電池の高容量化を可能
にするほか、環境汚染の恐れが少ないばかりか、電池性
能も優れているという特徴をHする。
The negative electrode mainly composed of the hydrogen storage alloy can have a higher energy density per unit weight or about Jll volume compared to a cadmium negative electrode, which is a typical negative electrode material for alkaline secondary batteries. In addition to making it possible to increase the capacity of batteries, it not only has less risk of environmental pollution, but also has excellent battery performance.

一方、前記アルカリ二次電池において電池容量を決定す
るニッケル正極としては従来のニッケルカドミウム二次
電池に代表される、アルカリ二次電池に使用されてきた
、いわゆる焼結式ニッケル正極が知られている。かかる
焼結式ニッケル正極は、穿孔鋼板上に直径数μmのニッ
ケル微粉末を焼結させた微孔性焼結基板をニッケルイオ
ンを含む水溶液中に浸漬し、化学的又は電気化学的手法
により、その表面の微孔中に水酸化ニッケルを生戊させ
たものを、アルカリ溶液中で数回充放電を繰り返すこと
により製造される。このため、製造工程が煩雑となり、
製造コストの低減化が望めないばかりか、電極板中に占
める焼結基板の体積が大きくなって電極の電気容量密度
を向上させることが非常に困難となる問題があった。
On the other hand, as the nickel positive electrode that determines the battery capacity in the alkaline secondary battery, a so-called sintered nickel positive electrode, which has been used in alkaline secondary batteries such as conventional nickel cadmium secondary batteries, is known. . Such a sintered nickel positive electrode is produced by immersing a microporous sintered substrate in which fine nickel powder with a diameter of several μm is sintered on a perforated steel plate in an aqueous solution containing nickel ions, and then using a chemical or electrochemical method. It is manufactured by repeating charging and discharging several times in an alkaline solution with nickel hydroxide formed in the micropores on its surface. This makes the manufacturing process complicated,
In addition to not being able to reduce manufacturing costs, the sintered substrate occupies a large volume in the electrode plate, making it extremely difficult to improve the capacitance density of the electrode.

そこで、水酸化ニッケルを主成分とする活物質をペース
ト状とし、焼結金属繊維基板、金属めっき基板等の三次
元構造を有する導電性多孔体基板中に直接充填する、い
わゆる非焼結式ニッケル正極の開発が盛んに行われてい
る。しかしながら、前記非焼結式ニッケル正極において
は活物質であるニッケル粒子と集電体である導電性多孔
体基板を構威する金屈マトリックスとの距離が、従来の
焼結式ニッケル正極に比較して数倍から数十倍と長いた
めに集電性が悪化する。その結果、水酸化ニッケル活物
質の利用率が50〜60%と低くなり、従来の焼結式ニ
ッケル正極に比べて性能が大幅に低下する。
Therefore, a so-called non-sintered nickel hydroxide active material is made into a paste and is directly filled into a conductive porous substrate with a three-dimensional structure such as a sintered metal fiber substrate or a metal plated substrate. Positive electrodes are actively being developed. However, in the non-sintered nickel positive electrode, the distance between the nickel particles, which are the active material, and the gold-flexible matrix, which constitutes the conductive porous substrate, which is the current collector, is longer than in the conventional sintered nickel positive electrode. Since the length is several times to several tens of times longer, current collection performance deteriorates. As a result, the utilization rate of the nickel hydroxide active material is as low as 50 to 60%, and the performance is significantly lower than that of conventional sintered nickel positive electrodes.

上述した問題を解決するために金属コバルトや水酸化コ
バルトを添加した非焼結式ニッケル正極手法が研究され
ている。しかしながら、金属コバルトは大気中の酸素と
容易に反応して酸化物を生戊するため、電極性能の安定
化が困難となり、しかもコストが非常に高価であり民生
用アルカリ二次電池への適用が困難となる問題がある。
In order to solve the above-mentioned problems, non-sintered nickel positive electrode techniques with the addition of metallic cobalt or cobalt hydroxide have been studied. However, cobalt metal easily reacts with oxygen in the atmosphere to form oxides, making it difficult to stabilize electrode performance and being extremely expensive, making it difficult to apply to consumer alkaline secondary batteries. There are some difficult issues.

水酸化コバルトは、利用率の向上が緩慢であり、初充電
後数lOサイクルに亘り利用率が安定しないという問題
がある。また、これら非焼結式ニッケル正極を水素吸蔵
合金を主成分とする負極と共に二次電池に組み込んだ場
合には、次に示すように充放電性能が劣るという問題が
あった。
Cobalt hydroxide has a problem in that the utilization rate improves slowly and the utilization rate is not stable for several lO cycles after the initial charge. Furthermore, when these non-sintered nickel positive electrodes are incorporated into a secondary battery together with a negative electrode whose main component is a hydrogen storage alloy, there is a problem in that the charging and discharging performance is poor as shown below.

即ち、金属コバルトを添加した非焼結式ニッケル正極を
組み込んだ二次電池の初充電においては、電池容量規制
電極であるニッケル正極の体積、つまり電池容量を犠牲
にしても水素吸蔵合金負極の容量を大過剰にしないと、
金属コバルトの不可逆的な酸化に要する電気量が大きい
ため、水素吸蔵合金負極の放電予6iflが必要以上に
大きくなり、その結果充電予備量が過少となって電池寿
命が短くなるという問題がある。水酸化コバルトを添加
した非焼結式ニッケル正極を組み込んだ二次電池の初充
電においては、水酸化コバルトの不安定性に起因し、不
可逆的な酸化に要する電気量が一定とならず、その電気
量が大きくなり過ぎた場合には前記金属コバルトと同様
のrrrs gが、前記電気量が小さくなり過ぎた場合
には放電予備量が低下し、放電特性、特に大電流放電特
性が悪化するという問題がある。
In other words, during the first charge of a secondary battery incorporating a non-sintered nickel positive electrode to which metallic cobalt has been added, the volume of the nickel positive electrode, which is the battery capacity limiting electrode, or the capacity of the hydrogen storage alloy negative electrode is reduced even if the battery capacity is sacrificed. If you don't overdo it,
Since the amount of electricity required for irreversible oxidation of metal cobalt is large, the discharge reserve 6ifl of the hydrogen-absorbing alloy negative electrode becomes larger than necessary, resulting in a problem that the charge reserve amount becomes too small and the battery life is shortened. During the initial charge of a secondary battery incorporating a non-sintered nickel positive electrode containing cobalt hydroxide, the amount of electricity required for irreversible oxidation is not constant due to the instability of cobalt hydroxide. If the amount becomes too large, the same rrrs g as the metal cobalt will occur, but if the amount of electricity becomes too small, the discharge reserve will decrease, and the discharge characteristics, especially the large current discharge characteristics, will deteriorate. There is.

また、上述したコバルト化合物を水酸化ニッケルに添加
する場合にも次のような問題が発生する。
Further, the following problem also occurs when the above-mentioned cobalt compound is added to nickel hydroxide.

即ち、焼結式ニッケル正極で採用されている効果的な添
加法である共沈法に基づき、水酸化ニッケルと共に金属
コバルトを同一粒内に共沈により添加することが試みら
れているが、安定な共沈物が得られる条件は比較的水酸
化ニッケル密度が低い領域側に限られ、電池の高容量化
を阻害するばかりか、その製造条件を長期間維持するこ
とが困難であるため、製品化を考えると安定供給、コス
トの面から大きな障害となる。しかも、原因は不明であ
るが、コバルトを共沈により添加したニッケル正極を組
み込んだ二次電池においては電池電圧が低下するという
現象が認められており、この点からも電池への適用を困
難としている。更に、前記正極を組み込んだ二次電池を
高温で充電を行うと非焼結式ニッケル正極の充電効率が
低下し、放電容量が低下するという問題があった。
In other words, attempts have been made to add cobalt metal along with nickel hydroxide into the same grains by coprecipitation, which is an effective addition method used in sintered nickel positive electrodes, but it has not been stable. The conditions under which such a coprecipitate can be obtained are limited to areas where the density of nickel hydroxide is relatively low, which not only hinders the increase in battery capacity but also makes it difficult to maintain the manufacturing conditions for a long period of time. However, considering the expansion of the supply chain, this poses a major obstacle in terms of stable supply and cost. Moreover, although the cause is unknown, it has been observed that battery voltage decreases in secondary batteries incorporating nickel positive electrodes to which cobalt has been added by co-precipitation, making it difficult to apply them to batteries. There is. Furthermore, when a secondary battery incorporating the positive electrode is charged at a high temperature, the charging efficiency of the non-sintered nickel positive electrode decreases, resulting in a decrease in discharge capacity.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、正極の利用率の向上、長寿命化,α温下での充電
特性の向上を達成したニッケル水素二次電池を提供しよ
うとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has achieved improved utilization of the positive electrode, longer life, and improved charging characteristics at α temperature. The aim is to provide a nickel metal hydride secondary battery.

[発明の構成コ (課題を解決するための手段) 本発明は、金属換算で2〜8モル%のカドミウムを共沈
法により含有する水酸化ニッケルに少なくとも一酸化コ
バルト(C o O)を5〜20TIi量%添加混合し
た活物質ペーストから作製された非焼結式ニッケル正極
と、水素吸蔵合金を主成分とする負極とを具備したこと
を特徴とするニッケル水素二次電池である。
[Structure of the Invention (Means for Solving the Problems)] The present invention is a method of adding at least 5 cobalt monoxide (CoO) to nickel hydroxide containing 2 to 8 mol% of cadmium in terms of metal by a coprecipitation method. This is a nickel-metal hydride secondary battery characterized by comprising a non-sintered nickel positive electrode made from an active material paste mixed with ~20 TIi amount, and a negative electrode whose main component is a hydrogen storage alloy.

上記水酸化ニッケルに共沈されるカドミウムの量を限定
した理由、その量を2モル%未満にすると、高温での充
電特性の改善化、非焼結式ニッケル正極の膨脹抑制を達
成できなくなり、一方その量が8モル%を越えると、正
極中に占める水酸化ニッケルの量が減少して容量低下を
招くばかりか、水酸化ニッケルとの共沈に支障をきたし
、カドミウム共沈水酸化ニッケルを安定的に生成できな
くなる。
The reason for limiting the amount of cadmium co-precipitated with the nickel hydroxide is that if the amount is less than 2 mol%, it will not be possible to improve the charging characteristics at high temperatures and suppress the expansion of the non-sintered nickel positive electrode. On the other hand, if the amount exceeds 8 mol%, not only will the amount of nickel hydroxide occupying the positive electrode decrease, resulting in a decrease in capacity, but it will also interfere with co-precipitation with nickel hydroxide, stabilizing the cadmium-co-precipitated nickel hydroxide. cannot be generated.

上記一酸化コバルトは、水酸化コバルトを出発原料とし
、非酸化性雰囲気中で加熱する方法により得ら、れたも
のが望ましい。特に、表面の少なくとも一部、好ましく
は90%以上の面積が数原子層程度のコバルト高次元酸
化物(例えばC O 2 0 3、CO304等)で覆
われた形態の一酸化コバルトを用いることが望ましい。
The above-mentioned cobalt monoxide is preferably obtained by using cobalt hydroxide as a starting material and heating it in a non-oxidizing atmosphere. In particular, it is possible to use cobalt monoxide in a form in which at least a portion of the surface, preferably 90% or more, is covered with several atomic layers of cobalt high-dimensional oxide (e.g., CO2O3, CO304, etc.). desirable.

かかる一酸化コバルトの添加量を上記範囲に限定した理
由は、その量を2fflffi%未満にすると非焼結式
ニッケル正極の利用率が低下し、一方その量が20重量
%を越えると正極中に占める水酸化ニッケルの量が減少
して容量低下を招き、更に一酸化コバルトの不可逆的な
酸化に要する電気量が大きくなるため水素吸蔵合金電極
の充電千(fiimが過小となり、充放7はサイクルの
比較的早い段階で水素吸蔵合金を主成分とする負極の容
量(水素吸蔵能力)が減少して電池内圧を上昇させる。
The reason why the amount of cobalt monoxide added is limited to the above range is that if the amount is less than 2fffffi%, the utilization rate of the non-sintered nickel positive electrode will decrease, while if the amount exceeds 20% by weight, it will be added to the positive electrode. The amount of nickel hydroxide that occupies decreases, leading to a decrease in capacity, and the amount of electricity required for irreversible oxidation of cobalt monoxide increases, so that the charging and discharging 7 cycles of the hydrogen storage alloy electrode become too small. At a relatively early stage, the capacity (hydrogen storage capacity) of the negative electrode, which is mainly composed of a hydrogen storage alloy, decreases, causing the internal pressure of the battery to rise.

上記一酸化コバルトは、水酸化ニッケルにli独で添加
する形態に限らず、水酸化コバルトと共に水酸化ニッケ
ルに添加してしてもよい。水酸化コバルトの添加量は、
2〜15重量%(但し、一酸化コバルトとの総量で20
重量%を越えることはないとすることが望ましい。
The above cobalt monoxide is not limited to being added alone to nickel hydroxide, but may be added to nickel hydroxide together with cobalt hydroxide. The amount of cobalt hydroxide added is
2 to 15% by weight (however, the total amount including cobalt monoxide is 20% by weight)
It is desirable not to exceed % by weight.

上記活物質ペーストは、カドミウムを共沈法により含有
する水酸化ニッケル及びこれに添加される一酸化コバル
ト(又は一酸化コバルトと水酸化コバルト)の成分の他
に、カルボキシメチルセルロース(CMC)及びポリア
クリル酸ナトリウムなどのポリアクリル酸塩をそれぞれ
0.1−1重量%の範囲で配合した組成のものを用いる
ことが望ましい。これらCMC及びポリアクリル酸塩の
配合割合を限定した理由は、それらの下限値未満にする
と十分な容量をHする非焼結式ニッケル正極を安定的に
製造するペーストが得られ難くなり、一方それらの上限
値を越えると電池性能に悪影響を及ぼす他に、ペースト
化するために必要な水分量が多くなって高容量の正極を
作製し難くなるからである。かかる活物質ペーストを集
電体である導電性基板に塗布、充填し、乾燥することに
より非焼結式ニッケル正極が作製される。前記導電性基
板としては、例えばパンチドメタル、エキスバンドメタ
ル、金網等の二次元構造のもの、発泡メタル、網状焼結
金属繊維などの三次元構造のもの等を挙げることができ
る。
The above active material paste contains carboxymethyl cellulose (CMC) and polyacrylic in addition to the components of nickel hydroxide containing cadmium by coprecipitation method and cobalt monoxide (or cobalt monoxide and cobalt hydroxide) added thereto. It is desirable to use a composition containing a polyacrylate such as sodium chloride in a range of 0.1 to 1% by weight. The reason for limiting the blending ratio of CMC and polyacrylate is that if it is less than their lower limit, it becomes difficult to obtain a paste that can stably produce a non-sintered nickel positive electrode with sufficient capacity. This is because if the upper limit of is exceeded, not only will it have a negative effect on battery performance, but also the amount of water required to form a paste will increase, making it difficult to produce a high-capacity positive electrode. A non-sintered nickel positive electrode is produced by applying and filling a conductive substrate, which is a current collector, with this active material paste and drying it. Examples of the conductive substrate include those with a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those with a three-dimensional structure such as foamed metal and reticulated sintered metal fiber.

上記負極は、水素吸蔵合金粉末に高分子粘着剤を配合し
、必要に応じて導電性粉末を配合した合剤を集電体であ
る導電性基板に被覆、固定した41,i逍をHする。
The above negative electrode is made by coating and fixing a mixture of hydrogen-absorbing alloy powder, polymer adhesive, and conductive powder as needed on a conductive substrate, which is a current collector. .

上記合剤中に配合される水素吸蔵合金としては、格別1
,IJ限されるものではなく、電解液中で電気化学的に
発生させた水素を吸蔵でき、かつ放電lI!iにその吸
蔵水素を容易に放出できるものであればよく、例えばL
 a N i 5 、M m N i ,、L m N
 i 5(Lm ;ランタン富化したミッシュメタル)
、及びこれらのNiの一部をAISMn,Fe,Co、
T is C u % Z n SZ r % C r
 SBのような元素で置換した多元素系のもの、又はT
iNj系、TiFe系のものを挙げることかできる。
As a hydrogen storage alloy that is blended into the above mixture,
, IJ, which is not limited to, can absorb hydrogen electrochemically generated in the electrolyte, and discharge lI! Any material that can easily release its occluded hydrogen to i may be used, for example, L
a N i 5 , M m N i ,, L m N
i 5 (Lm; lanthanum-enriched mish metal)
, and some of these Ni are AISMn, Fe, Co,
T is C u % Z n SZ r % C r
Multi-element type substituted with elements such as SB, or T
Examples include iNj-based and TiFe-based materials.

上記合剤中に配合される高分子粘着剤としては例えばポ
リアクリル酸ソーダ、ポリテトラフルオ口エチレン(P
TFE) 、カルボキシメチルセルロース( C MC
 )等を半げろことかできる。かかる高分子結着剤の配
合割合は、水素吸蔵合金粉末100重量部に対して0.
5〜5重量部の範囲とすることが望ましい。
Examples of polymer adhesives to be added to the above mixture include polysodium acrylate, polytetrafluoroethylene (P
TFE), carboxymethylcellulose (CMC
) etc. can also be called half-gerro. The blending ratio of the polymer binder is 0.00 parts by weight per 100 parts by weight of the hydrogen storage alloy powder.
It is desirable that the amount is in the range of 5 to 5 parts by weight.

上記合剤中に配合される導電性粉末としては、例えばカ
ーボンブラック、黒鉛等を挙げることができる。かかる
導電性粉末の配合割合は、前記水索吸蔵合金粉末100
ffi量部に対して0。1〜4重量部とすることが望ま
しい。
Examples of the conductive powder to be mixed in the mixture include carbon black and graphite. The blending ratio of the conductive powder is 100% of the water cable storage alloy powder.
It is desirable that the amount is 0.1 to 4 parts by weight based on the amount of ffi.

上記集電体である導電性基板としては、例えばパンチド
メタル、エキスバンドメタル、金網等の二次元構造のも
の、発泡メタル、網状焼結金属繊維などの三次元構造の
もの等を挙げることができる。
Examples of the conductive substrate that is the current collector include those with a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those with a three-dimensional structure such as foamed metal and reticulated sintered metal fiber. can.

(作用) 既述したように従来の非焼結式ニッケル正極は、高温に
おいて低電流で充電を行うと、充電反応の競争反応であ
る酸素ガス発生反応が進み、その結果として充電が行わ
れ難くなる。また、非焼結式ニッケル正極は充放電を繰
り返すうちに膨脹し、電解液を吸収して液枯れを起こし
たり、対極としての水素吸蔵合金を主体とする負極を圧
迫して電池性能を低下させる。
(Function) As mentioned above, when conventional non-sintered nickel positive electrodes are charged with low current at high temperatures, the oxygen gas generation reaction, which is a competitive reaction for charging, progresses, and as a result, charging is difficult. Become. In addition, the non-sintered nickel positive electrode expands during repeated charging and discharging, absorbs electrolyte and causes liquid depletion, and presses the negative electrode, which is mainly made of hydrogen storage alloy, as a counter electrode, reducing battery performance. .

このようなことから本発明者らは、電池転極時の電池内
圧上昇を防止する、いわゆるアンチボーラ剤として使用
されているカドミウム化合物を水酸化ニッケルに混合添
加した活物質ペーストを用いて非焼結式ニッケル正極を
作製することを試みた。かかるカドミウム化合物を添加
した非焼結式ニッケル正極は、高温での充電特性、膨脹
抑制をある程度改善できるものの、充放電を繰り返すう
ちに該正極に添加したカドミウム化合物が水素吸蔵合金
を主成分とする負極に拡散し、該負極を被毒するという
問題があった。
For this reason, the present inventors developed a non-sintering active material paste containing nickel hydroxide mixed with a cadmium compound, which is used as a so-called antibolar agent to prevent an increase in battery internal pressure during battery polarity reversal. An attempt was made to fabricate a bonded nickel positive electrode. A non-sintered nickel positive electrode to which such a cadmium compound is added can improve the charging characteristics and expansion suppression at high temperatures to some extent, but as it is repeatedly charged and discharged, the cadmium compound added to the positive electrode becomes a hydrogen storage alloy as a main component. There was a problem that it diffused into the negative electrode and poisoned the negative electrode.

そこで、本発明者らはカドミウムの添加方法及びその添
加量について鋭意研究を重ねた結果、カドミウムを共沈
法により水酸化ニッケルに添加することによって、カチ
オン半径の大きなカドミウムを水酸化ニッケルの結晶格
子内に固定化して移動し難くくできるため、カドミウム
の水索吸蔵合金を主成分とする負極への拡散を実用上十
分なレベルまで抑制でき、該カドミウムによる非焼結式
ニッケル正極の膨脹を効果的に抑制できることを見出だ
した。この時、カドミウムの共沈させる量を2〜8モル
%の範囲に規定することによって、前述した高温での充
電特性の改善化、正極の膨脹抑制を効果的に発揮できる
と共に、カドミウム共沈水酸化ニッケルを安定的に生成
できることを見出だした。また、共沈法により添加され
るカドミウムとは別に一酸化コバルト(C o O)を
添加することによって、正極中のカドミウムの拡散をよ
り一層良好に抑制できることを見出だした。このような
作用は十分に解明されていないが、一酸化コバルトを添
加すると水酸化ニッケルの表面が緻密なオキシ水酸化コ
バルト被膜で覆われることに起因するものと考えられる
Therefore, the present inventors conducted intensive research on the method and amount of cadmium added, and found that by adding cadmium to nickel hydroxide using a coprecipitation method, cadmium with a large cation radius can be added to the crystal lattice of nickel hydroxide. Since cadmium can be immobilized within the nickel to make it difficult to move, it is possible to suppress the diffusion of cadmium into the negative electrode, which is mainly composed of a water cable storage alloy, to a practically sufficient level, and the expansion of the non-sintered nickel positive electrode due to the cadmium can be effectively suppressed. We found that it is possible to suppress the At this time, by regulating the amount of cadmium coprecipitated within the range of 2 to 8 mol%, it is possible to effectively improve the charging characteristics at high temperatures and suppress the expansion of the positive electrode as described above, and also to prevent cadmium coprecipitation from hydroxide. It was discovered that nickel can be produced stably. Furthermore, it has been found that by adding cobalt monoxide (C O ) separately from cadmium added by the coprecipitation method, diffusion of cadmium in the positive electrode can be suppressed even better. Although such effects have not been fully elucidated, they are thought to be due to the fact that when cobalt monoxide is added, the surface of nickel hydroxide is covered with a dense cobalt oxyhydroxide film.

また、本発明者らは既述した一酸化コバルトを5〜20
重量%の範囲で水酸化ニッケルに添加することによって
、通常の電極製造環境での酸化を1+−うことなく安定
的に正極中に7j在し、かつアルカリ電解液中で容易に
溶解して水酸化ニッケルと集電体とを導通させる部位へ
拡散するため、非焼結式ニッケル正極の利用率を著しく
向上できることを見出だした。この際、水酸化コバルト
を前記一酸化コバルトと共に水酸化ニッケルに2〜15
重量%(但し、一酸化コバルトとの総量で20fff量
%を越えることはない)の範囲で添加することによって
、一酸化コバルトをill独で添加した場合に比べて利
用率が若干代下するものの、一酸化コバルトに比べて低
コストの水酸化コバルトの添加によりニッケル正極の製
造コストを低減できる効果を奏する。
In addition, the present inventors added cobalt monoxide to 5 to 20
By adding nickel hydroxide in a range of 7j% by weight, it can stably exist in the positive electrode without oxidation in a normal electrode manufacturing environment, and can be easily dissolved in an alkaline electrolyte to dissolve in water. It has been discovered that the utilization rate of the non-sintered nickel positive electrode can be significantly improved because the nickel oxide diffuses into the region where conduction occurs between the nickel oxide and the current collector. At this time, cobalt hydroxide is added to nickel hydroxide together with the cobalt monoxide in an amount of 2 to 15
Although the utilization rate is slightly lower than when cobalt monoxide is added alone by adding cobalt monoxide within the range of 20fff% by weight (however, the total amount with cobalt monoxide does not exceed 20fff%), The addition of cobalt hydroxide, which is lower in cost than cobalt monoxide, has the effect of reducing the manufacturing cost of the nickel positive electrode.

上述した水酸化ニッケルへのカドミウムの共沈法による
添加、一酸化コバルトの添加により高温での充電特性が
良好で、充放電時での非焼結式ニッケル正極の膨脹抑1
;リ、正極の利用率の向上による長寿命化が達威された
ニッケル水素二次電池を得ることができる。
The above-mentioned addition of cadmium to nickel hydroxide by the coprecipitation method and addition of cobalt monoxide provide good charging characteristics at high temperatures, and suppress expansion of the non-sintered nickel positive electrode during charging and discharging.
; Li, it is possible to obtain a nickel-metal hydride secondary battery that has a longer lifespan due to improved utilization of the positive electrode.

史に、本発明者らは活物質ペーストの調製に際し、カル
ボキシメチルセルロース(CMC) 及びポリアクリル
酸塩をそれぞれ0.1−1重量%の範囲に規定して添加
し、CMCによる溶媒保液性とをポリアクリル酸塩によ
る構造安定性の機能を分担させることによって、十分な
容量を有すると共に強度,が高く取扱いが良好な非焼結
式ニッケル正極が得られることを見出だした。
Historically, the present inventors added carboxymethylcellulose (CMC) and polyacrylate in the range of 0.1 to 1% by weight each when preparing an active material paste, and investigated the solvent retention properties of CMC. It has been discovered that a non-sintered nickel positive electrode that has sufficient capacity, high strength, and is easy to handle can be obtained by having polyacrylate take over the role of structural stability.

(実施例) 以下、本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

実施例1 まず・硫酸ニッケルと硫酸カドミウムの混合溶液のpH
を調整することによりカドミウムを4モル%含存する平
均粒径50μmの球状ないし球状に近い形状をなす水酸
化ニッケル粒を沈殿させ、乾燥させた後分級処理を施し
てカドミウム共沈水酸化ニッケル粒を製造した。つづい
て、このカドミウム共沈水酸化ニッケル粒に表面が薄い
コバルト高次元酸化物被膜で覆われた一酸化コバルトを
2TfX量%、5重量%、loIIlr量%、20重量
9o、30重量%及び40ffl量%それぞれ添加する
と共に、CMCO.25重fl%、ポリアクリル酸ナト
リウム0.25重ffi%を添加混合した後、水を添加
してc種のベーストを調製した。ひきつづき、これらペ
ーストを目付m 700g / m 2の焼結ニッケル
繊維基板にそれぞれ充填した後、120℃で乾燥を行っ
て活物質充埴基板を作製した。この後、これら活物質充
填基板をローラプレスにより圧延することにより厚さを
0.8msに調節する共に容量密度をlee当り 60
0mAh以上となるようにし、更に裁断して6種の非焼
結式ニッケル正極を臀た。
Example 1 First: pH of mixed solution of nickel sulfate and cadmium sulfate
By adjusting , nickel hydroxide grains containing 4 mol% of cadmium and having an average particle diameter of 50 μm and having a spherical or nearly spherical shape are precipitated, dried and then subjected to classification treatment to produce cadmium co-precipitated nickel hydroxide grains. did. Subsequently, cobalt monoxide whose surface was covered with a thin cobalt high-dimensional oxide film was added to the cadmium co-precipitated nickel hydroxide grains in amounts of 2TfX, 5% by weight, loIIlr, 20% by weight, 30% by weight, and 40ffl. % respectively, and CMCO. After adding and mixing 25% by weight/fl and 0.25% by weight/ffi% of sodium polyacrylate, water was added to prepare a type c base. Subsequently, each of these pastes was filled into a sintered nickel fiber substrate with a basis weight of m 700 g/m 2 and then dried at 120° C. to produce an active material-filled substrate. Thereafter, these active material-filled substrates were rolled using a roller press to adjust the thickness to 0.8 ms and to adjust the capacity density to 60 per lee.
It was made to have a capacity of 0 mAh or more, and further cut to form six types of non-sintered nickel positive electrodes.

また、LmN i 4.2 Mno.i AN O.3
 C 00.2(Lmはランタン富化ミッシュメタル)
のインゴットをミルにより機械的に粉砕した後、200
メッシュの篩により分級して大径粒子を除去した比較的
微細な水素吸蔵合金粉末を得た。つづいて、この水素吸
蔵合金粉末に導電性粉末としてカーボンブラックを1重
量%、有機結着剤としてC M C ,ポリアクリル酸
ナトリウムを適量添加し、粉砕混合した後、水を添加し
、混練してペーストを調製した。ひきつづき、このペー
ストを厚さ 0.{■の穿孔鋼板上に塗布、乾燥、圧延
を行った後、裁断して水索吸蔵合金負極を作製した。
Moreover, LmN i 4.2 Mno. i AN O. 3
C 00.2 (Lm is lanthanum enriched misch metal)
After mechanically crushing the ingot of 200
Relatively fine hydrogen storage alloy powder was obtained by classifying with a mesh sieve to remove large diameter particles. Next, 1% by weight of carbon black as a conductive powder and appropriate amounts of CMC and sodium polyacrylate as organic binders were added to this hydrogen storage alloy powder, and after pulverizing and mixing, water was added and kneaded. A paste was prepared. Continue to apply this paste to a thickness of 0. After coating on a perforated steel plate (■), drying and rolling, it was cut to produce a water cable occlusion alloy negative electrode.

次いで、前記負極及び非焼結式ニッケル正極をポリアミ
ド不織布からなる厚さ 0.2Ilmのセパレータを介
して捲回することにより作製した電極群を用いて第1図
に示す試験セルを組み立てた。第1図において電池ケー
スは、アクリル樹脂製のケース本体lと封口板の役目を
果たすキャップ2とから構威されている。前記ケース本
体lの中心部には、AAサイズの金属容器と同一の内径
、高さを有する空間3が形成されており、この空間3内
には前記構成の電極群4が収納されている。前記キャッ
プ2には、圧力検出器5が取り付けられてセル内の圧力
をモニタできようになっている。前記ケース本体l及び
キャップ2は、前記電極群4が収紬された空間3内にK
OHとLiOHがそれぞれ7規定、l規定となるように
調製したアルカリ電角q液を2.4m l注入した後、
ゴムシート 6及びOリング7を介して組み立てられ、
ボルト 8及びナット 9により密閉されている。また
、前記電極群4の負極に接続されたリードIO、正極に
接続されたり一ド11は夫々前記ゴムシ一ト 6及びO
リング7の間を通して外部に延出されている。このよう
な試験セルは、水酸化ニッケルIg当りの容量を289
m A hとして計算した容量が1000m A hで
あった。但し、一酸化コバルトの添加量が多い組成のニ
ッケル正極では水酸化ニッケル含有量が減少し、同一サ
イズにすると容量不足となったため、ニッケル正極のサ
イズを調節することにより前記容量値となるようにした
Next, a test cell shown in FIG. 1 was assembled using an electrode group prepared by winding the negative electrode and non-sintered nickel positive electrode through a 0.2 lm thick separator made of polyamide nonwoven fabric. In FIG. 1, the battery case consists of a case body l made of acrylic resin and a cap 2 that serves as a sealing plate. A space 3 having the same inner diameter and height as an AA size metal container is formed in the center of the case body 1, and the electrode group 4 having the above structure is housed in this space 3. A pressure detector 5 is attached to the cap 2 so that the pressure inside the cell can be monitored. The case body l and the cap 2 are arranged in a space 3 in which the electrode group 4 is housed.
After injecting 2.4 ml of alkaline electromagnetic q solution prepared so that OH and LiOH were 7N and 1N, respectively,
assembled via a rubber sheet 6 and an O-ring 7,
It is sealed with bolts 8 and nuts 9. Further, the lead IO connected to the negative electrode of the electrode group 4 and the lead 11 connected to the positive electrode are connected to the rubber seats 6 and 0, respectively.
It passes between the rings 7 and extends to the outside. Such a test cell has a capacity per Ig of nickel hydroxide of 289
The capacity calculated as mA h was 1000mA h. However, in the case of a nickel positive electrode with a composition in which a large amount of cobalt monoxide is added, the nickel hydroxide content decreases, and if the size is the same, the capacity will be insufficient. Therefore, by adjusting the size of the nickel positive electrode, the above capacity value can be achieved. did.

得られた各試験セルを45℃の温度でlO時間放置した
後、100m Aの電流で15時間充電を行い、つづい
てIAで電池電圧が0.8vになるまで放電を行った。
Each test cell obtained was left at a temperature of 45° C. for 10 hours, charged with a current of 100 mA for 15 hours, and then discharged with IA until the battery voltage reached 0.8 V.

 2サイクル目以降は、 300mAで 5時間充電、
 IA放電を繰り返した。20サイクル目の放電容瓜を
ニッケル正極中の水酸化ニッケルa fi量より=Y算
した理論放電容量と対比した結果を下記第1表に示す。
From the second cycle onwards, charge at 300mA for 5 hours,
IA discharge was repeated. The results of comparing the discharge capacity of the 20th cycle with the theoretical discharge capacity calculated from the amount of nickel hydroxide afi in the nickel positive electrode are shown in Table 1 below.

第 1 表 上記1表から明らかなように一酸化コバルトを5重量%
以上添加することにより理論放電容量に対する放電容量
、つまり利用率を増加させることができることがわかる
。但し、一酸化コバルトの添加量を増大させるに伴って
ニッケル正極中に占める体積が大きくなるため、電極単
位体積当りの理論放電容量が減少する他、前述した如く
一酸化コバルトの不可逆的な酸化に起因する水素吸蔵合
金電極の充電予備量が過少となり、電池寿命が低下する
。しかも、一酸化コバルトは水酸化ニッケルに比較する
とコストが高いため添加量をむやみに増加させることは
好ましくない。従って、一酸化コバルトの添加量は5〜
20重量%の範囲することが望ましい。
Table 1 As is clear from Table 1 above, 5% by weight of cobalt monoxide
It can be seen that by adding the above, the discharge capacity relative to the theoretical discharge capacity, that is, the utilization rate can be increased. However, as the amount of cobalt monoxide added increases, the volume occupied in the nickel positive electrode increases, which not only reduces the theoretical discharge capacity per unit volume of the electrode, but also causes irreversible oxidation of cobalt monoxide as described above. As a result, the reserve charge of the hydrogen storage alloy electrode becomes too small, resulting in a shortened battery life. Moreover, since cobalt monoxide is more expensive than nickel hydroxide, it is not preferable to increase the amount added unnecessarily. Therefore, the amount of cobalt monoxide added is 5~
A range of 20% by weight is desirable.

実施例2 下記第2表に示す割合で一酸化コバルトと水酸化コバル
トを配合したペーストにより実施例1と同様な方法によ
り作製した非焼結式ニッケル正極を用いた以外、実施例
1と同様な7種の試験セルを組み立てた。
Example 2 The same procedure as in Example 1 was used except that a non-sintered nickel positive electrode was prepared in the same manner as in Example 1 using a paste containing cobalt monoxide and cobalt hydroxide in the proportions shown in Table 2 below. Seven test cells were assembled.

得られた各試験セルについて、実施例1と同様な充放電
を繰り返し、20サイクル目の放電容量をニッケル正極
中の水酸化ニッケル含有量より計算した理論放電容量と
対比した利用率を調べた。その結果を同第2表に併記し
た。
For each test cell obtained, charging and discharging were repeated in the same manner as in Example 1, and the utilization rate was investigated by comparing the discharge capacity at the 20th cycle with the theoretical discharge capacity calculated from the nickel hydroxide content in the nickel positive electrode. The results are also listed in Table 2.

第     2     表 上記第2表から明らかなように、一酸化コバルトを少し
添加したニッケル正極を組み込んだNo2の試験セルで
は水酸化コバルを単独に添加したニッケル正極を組み込
んだNolの試験セルに比べて利用率を約15%1曽加
できることがわかる。また、第2表中には示していない
が水酸化コバルト+11独添加のニッケル正極を組み込
んだ試験セルでは利用早が立ち上がるまでに10〜20
サイクルを要するに対し、一酸化コバルトを少し添加し
たニッケル正極を組み込んだ試験セルでは数サイクルに
短縮することができた。
Table 2 As is clear from Table 2 above, the No. 2 test cell incorporating a nickel positive electrode to which a small amount of cobalt monoxide was added was compared to the No. 1 test cell incorporating a nickel positive electrode to which only cobalt hydroxide was added. It can be seen that the utilization rate can be increased by about 15%. In addition, although not shown in Table 2, in a test cell incorporating a nickel positive electrode with cobalt hydroxide + 11% added, it took 10 to 20 hours before utilization started.
The test cell, which incorporated a nickel positive electrode with a small amount of cobalt monoxide, could be shortened to just a few cycles.

更に、前述した第1表に示した一酸化コバルトのlit
独添加(添加量20重量96)のニッケル正極を組み込
んだ試験セルと、水酸化コバルトと一酸化コバルトとを
同じ量添加したニッケル正極を組み込んだNo3の試験
セルとを比較すると、後者の試験セルは数%の利用率の
低下が認められる程度であることから、比較的コストの
安い水酸化コバルトを併用して添加することがニッケル
正極のコスト低減化に有効である。但し、両コバルト化
合物の総量が20重量%を越えると実施例1で説明した
ようにニッケル正極中に占める体積が大きくなり、電極
単位体積当りの理論放電容量が低下することから好まし
くない。
Furthermore, the lit of cobalt monoxide shown in Table 1 above
Comparing the No. 3 test cell incorporating a nickel positive electrode with the same amount of cobalt hydroxide and cobalt monoxide added (addition amount: 20 wt. 96%), the latter test cell Since the decrease in the utilization rate of nickel is only a few percent, it is effective to add cobalt hydroxide, which is relatively cheap, in combination to reduce the cost of the nickel positive electrode. However, if the total amount of both cobalt compounds exceeds 20% by weight, as explained in Example 1, the volume occupied in the nickel positive electrode becomes large and the theoretical discharge capacity per unit volume of the electrode decreases, which is not preferable.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば正極の利用率の向上
、長寿命化、高温下での充電特性の向上化を達成したニ
ッケル水素二次電池を提供できる。
As detailed above, according to the present invention, it is possible to provide a nickel-metal hydride secondary battery that achieves improved utilization of the positive electrode, extended life, and improved charging characteristics at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用L)た試験セノレを示す断
面図である。 l・・・・・・電池ケース、2・・・キヤ・ノブ、4・
・・電極I!1、5・・・圧力検出機。
FIG. 1 is a sectional view showing a test sensor used in an embodiment of the present invention. l...Battery case, 2...Kya knob, 4.
...Electrode I! 1, 5...Pressure detector.

Claims (1)

【特許請求の範囲】[Claims] 金属換算で2〜8モル%のカドミウムを共沈法により含
有する水酸化ニッケルに少なくとも一酸化コバルト(C
oO)を5〜20重量%添加混合した活物質ペーストか
ら作製された非焼結式ニッケル正極と、水素吸蔵合金を
主成分とする負極とを具備したことを特徴とするニッケ
ル水素二次電池。
At least cobalt monoxide (C
1. A nickel-hydrogen secondary battery comprising: a non-sintered nickel positive electrode made from an active material paste containing 5 to 20% by weight of oO); and a negative electrode mainly composed of a hydrogen storage alloy.
JP1240467A 1989-09-16 1989-09-16 Ni-h secondary battery Pending JPH03102765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240467A JPH03102765A (en) 1989-09-16 1989-09-16 Ni-h secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240467A JPH03102765A (en) 1989-09-16 1989-09-16 Ni-h secondary battery

Publications (1)

Publication Number Publication Date
JPH03102765A true JPH03102765A (en) 1991-04-30

Family

ID=17059946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240467A Pending JPH03102765A (en) 1989-09-16 1989-09-16 Ni-h secondary battery

Country Status (1)

Country Link
JP (1) JPH03102765A (en)

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
JP3351261B2 (en) Nickel positive electrode and nickel-metal hydride storage battery using it
JPH10284113A (en) Alkaline storage battery
JP2007012572A (en) Nickel hydrogen battery
JP6057369B2 (en) Nickel metal hydride secondary battery
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH03102765A (en) Ni-h secondary battery
JP2001313069A (en) Nickel hydrogen storage battery
JPH0935718A (en) Alkaline secondary battery
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JP3118812B2 (en) Alkaline storage battery
JP3387763B2 (en) Manufacturing method of alkaline storage battery
JP3011393B2 (en) Method for manufacturing nickel-metal hydride storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JP2854920B2 (en) Nickel-metal hydride battery
JP3742149B2 (en) Alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JP2000030702A (en) Nickel-hydrogen secondary battery
JPH11191412A (en) Alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
CN117276482A (en) Positive plate for alkaline storage battery and alkaline storage battery