JPH03102298A - Recovery of palladium - Google Patents

Recovery of palladium

Info

Publication number
JPH03102298A
JPH03102298A JP23988989A JP23988989A JPH03102298A JP H03102298 A JPH03102298 A JP H03102298A JP 23988989 A JP23988989 A JP 23988989A JP 23988989 A JP23988989 A JP 23988989A JP H03102298 A JPH03102298 A JP H03102298A
Authority
JP
Japan
Prior art keywords
palladium
elements
ascorbic acid
acid
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23988989A
Other languages
Japanese (ja)
Inventor
Masumitsu Kubota
久保田 益充
Tsutomu Kobayashi
勉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP23988989A priority Critical patent/JPH03102298A/en
Publication of JPH03102298A publication Critical patent/JPH03102298A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable recovery of a palladium Pd by adding an ascorbic acid to a solution containing platinum group elements, such as a high level radioactive liquid waste. CONSTITUTION:After decreasing nitric acid concentration of a high level radioactive liquid waste down to some 0.5 to 0.3M and removing a Zr, a Mo and a Te as a precipitation, a Pd can be solely and selectively recovered by adding an ascorbic acid to make the concentration to be 0.0588M and agitating under room temperature for 15 minutes. In this occasion, by increment of an adding amount of the ascorbic acid, a recovery efficiency of the Pd is much improved. Also, by adding an oxalic acid after addition of the ascorbic acid, the Pd, with transuranium elements and rare earth elements, can be recovered as a precipitation at higher recovery ion efficiency. In this case, the transuranium elements and the rare earth elements can be easily separated from the Pd during a dissolving stage of the oxalic acid.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はパラジウム回収法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a palladium recovery method.

パラジウムは電極や触媒として広く利用されているもの
の、他の白金族元素と同様に地球上に存在する量は比較
的少なく、しかも産出する国も限られている.これらの
状況を少しでも解決する手段として、使用済核燃料から
のパラジウムを含む白金族元素の回収法が検討されてい
る。
Palladium is widely used in electrodes and catalysts, but like other platinum group elements, it exists in relatively small quantities on Earth, and is produced only in a limited number of countries. As a means to alleviate these situations, methods of recovering platinum group elements including palladium from spent nuclear fuel are being considered.

パラジウムは使用済核燃料1トン当り約1.4キログラ
ムが含まれているが、も再処理の段階で25%程度が不
溶解残さに、残りの大部分が高レベル放射性廃液に移る
と言われている。本発明は、高レベル放射性廃液からの
パラジウムの回収に利用できるばかりでなく、ルテニウ
ムやロジウム等の白金族元素のみを含む溶液からのパラ
ジウムの選択的分離にも利用できる。
Approximately 1.4 kilograms of palladium are contained per ton of spent nuclear fuel, but it is said that during reprocessing, about 25% is transferred to undissolved residue, and most of the rest is transferred to high-level radioactive waste liquid. There is. The present invention can be used not only to recover palladium from high-level radioactive waste liquids, but also to selectively separate palladium from solutions containing only platinum group elements such as ruthenium and rhodium.

(従来の技術) 高レベル放射性廃液からの白金族元素の回収法としては
、鉛抽出法、溶融金属抽出法、溶媒抽出法、イオン交換
法、吸着法、電解還元法、沈澱法等が検討されているが
、いずれの方法においても回収の操作が煩雑で、経済性
や安全性の面から必ずしも優れた方法ではない.比較的
実用化しやすい方法としては沈澱法が考えられるが、こ
れまでに検討された方法は、高レベル放射性廃液にギ酸
を添加し、加熱することによって硝酸を分解し、廃液の
酸性度を低下させ、p112程度の溶液にすることによ
って白金族元素を沈澱物として回収する方法である.こ
の方法によってパラジウムをルテニウム及びロジウムと
同時に回収することができるが、この方法の欠点は溶液
の酸性度をp}12程度にすることによってジルコニウ
ム、モリブデン、テルル、鉄、クロム等が同時に沈澱す
ること、また、溶液の酸性度を制御することが難しく、
より酸性度が低下する可能性があり、その場合には沈澱
する元素の種類や量が著しく増加してしまうことである
(Prior technology) As methods for recovering platinum group elements from high-level radioactive waste liquid, lead extraction method, molten metal extraction method, solvent extraction method, ion exchange method, adsorption method, electrolytic reduction method, precipitation method, etc. have been studied. However, in either method, the collection operation is complicated, and these methods are not necessarily superior in terms of economy and safety. The precipitation method is considered to be a method that is relatively easy to put into practical use, but the methods considered so far involve adding formic acid to high-level radioactive waste liquid and decomposing nitric acid by heating it, reducing the acidity of the waste liquid. This is a method of recovering platinum group elements as a precipitate by forming a solution with a p112 level. Palladium can be recovered simultaneously with ruthenium and rhodium by this method, but the disadvantage of this method is that zirconium, molybdenum, tellurium, iron, chromium, etc. precipitate at the same time when the acidity of the solution is set to about p12. , it is also difficult to control the acidity of the solution,
There is a possibility that the acidity will be further reduced, and in that case, the types and amounts of precipitated elements will increase significantly.

(発明が解決しようとする問題点) 本発明の目的は、これらの欠点を改良する方法、すなわ
ち同時に沈澱する不純物元素の種類や量を少なくしてパ
ラジウムを沈澱物として回収する方法を提供することで
ある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for improving these drawbacks, that is, a method for recovering palladium as a precipitate by reducing the types and amounts of impurity elements that are simultaneously precipitated. It is.

(問題点を解決するための手段〉 本願発明者は、鋭意研究の結果、高レベル放射性廃液の
硝酸濃度を0. 5 M〜0.3M程度に低下させるこ
とによって、ジルコニウム、モリブデン及びテルルを沈
澱物として除去した後に、アスコルビン酸を添加すれば
、パラジウムを選択的に沈澱物として回収できること、
また、アスコルビン酸を添加した後にシュウ酸を加える
ことにすれば、超ウラン元素や希土類元素とともにパラ
ジウムをより高い収率で沈澱物として回収できることを
発見し、この方法において処理の厄介な不純物元素の混
入が少ないパラジウムが回収できることを発見し、本発
明の目的を達威した。
(Means for Solving the Problem) As a result of intensive research, the inventor of the present application has determined that zirconium, molybdenum, and tellurium can be precipitated by reducing the nitric acid concentration of high-level radioactive waste liquid to about 0.5 M to 0.3 M. palladium can be selectively recovered as a precipitate by adding ascorbic acid after removing it as a precipitate;
They also discovered that if oxalic acid is added after ascorbic acid, palladium can be recovered as a precipitate at a higher yield along with transuranic elements and rare earth elements. It was discovered that palladium with little contamination could be recovered, and the object of the present invention was achieved.

なお、アスコルビン酸添加後にシュウ酸を加える方法で
は、超ウラン元素や希土類元素がシュウ酸塩として同時
に沈澱することになるが、シュウ酸塩を溶解する段階で
パラジウムとの分離が容易である. 〈実施例〉 次に、実施例を示して本発明をさらに具体的に説明する
.但し、本発明は本実施例によって限定されるものでは
ない。
Note that in the method of adding oxalic acid after ascorbic acid, transuranic elements and rare earth elements will precipitate at the same time as oxalates, but they can be easily separated from palladium at the stage of dissolving the oxalates. <Examples> Next, the present invention will be explained in more detail by showing examples. However, the present invention is not limited to this example.

大旌班 高レベル放射性廃液を模擬した第1表A欄に示すような
元素&ll威の2M硝酸溶液を含むフラスコにギ酸を硝
酸濃度の1.5倍当量加えた後、還流状態で2.5時間
加熱し脱硝した。沈澱物を除くため放冷後に溶液を東洋
ろ紙No. 5 Cでろ過した。ろ液中の元素の濃度を
発光分光分析法等により測定し、ろ液に残った元素の割
合を使用した模擬廃液中の元素量に対して求めた結果を
第1表B4′ljlに示す。このろ液にアスコルビン酸
を加え、その濃度を0.0588Mとし、室温で15分
間攪拌した。
After adding 1.5 times the equivalent of nitric acid concentration of formic acid to a flask containing a 2M nitric acid solution of the elements shown in column A of Table 1, which simulated a high-level radioactive waste liquid, 2.5 times the concentration of formic acid was added under reflux. Denitrification was performed by heating for an hour. To remove the precipitate, the solution was filtered with Toyo Filter Paper No. 1 after being allowed to cool. Filtered at 5C. The concentration of the element in the filtrate was measured by optical emission spectrometry, etc., and the ratio of the element remaining in the filtrate was determined relative to the amount of the element in the simulated waste liquid using the results, which are shown in Table 1 B4'ljl. Ascorbic acid was added to this filtrate to give a concentration of 0.0588M, and the mixture was stirred at room temperature for 15 minutes.

生或した沈澱物を前記と同様にろ別し、ろ液に残った元
素の割合を最初に使用した模擬廃液中の元素量に対して
求めた結果を第1表CIMに示す。また、アスコルビン
酸を加えるのと同時にシュウ酸を0. 4 Mになるよ
うに加えた場合の結果を第1表D欄に示す。
The resulting precipitate was filtered in the same manner as described above, and the ratio of the elements remaining in the filtrate was determined relative to the amount of elements in the simulated waste liquid initially used. The results are shown in Table 1 CIM. Also, at the same time as ascorbic acid was added, 0.0% of oxalic acid was added. The results obtained when adding 4M are shown in column D of Table 1.

これらの結果から明らかなように、脱硝によって、ジル
コニウム、モリブデン及びテルルの大部分、それにルテ
ニウム、ロジウム及び鉄の一部は沈澱したが、パラジウ
ムはろ液に移った.このろ液にアスコルビン酸を加える
ことによって、加熱操作をすることなく、パラジウムの
みを選択的に沈澱として回収することができた。実験で
は、約85%のパラジウムが沈澱しているが、アスコル
ビン酸の添加量を増加さ(せることによって、パラジウ
ム回収率をより高くすることができる。さらに、シュウ
酸を加えた場合には、超ウラン元素と希土類元素の代表
として選んだネオジウムがほぼ100%沈澱するのと同
時にパラジウムの沈澱物もほぼ100%になることが分
かった。
As is clear from these results, most of zirconium, molybdenum, and tellurium, as well as some of ruthenium, rhodium, and iron were precipitated by denitrification, but palladium was transferred to the filtrate. By adding ascorbic acid to this filtrate, only palladium could be selectively recovered as a precipitate without any heating operation. In the experiment, about 85% of palladium was precipitated, but by increasing the amount of ascorbic acid added, the palladium recovery rate can be made higher.Furthermore, when oxalic acid is added, It was found that almost 100% of neodymium, which was selected as a representative of transuranium elements and rare earth elements, precipitated, and at the same time, almost 100% of palladium precipitated.

(発明の効果〉 かくして、本発明のパラジウムの回収法は、高レベル放
射性廃液等の白金族元素を含む溶液にアスコルビン酸を
添加することによってパラジウムを選択的に沈澱物とし
て回収することができる。
(Effects of the Invention) Thus, the palladium recovery method of the present invention can selectively recover palladium as a precipitate by adding ascorbic acid to a solution containing a platinum group element such as a high-level radioactive waste liquid.

元素 Nd Sr CS Fe Cr Ni Na Ba Rb Te MO Zr Ru P d Rh A欄 模擬廃 冫ffl 冫1−i度 (M) 0.127 0.0165 0.0371 0.038 0.0091 0.0060 0.076 0.0207 0.0074 0.0068 0.069 0.069 0.034 0.018 0.0080 募りこ及 B欄   Ca 脱硝 アスコル ビン酸 (χ) 添加(X) 99103 100   99 100   98 8887 98100 103  102 100  102 100   99 100   96 0.60 5.0   4.7 0.20 7775 101   15 7473 D欄 アスコルビン 酸+シュウ酸 添加(%) 0 91 96 87 lO0 99 97 98 91 0 4.0 0 75 0. 2 71 手続主甫正書(自発) 平Fli.1年1l月element Nd Sr. CS Fe Cr Ni Na Ba Rb Te M.O. Zr Ru Pd Rh Column A simulated waste 冫ffl 冫1-i degree (M) 0.127 0.0165 0.0371 0.038 0.0091 0.0060 0.076 0.0207 0.0074 0.0068 0.069 0.069 0.034 0.018 0.0080 Recruitment Column B Ca Denitration Ascol Bic acid (χ) Addition (X) 99103 100 99 100 98 8887 98100 103 102 100 102 100 99 100 96 0.60 5.0 4.7 0.20 7775 101 15 7473 Column D ascorbine acid + oxalic acid Addition (%) 0 91 96 87 lO0 99 97 98 91 0 4.0 0 75 0. 2 71 Procedural master's letter (spontaneous) Flat Fri. 1st year 1st month

Claims (1)

【特許請求の範囲】[Claims] 高レベル放射性廃液等の白金族元素を含む溶液にアスコ
ルビン酸を添加することによってパラジウムを沈澱物と
して回収することを特徴とするパラジウムの回収法。
A palladium recovery method characterized by recovering palladium as a precipitate by adding ascorbic acid to a solution containing platinum group elements such as high-level radioactive waste liquid.
JP23988989A 1989-09-18 1989-09-18 Recovery of palladium Pending JPH03102298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23988989A JPH03102298A (en) 1989-09-18 1989-09-18 Recovery of palladium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23988989A JPH03102298A (en) 1989-09-18 1989-09-18 Recovery of palladium

Publications (1)

Publication Number Publication Date
JPH03102298A true JPH03102298A (en) 1991-04-26

Family

ID=17051376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23988989A Pending JPH03102298A (en) 1989-09-18 1989-09-18 Recovery of palladium

Country Status (1)

Country Link
JP (1) JPH03102298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500399A (en) * 2011-12-02 2015-01-05 ユバスキラン エネルジア オユJyvaskylan Energia Oy Ash treatment method, especially fly ash treatment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496412A (en) * 1977-12-28 1979-07-30 Us Energy Method of recovering valuable paradilum and technetium from waste liquid of retreated nuclear fuel
JPH0196019A (en) * 1987-10-09 1989-04-14 Japan Atom Energy Res Inst Method for precipitating and separating transuranic element
JPH01134297A (en) * 1987-11-20 1989-05-26 Mitsubishi Atom Power Ind Inc Method for recovering platinum group element from waste of nuclear fuel reprocessing
JPH01225708A (en) * 1988-03-03 1989-09-08 Tanaka Kikinzoku Kogyo Kk Production of fine palladium particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496412A (en) * 1977-12-28 1979-07-30 Us Energy Method of recovering valuable paradilum and technetium from waste liquid of retreated nuclear fuel
JPH0196019A (en) * 1987-10-09 1989-04-14 Japan Atom Energy Res Inst Method for precipitating and separating transuranic element
JPH01134297A (en) * 1987-11-20 1989-05-26 Mitsubishi Atom Power Ind Inc Method for recovering platinum group element from waste of nuclear fuel reprocessing
JPH01225708A (en) * 1988-03-03 1989-09-08 Tanaka Kikinzoku Kogyo Kk Production of fine palladium particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500399A (en) * 2011-12-02 2015-01-05 ユバスキラン エネルジア オユJyvaskylan Energia Oy Ash treatment method, especially fly ash treatment method

Similar Documents

Publication Publication Date Title
US3848048A (en) Recovery of fission-produced technetium,palladium,rhodium and ruthenium
Painuly Separation and recovery of vanadium from spent vanadium pentaoxide catalyst by Cyanex 272
Kondo et al. Precipitation behavior of platinum group metals from simulated high level liquid waste in sequential denitration process
JPH03102298A (en) Recovery of palladium
US3672875A (en) Extraction of fission product noble metals from spent nuclear fuels
RU2239666C1 (en) Method of preparing rhodium, palladium, and ruthenium concentrates from nitric acid solutions
JP2887036B2 (en) Separation and purification method of fission-generated noble metal
JP2713828B2 (en) Method for recovering valuable metals from nuclear fuel reprocessing solution
JP6784369B2 (en) Separation and recovery method of long-lived nuclides contained in radioactive liquid waste
US4092397A (en) Pyrochemical separation of plutonium from irradiated nuclear fuels, by thermal decomposition in molten nitrates
JP3113033B2 (en) Method for separating ruthenium and technetium in radioactive solution and reprocessing process for spent nuclear fuel using the same
RU2228380C2 (en) Method of recovering palladium from nitric acid solutions
JP3733417B2 (en) Method for separating and recovering palladium and cesium from nitric acid acidic solution containing palladium and cesium
JPH09203792A (en) Method for separating and recycling platinum group element
DE1805332A1 (en) Process for the recovery of mercury from waste solutions
JP2966066B2 (en) How to separate fission-generated noble metals
JPS626200B2 (en)
JP3449389B2 (en) Method for recovering oxides of platinum group elements
JPS6293320A (en) Method for recovering technetium
Golovanov et al. STUDY OF THE HIGH-TEMPERATURE VOLATILIZATION MECHANISM OF CESIUM, COPRECIPITATED WITH DOUBLE FERROCYANIDE OF NICKEL AND POTASSIUM
Moore Recovery of fission-produced technetium, palladium, rhodium, and ruthenium
Knighton et al. Purification of reactor fuels using liquid zinc
McDuffee et al. SUMMARY OF THE CAMPAIGN TO PROCESS FOUR PROTOTYPE HFIR TARGETS IN THE TRANSURANIUM PROCESSING PLANT.
Hazelton et al. Defense by-products production and utilization program: noble metal recovery screening experiments
Vail et al. Method for the synthesis of iron hexacyanoferrate