JPS626200B2 - - Google Patents

Info

Publication number
JPS626200B2
JPS626200B2 JP53058027A JP5802778A JPS626200B2 JP S626200 B2 JPS626200 B2 JP S626200B2 JP 53058027 A JP53058027 A JP 53058027A JP 5802778 A JP5802778 A JP 5802778A JP S626200 B2 JPS626200 B2 JP S626200B2
Authority
JP
Japan
Prior art keywords
solution
molybdenum
zirconium
nitric acid
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53058027A
Other languages
Japanese (ja)
Other versions
JPS54149000A (en
Inventor
Masumitsu Kubota
Tokunosuke Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP5802778A priority Critical patent/JPS54149000A/en
Publication of JPS54149000A publication Critical patent/JPS54149000A/en
Publication of JPS626200B2 publication Critical patent/JPS626200B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は放射性物質含有液の処理方法にかんす
る。 放射性物質を含有する溶液、たとえば、使用済
み核燃料の再処理にともなつて発生する高放射能
レベルの廃液中には、鉄、ニツケル、モリブデ
ン、ストロンチウム、セシウム、ランタン、ジル
コニウム、テルル、アメリシウム、キユリウム等
の各種の物質が含まれており、従来これら廃液に
含まれる元素を一括して固化する所謂る全量固化
法、あるいは廃液に含まれる元素を半減期、放射
能毒性および化学的性質に応じていくつかのグル
ープに分離する所謂る群分離を行つた上安定な固
化体として処分する方法が開発されている。 しかしながら、モリブデンが存在したまま上記
廃液を全量固化法により処理すると、黄色の析出
物を生じることもあり、この固化体を長期間保存
しておくと固化体から放射性物質が浸出するとい
う不都合な結果を生じる。また群分離法として希
土類元素および超プルトニウム元素を分離するに
は、現在ジ(2−エチルヘキシル)リン酸(以下
HDEHPと記す)を使用する溶媒抽出法が採用さ
れているが、この場合には放射性物質を含有する
溶液中にモリブデンまたはジルコニウム等(以下
モリブデン等と記す)が含まれているとモリブデ
ン等は使用するHDEHP中に抽出される。一旦、
HDEHPに抽出されたモリブデン等は逆抽出する
ことが容易でなく、抽出剤の精製を困難とする。 最近になつて、HDEHPによる希土類元素、ア
メリシウム、キユリウム等の抽出にさきがけて、
使用済み核燃料再処理廃液のPHを1〜2にするこ
とにより、または一旦PH7まで上昇させた後、再
びPH1〜2に降下させることによつてモリブデン
等を沈澱除去する方法が提案されている。この方
法は例えば2規定硝酸溶液として貯蔵されている
再処理廃液の脱硝あるいは中和等の工程を必要と
するという欠点を有している。 本発明者等は、上記欠点を除き、放射性物質な
らびにモリブデン等を含有する硝酸溶液からモリ
ブデン等を沈澱除去する方法を検討した結果、本
発明を完成した。 すなわち、本発明は、放射性物質ならびにモリ
ブデン又はジルコニウムを含有する硝酸溶液にテ
ルルの化合物を添加し、得られた溶液を加熱する
ことにより該溶液からテルルの沈澱とともにモリ
ブデン又はジルコニウムを沈澱させ、モリブデン
又はジルコニウムを上記溶液から分離することを
特徴とする放射性物質含有液の処理法をその要旨
とするものである。 本発明の方法において、放射性物質ならびにモ
リブデン等を含有する硝酸溶液の硝酸濃度として
は0.01〜4規定程度が好ましい。 添加するテルルの化合物の適量としては溶液の
硝酸濃度によつて変化するが、2規定硝酸溶液の
場合には、溶液に含まれるジルコニウムのモル量
の約0.4倍モル量を使用すればよく、硝酸の濃度
が2規定以上ではさらに多くの量を、またそれ以
下の場合にはより少ない量で充分である。例え
ば、0.5規定硝酸溶液では0.1倍モル量のテルル化
合物の使用で、モリブデン等を90%以上沈澱する
ことができる。 溶液の加熱操作はモリブデン、ジルコニウムお
よびテルルの沈澱反応を完結させ、しかも生成す
る沈澱の過等の次の操作を容易にする上に於て
重要である。 上記加熱は溶液を沸騰状態にしておくことによ
つて達成される。沸騰時間としては場合により10
分程度でも良いが、時によつては1時間程度、さ
らには2時間以上を必要とする場合もある。 このようにして生成された沈澱の分離法として
は、過、遠心、沈澱等の方法により母液と分離
する等の一般的方法が採用される。 本発明の方法により放射性物質を含有する溶液
を処理すれば、モリブデン等の該溶液からの除去
率を80%あるいはそれ以上とすることができる。
しかも、該溶液の硝酸濃度を0.2規定以上で本発
明の方法を実施すればランタン等の希土類元素、
およびアメリシウム、キユリウム等の沈澱率を
0.1%以下におさえることができる。 次に実施例を示してさらに本発明を説明する
が、本実施例は本発明を限定するものではない。 実施例 1 第1表に示した放射性物質含有溶液25mlを還流
冷却器を備えた100mlのフラスコに投入し、この
溶液にテルル酸0.17mmolを加え、次いでヒータ
ーにより加熱し、2.5時間沸騰を断続した。この
溶液を放冷し、析出した沈澱を東洋紙株式会社
製No.5B紙を用いて別した。 沈澱は紙ごとに、そして紙は5mlを採り、
それぞれ放射能測定用試料ビンに入れ、Ge
(Li)半導体検出器により、99Mo、95Zr、132Te、
140La及び241Amのγ線スペクトルを測定し、得
られた放射線強度と第1表の各物質の放射線強度
を比較し、モリブデン、ジルコニウム、テルル、
ランタン及びアメリシウムの沈澱率を求め、結果
を第2表に示した。 実施例 2、3及び4 実施例2にはテルル酸0.34mmolを、実施例3
にはテルル酸0.68mmolを、そして実施例4には
テルル酸ナトリウム1.02mmolを使用した以外は
実施例1と同様に操作し、結果を第2表に示し
た。 実施例 5 第1表に示した放射性物質含有溶液25mlにテル
ル酸0.17mmolを添加し、次いで25規定ギ酸3.2ml
を加え、硝酸濃度を0.2規定とした以外は実施例
1と同様に処理し第2表に示す結果を得た。 実施例 6 第1表に示した放射性物質含有溶液25mlにテル
ル酸0.17mmolを添加し、次いで25規定ギ酸2.5ml
を加えた以外は実施例1と同様に処理し、第2表
に示す結果を得た。 実施例 7 第1表に示した放射性物質含有溶液25mlに硝酸
を添加し4規定硝酸溶液とし、これにテルル酸
0.17mmolを加えた以外は実施例1と同様処理し
て第2表に示す結果を得た。 比較例 1、2、3及び4 比較のために実施例1、5、6及び7において
テルルを添加させずに実験した結果を比較例1、
2、3及び4として第2表に示した。
The present invention relates to a method for treating a radioactive substance-containing liquid. Solutions containing radioactive substances, for example, waste liquids with high radioactivity levels generated during the reprocessing of spent nuclear fuel, contain iron, nickel, molybdenum, strontium, cesium, lanthanum, zirconium, tellurium, americium, and cullium. Conventionally, the so-called total solidification method, in which the elements contained in these waste liquids are solidified all at once, or the elements contained in the waste liquid are combined according to their half-life, radiotoxicity, and chemical properties. A method has been developed in which the so-called group separation is performed to separate the material into several groups, and then the material is disposed of as a stable solidified material. However, if the waste liquid is treated by the total solidification method while molybdenum is still present, a yellow precipitate may be produced, and if this solidified material is stored for a long period of time, radioactive substances will leach out from the solidified material, which is an inconvenient result. occurs. Furthermore, in order to separate rare earth elements and ultra-plutonium elements as a group separation method, di(2-ethylhexyl) phosphoric acid (hereinafter referred to as
A solvent extraction method using HDEHP (hereinafter referred to as HDEHP) is adopted, but in this case, if molybdenum or zirconium (hereinafter referred to as molybdenum, etc.) is included in the solution containing radioactive substances, molybdenum, etc. extracted into HDEHP. Once,
Molybdenum and the like extracted by HDEHP are not easy to back-extract, making it difficult to purify the extractant. Recently, we have pioneered the extraction of rare earth elements, americium, cullium, etc. using HDEHP.
A method has been proposed in which molybdenum and the like are precipitated and removed by adjusting the pH of spent nuclear fuel reprocessing waste liquid to 1 to 2, or by once increasing the pH to 7 and then lowering the pH to 1 to 2 again. This method has the disadvantage that it requires steps such as denitrification or neutralization of the reprocessing waste liquid, which is stored as a 2N nitric acid solution, for example. The present inventors investigated a method for precipitating and removing molybdenum, etc. from a nitric acid solution containing radioactive substances and molybdenum, and as a result, completed the present invention, while eliminating the above-mentioned drawbacks. That is, the present invention adds a tellurium compound to a nitric acid solution containing a radioactive substance and molybdenum or zirconium, and heats the resulting solution to precipitate tellurium and molybdenum or zirconium from the solution. The gist of this invention is a method for treating a radioactive substance-containing liquid, which is characterized by separating zirconium from the solution. In the method of the present invention, the nitric acid concentration of the nitric acid solution containing radioactive substances, molybdenum, etc. is preferably about 0.01 to 4 normal. The appropriate amount of the tellurium compound to be added varies depending on the nitric acid concentration of the solution, but in the case of a 2N nitric acid solution, it is sufficient to use an amount approximately 0.4 times the molar amount of zirconium contained in the solution; If the concentration is 2N or more, a larger amount is sufficient, and if it is less than that, a smaller amount is sufficient. For example, in a 0.5N nitric acid solution, more than 90% of molybdenum etc. can be precipitated by using 0.1 times the molar amount of the tellurium compound. The heating operation of the solution is important in completing the precipitation reaction of molybdenum, zirconium and tellurium, and in facilitating subsequent operations such as filtration of the formed precipitate. The heating is accomplished by bringing the solution to a boil. The boiling time is 10 depending on the case.
It may take about a minute, but sometimes it may take about an hour or even more than two hours. As a method for separating the precipitate thus produced, general methods such as separation from the mother liquor by methods such as filtration, centrifugation, and precipitation are employed. When a solution containing a radioactive substance is treated by the method of the present invention, the removal rate of molybdenum and the like from the solution can be increased to 80% or more.
Furthermore, if the method of the present invention is carried out with the nitric acid concentration in the solution being 0.2 normal or more, rare earth elements such as lanthanum,
and the precipitation rate of americium, cullium, etc.
It can be kept below 0.1%. Next, the present invention will be further explained with reference to Examples, but the present invention is not limited to the Examples. Example 1 25 ml of the radioactive substance-containing solution shown in Table 1 was put into a 100 ml flask equipped with a reflux condenser, 0.17 mmol of telluric acid was added to this solution, and then heated with a heater, with intermittent boiling for 2.5 hours. . This solution was allowed to cool, and the precipitate deposited was separated using No. 5B paper manufactured by Toyo Paper Co., Ltd. Take 5 ml of the sediment from each paper,
Place each in a sample bottle for radioactivity measurement, and
(Li) semiconductor detector detects 99 Mo, 95 Zr, 132 Te,
The gamma ray spectra of 140 La and 241 Am were measured, and the obtained radiation intensity was compared with the radiation intensity of each substance in Table 1.
The precipitation rates of lanthanum and americium were determined and the results are shown in Table 2. Examples 2, 3 and 4 Example 2 contained 0.34 mmol of telluric acid, Example 3
The procedure was as in Example 1 except that 0.68 mmol of telluric acid was used in Example 4, and 1.02 mmol of sodium tellurate was used in Example 4, and the results are shown in Table 2. Example 5 0.17 mmol of telluric acid was added to 25 ml of the radioactive substance-containing solution shown in Table 1, and then 3.2 ml of 25N formic acid was added.
The process was carried out in the same manner as in Example 1, except that the nitric acid concentration was adjusted to 0.2 normal, and the results shown in Table 2 were obtained. Example 6 0.17 mmol of telluric acid was added to 25 ml of the radioactive substance-containing solution shown in Table 1, and then 2.5 ml of 25N formic acid was added.
The treatment was carried out in the same manner as in Example 1 except that . Example 7 Nitric acid was added to 25 ml of the radioactive substance-containing solution shown in Table 1 to make a 4N nitric acid solution, and telluric acid was added to this.
The same procedure as in Example 1 was carried out except that 0.17 mmol was added, and the results shown in Table 2 were obtained. Comparative Examples 1, 2, 3, and 4 For comparison, the results of experiments conducted in Examples 1, 5, 6, and 7 without adding tellurium are shown in Comparative Examples 1,
2, 3 and 4 in Table 2.

【表】 註:数値は放射性物質含有溶液中の各物質の
モル濃度であり、該溶液は2.00mol〓の
硝酸溶液として与えられている。
[Table] Note: The values are the molar concentration of each substance in the radioactive substance-containing solution, and the solution is given as a 2.00 mol nitric acid solution.

【表】 第2表から明らかなように、2規定硝酸溶液の
場合で、テルルを添加することなく溶液を加熱し
た場合(比較例1)には、モリブデン及びジルコ
ニウムの沈澱率はそれぞれ56及び25%と低い。 これに対し、本発明の方法によれば、ジルコニ
ウムのモル量の約0.4倍モル量に相当する0.68m
molのテルル酸を添加した場合(実施例3)に、
モリブデン及びジルコニウムの80%以上を沈澱と
して除去することができる。この方法において添
加したテルルも同時に沈澱し、テルルの濃度を
0.0068mol/から6倍に増加した場合(実施例
4)でも溶液に残存するテルルの量は
0.0050mol/及び0.0053mol/(実施例1及び
2、第2表中には示していない)と、ほとんど変
化しない。 硝酸と濃度が0.5規定と低い時には、テルルの
添加量が0.34mmolを少ない場合でもモリブデン
及びジルコニウムの90%以上を沈澱として除去す
ることができる。 一方、ランタン及びアメリシウムは0.2規定以
上の硝酸濃度ではほとんど沈澱せず、沈澱率を
0.1%以下におさえることができる。
[Table] As is clear from Table 2, in the case of a 2N nitric acid solution, when the solution was heated without adding tellurium (Comparative Example 1), the precipitation rates of molybdenum and zirconium were 56 and 25, respectively. % is low. In contrast, according to the method of the present invention, 0.68 molar amount, which is about 0.4 times the molar amount of zirconium
When adding mol of telluric acid (Example 3),
More than 80% of molybdenum and zirconium can be removed as precipitate. In this method, the tellurium added also precipitates at the same time, increasing the tellurium concentration.
Even when the amount of tellurium remaining in the solution increases from 0.0068 mol/ to 6 times (Example 4), the amount of tellurium remaining in the solution is
0.0050 mol/ and 0.0053 mol/ (Examples 1 and 2, not shown in Table 2), hardly changing. When the concentration of nitric acid is as low as 0.5N, more than 90% of molybdenum and zirconium can be removed as precipitates even if the amount of tellurium added is less than 0.34 mmol. On the other hand, lanthanum and americium hardly precipitate at nitric acid concentrations of 0.2N or higher, and the precipitation rate decreases.
It can be kept below 0.1%.

Claims (1)

【特許請求の範囲】[Claims] 1 使用済み核燃料の再処理の際に発生する放射
性物質とモリブデン又は/及びジルコニウムとを
含有する0.01〜4規定程度の硝酸溶液に前記モリ
ブデン又は/及びジルコニウムに対して0.1〜0.6
倍モル量のテルルの化合物を添加し、得られた溶
液を加熱することにより該溶液からテルルの沈澱
とともにモリブデン又は/及びジルコニウムを沈
澱させ、モリブデン又は/及びジルコニウムを上
記溶液から分離することを特徴とする放射性物質
含有液の処理法。
1 Add 0.1 to 0.6 N of molybdenum and/or zirconium to a 0.01 to 4N nitric acid solution containing radioactive materials generated during reprocessing of spent nuclear fuel and molybdenum or/and zirconium.
It is characterized by adding twice the molar amount of a tellurium compound and heating the resulting solution to precipitate tellurium and molybdenum or/and zirconium from the solution, and to separate molybdenum and/or zirconium from the solution. A method for processing liquids containing radioactive substances.
JP5802778A 1978-05-16 1978-05-16 Treating method of radioactive material containing solution Granted JPS54149000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5802778A JPS54149000A (en) 1978-05-16 1978-05-16 Treating method of radioactive material containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5802778A JPS54149000A (en) 1978-05-16 1978-05-16 Treating method of radioactive material containing solution

Publications (2)

Publication Number Publication Date
JPS54149000A JPS54149000A (en) 1979-11-21
JPS626200B2 true JPS626200B2 (en) 1987-02-09

Family

ID=13072456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5802778A Granted JPS54149000A (en) 1978-05-16 1978-05-16 Treating method of radioactive material containing solution

Country Status (1)

Country Link
JP (1) JPS54149000A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776178B2 (en) * 2010-12-17 2015-09-09 株式会社Ihi Deposit removal method for glass melting furnace
WO2018029787A1 (en) * 2016-08-09 2018-02-15 株式会社日立製作所 Method for separating zirconium and method for processing spent fuel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326170A (en) * 1976-08-23 1978-03-10 Seiko Instr & Electronics Ltd Handy electronic watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326170A (en) * 1976-08-23 1978-03-10 Seiko Instr & Electronics Ltd Handy electronic watch

Also Published As

Publication number Publication date
JPS54149000A (en) 1979-11-21

Similar Documents

Publication Publication Date Title
JP3241475B2 (en) Method of separating certain elements from aqueous solution resulting from spent nuclear fuel reprocessing
US3393981A (en) Method of decomposing a nuclear fuel in a fused salt system by using nitric oxide
Persson et al. Hot test of a TALSPEAK procedure for separation of actinides and lanthanides using recirculating DTPA-lactic acid solution
Meinke Chemical procedures used in bombardment work at Berkeley
CA2519056A1 (en) Method for separating uranium (vi) from actinides (iv) and/or (vi) and the use thereof
US4609533A (en) Process for selective separation of plutonium from uranium and other metals
GB2157276A (en) Process for the batch fine purification of uranium or plutonium recovered in a reprocessing process for irradiated nuclear fuel and/or fertile materials
US3069232A (en) Recovery of hafnium values
JPS626200B2 (en)
JPS6260449B2 (en)
JPS6214800B2 (en)
JP2997178B2 (en) Separation method of exothermic elements from high-level radioactive liquid waste
US3672875A (en) Extraction of fission product noble metals from spent nuclear fuels
US4938895A (en) Process for removing radioactive ruthenium from aqueous solution
JP2551683B2 (en) Method for separating uranium and plutonium from uranium-plutonium mixed solution
US8802041B1 (en) Decontamination of radioactive metals
JP3159887B2 (en) Reprocessing of spent nuclear fuel
EP0527685B1 (en) Process for the separation of the actinides from lanthanides by selective extraction of the actinides in an organic solvent comprising a propane diamide
JP2921506B2 (en) How to treat high level radioactive solutions
JP3159220B2 (en) Method for recovering uranium, plutonium and neptunium from spent nuclear fuel
JPH0196019A (en) Method for precipitating and separating transuranic element
RU2767931C1 (en) Method for extraction purification of uranium extract from technetium
JPH0815483A (en) Method for solvent extraction of transuranium elements
JP2530150B2 (en) How to recover valuable metals
SU760636A1 (en) Method of producing preparations of hafnium radioisotope without carrier