JPH0815483A - Method for solvent extraction of transuranium elements - Google Patents

Method for solvent extraction of transuranium elements

Info

Publication number
JPH0815483A
JPH0815483A JP14280094A JP14280094A JPH0815483A JP H0815483 A JPH0815483 A JP H0815483A JP 14280094 A JP14280094 A JP 14280094A JP 14280094 A JP14280094 A JP 14280094A JP H0815483 A JPH0815483 A JP H0815483A
Authority
JP
Japan
Prior art keywords
acid
solvent
waste liquid
extraction
organic phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14280094A
Other languages
Japanese (ja)
Inventor
Masatada Yamashita
正忠 山下
Harumi Kimuro
晴視 木室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14280094A priority Critical patent/JPH0815483A/en
Publication of JPH0815483A publication Critical patent/JPH0815483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To suppress extraction of Zr and Mo and to extract actionids of high purity efficiently by a method wherein a waste liquid to which a carboxylic acid having a chelate forming action is added is added to a solvent containing TBP and CMPO. CONSTITUTION:High-level waste liquid 1 to which a carboxylic acid is added and a solvent 2 containing TBP and CMPO are made to flow into a mixing vessel 12 oppositely and mixed by an agitator 11 and a mixed solution 3 thus obtained is introduced into a vessel 14 standing still through a duct 13. The mixed solution 3 is separated into an organic layer O and a water layer A by letting it stand still. The organic layer O is collected and reduced, since it contains actionids (U, Am, Cm, Pu, Np, etc.) of high purity. The water layer A is led to a vitrification device or the like through an outflow passage 16a of an adjustment vessel 16 and disposed of as liquid waste, since it contains Zr, Mo, etc., to be impurities. As for the carboxylic acid, any one of a malic acid, sulfosalicylic acid, sulfamic acid, dilute hydrochloic acid, formic acid, glycolic acid, malonic acid and succinic acid or their mixture is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用済核燃料の再処理
技術に係わり、更に詳しくは、高レベル廃液から超ウラ
ン元素を溶媒抽出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for reprocessing spent nuclear fuel, and more particularly to a method for solvent extraction of transuranium elements from a high level waste liquid.

【0002】[0002]

【従来の技術】原子力発電設備で発生する使用済核燃料
の再処理技術としてPUREXプロセス(Plutonium ura
nium recovery by extraction)が従来から用いられてい
る。このPUREXプロセスは、TBP(tri-n-butyl p
hosphate) を抽出溶媒として使用し、使用済燃料溶解液
中のU(ウラン)、Pu(プルトニウム)を個別に高効
率かつ高純度で回収するプロセスであるが、濃縮前の廃
液を処理するため多量の放射性廃液が発生し、かつこの
放射性廃液中に超ウラン元素(TRU元素)が残存し、
これらの半減期が非常に長い(例えば103 〜10
4 年)ため、高レベル廃液貯蔵量を増す要因となってい
る。
2. Description of the Related Art The PUREX process (Plutonium ura) is used as a reprocessing technology for spent nuclear fuel generated in nuclear power generation facilities.
nium recovery by extraction) has been used conventionally. This PUREX process is based on TBP (tri-n-butyl p
hosphate) is used as an extraction solvent, and U (uranium) and Pu (plutonium) in the spent fuel solution are individually recovered with high efficiency and high purity. Radioactive waste liquid is generated, and transuranium element (TRU element) remains in this radioactive waste liquid,
These half-lives are very long (eg 10 3 -10
4 years), which is a factor that increases the high-level waste liquid storage volume.

【0003】これに対して、図7に模式的に示すよう
に、使用済燃料を再処理(濃縮)して高レベル廃液と
し、これから超ウラン元素(TRU元素)を含む再利用
可能な元素を群分離するTRUEXプロセス(TRU Extra
ction Process)が、米国アルゴンヌ国立研究所から提案
され、現在世界各国で鋭意研究開発されている。このT
RUEXプロセスは、前記PUREXプロセスの溶媒に
少量のCMPO(octyle(phenyl)-N,N-diisobutylcarbam
oylmethyl-phosphine oxide)を添加した溶媒を用い、図
8のプロセスフロー図に示すように、高レベル廃液から
直接再利用可能な元素を「抽出/スクラブ」工程で抽出
及び洗浄し、これを例えば「逆抽出1」工程において逆
抽出液1でAm(アメリシウム)、Cm(キュリウム)
等のTRU元素を回収し、「逆抽出2」工程において逆
抽出液2でPu、Np(ネプツニウム)等を回収するプ
ロセスである。逆抽出工程は3工程以上の場合もある。
On the other hand, as schematically shown in FIG. 7, spent fuel is reprocessed (concentrated) into a high-level waste liquid, from which reusable elements including transuranium elements (TRU elements) are added. TRUEX process for group separation (TRU Extra
ction process) has been proposed by Argonne National Laboratory in the United States, and is currently being researched and developed all over the world. This T
The RUEX process uses a small amount of CMPO (octyle (phenyl) -N, N-diisobutylcarbam) as a solvent for the PUREX process.
Using a solvent to which oylmethyl-phosphine oxide has been added, as shown in the process flow diagram of FIG. 8, elements that can be directly reused from high-level waste liquid are extracted and washed in the “extraction / scrub” step, In the “back extraction 1” step, the back extraction liquid 1 was used for Am (americium) and Cm (curium).
Is a process of recovering Pu, Np (neptunium) and the like with the back extraction liquid 2 in the “back extraction 2” step. The back extraction step may be three or more steps.

【0004】このTRUEXプロセスは、廃液を濃縮し
た高レベル廃液を直接処理できることから高レベルの放
射性廃液量をさらに少なくでき、かつ半減期が非常に長
い超ウラン元素(TRU元素)を回収するため、放射性
廃液の処理が容易となる特徴がある。
The TRUEX process can directly treat a high-level waste liquid obtained by concentrating the waste liquid, so that the amount of the high-level radioactive waste liquid can be further reduced and the transuranium element (TRU element) having a very long half-life is recovered. It has the feature of facilitating the treatment of radioactive waste liquid.

【0005】[0005]

【発明が解決しようとする課題】しかし、かかるTRU
EXプロセスの溶剤に含まれるCMPOにより、抽出対
象元素であるアクチノイド(U、Am、Cm、Pu、N
p等)以外に、不純物となるZr(ジルコニウム)、M
o(モリブデン)等も抽出されてしまう問題点があっ
た。これらの不純物の抽出を抑制するために、現状では
シュウ酸を添加し、抽出されないシュウ酸錯体を形成す
ることで抑制することが検討されている。しかし実験の
結果、図9に示すように、従来のPUREXプロセスか
ら排出される分離抽出廃液では、シュウ酸をある程度
(例えば0.5mol/l)まで添加しても沈殿が生じない
が、図10に示すように分離抽出廃液を約10倍の塩濃
度になるように濃縮した高レベル廃液では、シュウ酸を
わずか(例えば0.2mol/l )添加しても多量の沈殿物
が発生する問題が明らかとなった。従って、シュウ酸を
廃液に添加するTRUEXプロセスでは、高レベル廃液
条件の場合Zr、Mo等の抽出を抑制することができ
ず、高純度のアクチノイド(U、Am、Cm、Pu、N
p)を効率的に回収できない問題点があった。
However, such a TRU
By the CMPO contained in the solvent of the EX process, the actinides (U, Am, Cm, Pu, N) that are the elements to be extracted are
In addition to p, etc., Zr (zirconium), M which becomes an impurity
There is a problem that o (molybdenum) and the like are also extracted. In order to suppress the extraction of these impurities, it is currently being studied to add oxalic acid to form an unextracted oxalic acid complex. However, as a result of the experiment, as shown in FIG. 9, in the separation and extraction waste liquid discharged from the conventional PUREX process, precipitation does not occur even if oxalic acid is added to some extent (for example, 0.5 mol / l). As shown in Fig. 2, in the high-level waste liquid obtained by concentrating the separated extraction waste liquid to have a salt concentration of about 10 times, there is a problem that a large amount of precipitate is generated even if a small amount (for example, 0.2 mol / l) of oxalic acid is added. It became clear. Therefore, in the TRUEX process in which oxalic acid is added to the waste liquid, the extraction of Zr, Mo, etc. cannot be suppressed under the high-level waste liquid condition, and high-purity actinoids (U, Am, Cm, Pu, N, etc.) cannot be suppressed.
There was a problem that p) could not be recovered efficiently.

【0006】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、沈殿
の生成をともなわないでZr(ジルコニウム)及びMo
(モリブデン)の抽出を効果的に抑制でき、高純度のア
クチノイド(U、Am、Cm、Pu、Np等)を効率的
に抽出することができる高塩濃度対応型溶媒抽出方法を
提供することにある。
The present invention was devised to solve such problems. That is, the object of the present invention is to produce Zr (zirconium) and Mo without the formation of precipitates.
To provide a high salt concentration compatible solvent extraction method capable of effectively suppressing the extraction of (molybdenum) and efficiently extracting high-purity actinoids (U, Am, Cm, Pu, Np, etc.). is there.

【0007】[0007]

【課題を解決するための手段】本発明によれば、使用済
核燃料の高レベル廃液とTBP及びCMPOを含む溶媒
とを混合し静置して有機相と水相に分離し、有機相から
超ウラン元素を回収する溶媒抽出方法において、廃液中
にキレート形成作用を有するカルボン酸を含み、これに
より、ジルコニウム及びモリブデンの抽出を抑制する、
ことを特徴とする超ウラン元素を溶媒抽出する方法が提
供される。
According to the present invention, a high-level waste liquid of spent nuclear fuel and a solvent containing TBP and CMPO are mixed and allowed to stand to separate into an organic phase and an aqueous phase. In a solvent extraction method for recovering uranium element, a waste solution contains a carboxylic acid having a chelating action, thereby suppressing the extraction of zirconium and molybdenum,
A method for solvent extraction of transuranium element is provided.

【0008】本発明の好ましい実施例によれば、前記カ
ルボン酸は、リンゴ酸、スルホサリチル酸、スルファミ
ン酸、クエン酸、ギ酸、グリコール酸、マロン酸、コハ
ク酸、アジピン酸のいずれか又はこれらの混合物であ
り、中でもクエン酸やギ酸が好ましいカルボン酸といえ
る。また、前記有機相と水相との体積比(有機相/水
相)は約2.3以上であることが好ましい。
According to a preferred embodiment of the present invention, the carboxylic acid is malic acid, sulfosalicylic acid, sulfamic acid, citric acid, formic acid, glycolic acid, malonic acid, succinic acid, adipic acid, or a mixture thereof. Among them, citric acid and formic acid are preferable carboxylic acids. The volume ratio of the organic phase and the aqueous phase (organic phase / aqueous phase) is preferably about 2.3 or more.

【0009】[0009]

【作用】本発明の発明者等は、上述した新規の問題を解
決するため、通常のイオン結合と異なるキレート構造に
着目し、キレート形成作用を有する種々のカルボン酸を
試験し、沈殿の形成をともなわないでジルコニウム及び
モリブデンの抽出を効果的に抑制できる条件を発見し
た。本発明はかかる新規の知見に基づくものである。
In order to solve the above-mentioned novel problems, the inventors of the present invention focused on a chelate structure different from a normal ionic bond, tested various carboxylic acids having a chelate-forming action, and confirmed the formation of a precipitate. We have found the conditions that can effectively suppress the extraction of zirconium and molybdenum. The present invention is based on this novel finding.

【0010】すなわち、本発明によれば、TBP及びC
MPOを含む溶媒とキレート形成作用を有するカルボン
酸を添加した廃液を混ぜることにより、廃液中のジルコ
ニウム及びモリブデンの抽出を抑制して、混合静置後の
有機相から高純度の超ウラン元素等アクチノイドを回収
することができる。カルボン酸としては、クエン酸、ギ
酸及びこれらの混酸もしくは他のカルボン酸との混酸が
効果的である。また、有機相と水相との体積比(有機相
/水相)を約2.3〜約2.6にすることにより、第三
相を形成することなく有機相の比率を下げ(従来は2.
6以上)、これにより高価な溶媒の使用量を低減するこ
とができる。
That is, according to the present invention, TBP and C
By mixing a solvent containing MPO and a waste liquid added with a carboxylic acid having a chelate-forming effect, the extraction of zirconium and molybdenum in the waste liquid is suppressed, and a highly pure actinide such as transuranium element from the organic phase after mixing and standing. Can be recovered. As the carboxylic acid, citric acid, formic acid, a mixed acid thereof or a mixed acid with another carboxylic acid is effective. Further, by setting the volume ratio of the organic phase and the aqueous phase (organic phase / aqueous phase) to about 2.3 to about 2.6, the ratio of the organic phase can be reduced without forming the third phase (conventionally, 2.
6 or more), whereby the amount of expensive solvent used can be reduced.

【0011】[0011]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。図1は、本発明の方法を実施するための
溶媒抽出装置の構成図である。この図において、溶媒抽
出装置は、使用済核燃料の高レベル廃液1とTBP及び
CMPOを含む溶媒2とを混合するための混合容器12
と、混合液を静置して有機相Oと水相Aに分離する静置
容器14(セトラ)と、静置容器14からの排出流量を
調節する調節容器16(レギュレータ)とを備えてい
る。図1において混合容器12は中空円筒状の容器であ
り、内部の混合液3を攪拌する攪拌器11(ミキサー)
が垂直に設置されている。また、混合容器12の上端に
は高レベル廃液1と溶媒2とが対向して流入する流入路
12a、12bが設けられ、かつ混合容器12の中間部
分には混合液3を静置容器14に導くダクト13が設け
られている。更に、静置容器14の上端には静置により
分離した有機相Oを流出させる流出路14aが設けら
れ、かつ静置容器14の下端部分には水相Aを調節容器
16に導くダクト15が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a solvent extraction apparatus for carrying out the method of the present invention. In this figure, the solvent extraction device is a mixing container 12 for mixing a high-level waste liquid 1 of spent nuclear fuel with a solvent 2 containing TBP and CMPO.
And a stationary container 14 (Setra) for allowing the mixed solution to stand still and separating it into an organic phase O and an aqueous phase A, and an adjusting container 16 (regulator) for adjusting the discharge flow rate from the stationary container 14. . In FIG. 1, a mixing container 12 is a hollow cylindrical container, and a stirrer 11 (mixer) for stirring the mixed liquid 3 inside.
Is installed vertically. In addition, inflow passages 12 a and 12 b through which the high-level waste liquid 1 and the solvent 2 face each other are provided at the upper end of the mixing container 12, and the mixed liquid 3 is placed in the stationary container 14 at an intermediate portion of the mixing container 12. A guiding duct 13 is provided. Further, an outflow passage 14a for flowing out the organic phase O separated by stationary is provided at the upper end of the stationary container 14, and a duct 15 for guiding the water phase A to the adjustment container 16 is provided at the lower end of the stationary container 14. It is provided.

【0012】上述した構成により、混合容器12に高レ
ベル廃液1と溶媒2を対向して流入させ、混合容器12
内で攪拌器11により高レベル廃液1と溶媒2を混合
し、混合液3をダクト13を介して静置容器14に導
き、静置容器14内で混合液を静置して有機相Oと水相
Aに分離することができる。静置容器14内の有機相O
は、高レベル廃液1から抽出された成分(例えば超ウラ
ン元素等)が溶け込んだ溶媒2であり、流出路14aを
介して有機相Oを逆抽出設備等(図示せず、図8参照)
に導き、そこで有機相から超ウラン元素等を回収するこ
とができる。また、水相Aは抽出成分が抜けた高レベル
廃液1であり調節容器16の流出路16aを介してガラ
ス固化装置等(図示せず、図8参照)に供給することが
できる。
With the above-described structure, the high-level waste liquid 1 and the solvent 2 are allowed to flow into the mixing container 12 so as to face each other, and the mixing container 12
The high-level waste liquid 1 and the solvent 2 are mixed by a stirrer 11 inside, the mixed liquid 3 is introduced into the stationary container 14 through the duct 13, and the mixed liquid is stationary in the stationary container 14 to form an organic phase O. The aqueous phase A can be separated. Organic phase O in stationary container 14
Is a solvent 2 in which a component extracted from the high-level waste liquid 1 (for example, transuranium element, etc.) is dissolved, and the organic phase O is back-extracted through the outflow passage 14a (not shown, see FIG. 8).
Where the transuranic element and the like can be recovered from the organic phase. Further, the aqueous phase A is the high-level waste liquid 1 from which the extracted components have been removed, and can be supplied to the vitrification device and the like (not shown, see FIG. 8) via the outflow passage 16a of the adjusting container 16.

【0013】なお、以下、有機相Oと水相Aの体積比
(有機相/水相)を「O/A比」と呼び、有機相Oと水
相Aの両方に特定の成分が平衡状態で溶けた場合のモル
比(有機相内のモル数/水相内のモル数)を「分配比」
と呼ぶ。
Hereinafter, the volume ratio of the organic phase O and the aqueous phase A (organic phase / aqueous phase) is referred to as "O / A ratio", and a specific component is in an equilibrium state in both the organic phase O and the aqueous phase A. "Distribution ratio" is the molar ratio (moles in the organic phase / moles in the aqueous phase) when dissolved in
Call.

【0014】図2は、図1の装置を用い、キレート形成
作用を有する種々のカルボン酸を溶媒に混ぜてその抽出
抑制効果を試験した結果である。この試験ではカルボン
酸として、リンゴ酸、スルホサリチル酸、スルファミン
酸、クエン酸、ギ酸、グリコール酸、マロン酸、コハク
酸、アジピン酸を使用し、従来のシュウ酸と比較した。
また、この試験では放射性のある超ウラン元素(TRU
元素)の替わりに特性が近いランタニドであるNd(ネ
オジム)を使用し、O/A比1.0、温度25℃、添加
量0.2mol/l(リットル)の同一条件で試験し
た。
FIG. 2 shows the results of testing the effect of inhibiting the extraction of various carboxylic acids having a chelating action by mixing them in a solvent using the apparatus of FIG. In this test, malic acid, sulfosalicylic acid, sulfamic acid, citric acid, formic acid, glycolic acid, malonic acid, succinic acid and adipic acid were used as carboxylic acids and compared with conventional oxalic acid.
In this test, radioactive transuranium element (TRU)
Instead of (element), Nd (neodymium), which is a lanthanide having similar characteristics, was used and tested under the same conditions of O / A ratio of 1.0, temperature of 25 ° C., and addition amount of 0.2 mol / l (liter).

【0015】図2から明らかなように、従来の抽出抑制
であるシュウ酸では、Nd(ネオジム)、Zr(ジルコ
ニウム)、Mo(モリブデン)のすべてが沈殿を生成し
たのに対し、試験したカルボン酸のすべてが沈殿を生成
することなく、抽出抑制剤として使用できることが確認
された。特に、クエン酸は、模擬TRU元素であるNd
の分配比が高くかつZr及びMoの分配比が低いことか
ら、抽出抑制効果が大きいことがわかる。
As is apparent from FIG. 2, in the conventional extraction-inhibiting oxalic acid, Nd (neodymium), Zr (zirconium), and Mo (molybdenum) all produced precipitates, whereas the tested carboxylic acid. It was confirmed that all of the above can be used as extraction inhibitors without producing a precipitate. In particular, citric acid is a simulated TRU element, Nd.
It can be seen that the extraction suppression effect is large because the distribution ratio of is high and the distribution ratio of Zr and Mo is low.

【0016】図3は、クエン酸とギ酸について、O/A
比2〜3、温度25℃、添加量1.0mol/lの場合
の図2と同様の試験結果である。この図から、添加量を
多くすれば、クエン酸の他にギ酸も、Ndの分配比が高
くかつZr及びMoの分配比が低いことから、抽出抑制
効果が大きいことがわかる。図4は、CMPO濃度と分
配比との関係を示す図である。この図からCMPO濃度
を通常の約0.2mol/lから約0.4mol/l程
度まで約2倍に増やすことにより、抽出対象のNd(ネ
オジム)の分配比を7〜8倍に高めることができること
がわかる。また、この範囲でZr及びMoの分配比はほ
ぼゼロであり、不純物の抽出は抑制することができる。
FIG. 3 shows O / A for citric acid and formic acid.
The test results are the same as those in FIG. 2 when the ratio is 2 to 3, the temperature is 25 ° C., and the addition amount is 1.0 mol / l. From this figure, it is understood that when the addition amount is increased, not only citric acid but also formic acid has a high distribution ratio of Nd and a low distribution ratio of Zr and Mo, so that the extraction suppression effect is large. FIG. 4 is a diagram showing the relationship between the CMPO concentration and the distribution ratio. From this figure, it is possible to increase the distribution ratio of Nd (neodymium) to be extracted to 7 to 8 times by increasing the CMPO concentration from about 0.2 mol / l to about 0.4 mol / l to about 2 times. I know that I can do it. Further, in this range, the distribution ratio of Zr and Mo is almost zero, and the extraction of impurities can be suppressed.

【0017】図5及び図6は、クエン酸を添加した場合
(図5)と添加しない場合(図6)のO/A比と液量と
の関係を示す図である。この図において、○印は廃液相
(水相O)を示し、▲印は、水相Oと有機相Aとの間に
できた第三相を示している。この第三相が形成される
と、上述した静置容器14における分離が不完全とな
り、プロセス全体の効率が悪化する問題が生じる。従っ
て、図5と図6との比較から、クエン酸を添加しない場
合(図6)には、O/A比を2.6以下にはできなかっ
たのに対して、クエン酸を添加する(図5)ことによ
り、第三相を形成することなくO/A比を約2.3まで
下げることができ、有機相Aの比率を下げ、高価な溶剤
の使用量を低減することができることがわかる。
FIGS. 5 and 6 are diagrams showing the relationship between the O / A ratio and the liquid amount when citric acid is added (FIG. 5) and when citric acid is not added (FIG. 6). In this figure, the ∘ mark indicates the waste liquid phase (water phase O), and the ▴ mark indicates the third phase formed between the water phase O and the organic phase A. When this third phase is formed, the separation in the stationary container 14 described above becomes incomplete, and the efficiency of the entire process deteriorates. Therefore, from the comparison between FIG. 5 and FIG. 6, when the citric acid was not added (FIG. 6), the O / A ratio could not be reduced to 2.6 or less, while the citric acid was added ( As a result, the O / A ratio can be reduced to about 2.3 without forming the third phase, the ratio of the organic phase A can be reduced, and the amount of expensive solvent used can be reduced. Recognize.

【0018】従って、上述した本発明の方法によれば、
TBP及びCMPOを含む溶媒にキレート形成作用を有
するカルボン酸を添加した廃液を混ぜることにより、ジ
ルコニウム及びモリブデンの抽出を抑制して、混合静置
後の有機相から超ウラン元素を回収することができる。
特に、カルボン酸は、クエン酸やギ酸が効果的である。
また、有機相と水相との体積比(有機相/水相)を約
2.3〜約2.6にすることにより、第三相を形成する
ことなく有機相の比率を下げ(従来は2.6以上)、こ
れにより高価な溶剤の使用量を低減することができる。
Therefore, according to the method of the present invention described above,
By mixing a waste liquid in which a carboxylic acid having a chelate forming action is added to a solvent containing TBP and CMPO, extraction of zirconium and molybdenum can be suppressed, and transuranium element can be recovered from an organic phase after mixing and standing. .
Particularly, as the carboxylic acid, citric acid or formic acid is effective.
Further, by setting the volume ratio of the organic phase and the aqueous phase (organic phase / aqueous phase) to about 2.3 to about 2.6, the ratio of the organic phase can be reduced without forming the third phase (conventionally, 2.6 or more), whereby the amount of expensive solvent used can be reduced.

【0019】なお、本発明は上述した実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々変更できるこ
とは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0020】[0020]

【発明の効果】上述したように、本発明の超ウラン元素
の溶媒抽出方法は、沈殿の形成をともなわないでZr
(ジルコニウム)及びMo(モリブデン)の抽出を効果
的に抑制でき、高純度のアクチノイド(U、Am、C
m、Pu、Np等)を効率的に抽出することができる、
という優れた効果を有する。
INDUSTRIAL APPLICABILITY As described above, the solvent extraction method for transuranium elements according to the present invention does not involve the formation of a precipitate, but Zr.
Extraction of (zirconium) and Mo (molybdenum) can be effectively suppressed, and high-purity actinides (U, Am, C
m, Pu, Np, etc.) can be efficiently extracted,
It has an excellent effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための溶媒抽出装置の
構成図である。
FIG. 1 is a block diagram of a solvent extraction apparatus for carrying out the method of the present invention.

【図2】種々のカルボン酸の抽出抑制効果の試験結果で
ある。
FIG. 2 shows the test results of the extraction inhibitory effect of various carboxylic acids.

【図3】クエン酸とギ酸についての図2と同様の試験結
果である。
FIG. 3 is the same test result as in FIG. 2 for citric acid and formic acid.

【図4】CMPO濃度と分配比との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between CMPO concentration and distribution ratio.

【図5】クエン酸を添加した場合のO/A比と液量との
関係を示す図である。
FIG. 5 is a diagram showing a relationship between an O / A ratio and a liquid amount when citric acid is added.

【図6】クエン酸を添加しない場合のO/A比と液量と
の関係を示す図である。
FIG. 6 is a diagram showing a relationship between an O / A ratio and a liquid amount when citric acid is not added.

【図7】群分離プロセスの説明図である。FIG. 7 is an explanatory diagram of a group separation process.

【図8】TRUEXプロセスのプロセスフロー図であ
る。
FIG. 8 is a process flow diagram of the TRUEX process.

【図9】低レベル廃液におけるシュウ酸添加量と沈殿量
との関係図である。
FIG. 9 is a diagram showing the relationship between the amount of oxalic acid added and the amount of precipitation in a low-level waste liquid.

【図10】高レベル廃液におけるシュウ酸添加量と沈殿
量との関係図である。
FIG. 10 is a relationship diagram between the amount of oxalic acid added and the amount of precipitation in the high-level waste liquid.

【符号の説明】[Explanation of symbols]

1 高レベル廃液 2 溶媒 3 混合液 11 攪拌器 12 混合容器 12a、12b 流入路 13、15 ダクト 14 静置容器(セトラ) 14a 流出路 16 調節容器 16a 流出路 A 水相 O 有機相 1 High-level waste liquid 2 Solvent 3 Mixed liquid 11 Stirrer 12 Mixing container 12a, 12b Inflow path 13, 15 Duct 14 Stationary container (Setra) 14a Outflow path 16 Control vessel 16a Outflow path A Water phase O Organic phase

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 使用済核燃料の高レベル廃液とTBP及
びCMPOを含む溶媒とを混合し静置して有機相と水相
に分離し、有機相から超ウラン元素等を回収する溶媒抽
出方法において、 廃液中に超ウラン元素についてキレート形成作用を有す
るカルボン酸を含み、これにより、ジルコニウム及びモ
リブデンの抽出を抑制する、ことを特徴とする超ウラン
元素を溶媒抽出する方法。
1. A solvent extraction method comprising mixing a high-level waste liquid of spent nuclear fuel with a solvent containing TBP and CMPO, allowing the mixture to stand, separating the organic phase and the aqueous phase, and recovering transuranic elements from the organic phase. A method for solvent-extracting a transuranic element, characterized in that the waste liquid contains a carboxylic acid having a chelating action for a transuranic element, thereby suppressing the extraction of zirconium and molybdenum.
【請求項2】 前記カルボン酸は、リンゴ酸、スルホサ
リチル酸、スルファミン酸、クエン酸、ギ酸、グリコー
ル酸、マロン酸、コハク酸、アジピン酸のいずれか1つ
又はこれらの混合物である、ことを特徴とする請求項1
に記載の超ウラン元素を溶媒抽出する方法。
2. The carboxylic acid is any one of malic acid, sulfosalicylic acid, sulfamic acid, citric acid, formic acid, glycolic acid, malonic acid, succinic acid, adipic acid, or a mixture thereof. Claim 1
The method for solvent extraction of transuranic element according to 1.
【請求項3】 前記有機相と水相との体積比(有機相/
水相)が約2.3以上である、ことを特徴とする請求項
1に記載の超ウラン元素を溶媒抽出する方法。
3. A volume ratio (organic phase / aqueous phase) of the organic phase and the aqueous phase.
The method for solvent-extracting transuranic elements according to claim 1, wherein the aqueous phase) is about 2.3 or more.
JP14280094A 1994-06-24 1994-06-24 Method for solvent extraction of transuranium elements Pending JPH0815483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14280094A JPH0815483A (en) 1994-06-24 1994-06-24 Method for solvent extraction of transuranium elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14280094A JPH0815483A (en) 1994-06-24 1994-06-24 Method for solvent extraction of transuranium elements

Publications (1)

Publication Number Publication Date
JPH0815483A true JPH0815483A (en) 1996-01-19

Family

ID=15323930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14280094A Pending JPH0815483A (en) 1994-06-24 1994-06-24 Method for solvent extraction of transuranium elements

Country Status (1)

Country Link
JP (1) JPH0815483A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025721A1 (en) * 1996-01-08 1997-07-17 British Nuclear Fuels Plc Recovery of actinides
WO1999014765A1 (en) * 1997-09-13 1999-03-25 British Nuclear Fuels Plc GLYCOLIC AND PYRUVIC ACIDS AS Np(IV) STRIPPING AGENTS
JP2013509574A (en) * 2009-10-28 2013-03-14 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Use of certain chemical elements to inhibit the formation of precipitates containing zirconium molybdate in aqueous solutions containing elemental molybdenum and elemental zirconium
KR101386704B1 (en) * 2013-02-04 2014-04-18 한국과학기술연구원 Separation method of zirconium and hafnium by solvent extraction process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025721A1 (en) * 1996-01-08 1997-07-17 British Nuclear Fuels Plc Recovery of actinides
WO1999014765A1 (en) * 1997-09-13 1999-03-25 British Nuclear Fuels Plc GLYCOLIC AND PYRUVIC ACIDS AS Np(IV) STRIPPING AGENTS
JP2013509574A (en) * 2009-10-28 2013-03-14 コミッサリア ア ロンネルジー アトミック エ オ ゾンネルジー ザルテルナティーフ Use of certain chemical elements to inhibit the formation of precipitates containing zirconium molybdate in aqueous solutions containing elemental molybdenum and elemental zirconium
KR101386704B1 (en) * 2013-02-04 2014-04-18 한국과학기술연구원 Separation method of zirconium and hafnium by solvent extraction process
US8778288B1 (en) 2013-02-04 2014-07-15 Korea Institute Of Science And Technology Separation method of zirconium and hafnium by solvent extraction process

Similar Documents

Publication Publication Date Title
Birkett et al. Recent developments in the Purex process for nuclear fuel reprocessing: Complexant based stripping for uranium/plutonium separation
Schulz et al. The truex process and the management of liquid TRU uwaste
US7731870B2 (en) Purex method and its uses
RU2558332C9 (en) Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
US8354085B1 (en) Actinide and lanthanide separation process (ALSEP)
US3393981A (en) Method of decomposing a nuclear fuel in a fused salt system by using nitric oxide
RU2706954C2 (en) Method of treating aqueous nitrate solution obtained during dissolution of spent nuclear fuel, performed in one cycle and not requiring any operation, including reductive re-extraction of plutonium
RU2454742C1 (en) Method for processing of spent nuclear fuel of nuclear power plants
JPH0815483A (en) Method for solvent extraction of transuranium elements
JPH10115695A (en) Method for selective separation of actinoids (iii) and lanthanoids (iii)
US4434137A (en) Method for dissolving hard-to dissolve nuclear fuels
JP2016205820A (en) Actinide separating method, and separating device
Malmbeck et al. EURO-GANEX, a Process for the Co-separation of TRU
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
JPH0453277B2 (en)
Bond et al. Methods for removal of actinides from high-level wastes
JP2549532B2 (en) Precipitation separation method for transuranium elements
JP3672054B2 (en) Solvent washing method in extraction of transuranium element
Tkachenko et al. Dynamic test of extraction process for americium partitioning from the PUREX raffinate
JP7108519B2 (en) Isolation method for minor actinides
JP2019015533A (en) Method for separating minor actinoid
JP2939078B2 (en) Detergent and method for extracting solvent used for separation of transuranium element
Delegard et al. Precipitation and crystallization processes in reprocessing, plutonium separation, purification, and finishing, chemical recovery, and waste treatment
JPH11202086A (en) Reprocessing method for spent fuel
JPH0735894A (en) Reprocessing method for spent nuclear fuel