JPH0735894A - Reprocessing method for spent nuclear fuel - Google Patents

Reprocessing method for spent nuclear fuel

Info

Publication number
JPH0735894A
JPH0735894A JP19770593A JP19770593A JPH0735894A JP H0735894 A JPH0735894 A JP H0735894A JP 19770593 A JP19770593 A JP 19770593A JP 19770593 A JP19770593 A JP 19770593A JP H0735894 A JPH0735894 A JP H0735894A
Authority
JP
Japan
Prior art keywords
nitric acid
plutonium
tributyl phosphate
nuclear fuel
spent nuclear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19770593A
Other languages
Japanese (ja)
Inventor
Chuzaburo Tanaka
忠三郎 田中
Hiroshi Sugai
弘 菅井
Yasuhide Kojima
康秀 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP19770593A priority Critical patent/JPH0735894A/en
Publication of JPH0735894A publication Critical patent/JPH0735894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To provide a reprocessing method for spent nuclear fuel which realizes simultaneous separation of uranium, plutonium, and transuranium elements from a spent nuclear fuel. CONSTITUTION:A spent nuclear fuel is dissolved into nitric acid and the solution of nitric acid is brought into contact with tributyl phosphate under reductive conditions thus extracting uranium into the tributyl phosphate and plutonium into the waste liquid while leaving transuranium elements and fission products.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、使用済核燃料の再処理
方法に関し、更に詳しくは溶媒抽出法で使用済核燃料か
らウラン、プルトニウム、超ウラン元素を分離回収する
と共に、核分裂生成物のみを分離処理する再処理方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reprocessing spent nuclear fuel, and more specifically to separating and recovering uranium, plutonium and transuranium elements from spent nuclear fuel by a solvent extraction method and separating only fission products. The present invention relates to a reprocessing method for processing.

【0002】[0002]

【従来の技術】原子力発電所で発生する使用済核燃料中
には、燃料の組成、燃焼度および冷却期間等によって相
違はあるが主として未燃焼のウラン、燃焼でウランから
発生したプルトニウム、超ウラン元素であるアメリシウ
ムやキュリウム等とその他の核分裂生成物であるストロ
ンチウム、ジルコニウム、セシウム、ルテニウム等が存
在する。このような使用済核燃料は細かく裁断された
後、ピュレックス法と呼ばれる溶媒抽出法により処理し
ウランおよびプルトニウムを回収し原子炉用に再使用し
ていた。この方法では図3に示すように使用済核燃料を
2〜4規定の硝酸に溶解しリン酸トリブチルと接触させ
ウランとプルトニウムとを抽出し(共除染と称す)、こ
の有機溶媒中に微量混入した核分裂生成物や超ウラン元
素を硝酸で洗浄して除去し、更にこの有機溶媒に還元剤
を添加してプルトニウムを非抽出性化学形態としてウラ
ンから分離する。その結果、アメリシウムやキュリウム
等の超ウラン元素については核分裂生成物と共に高レベ
ル放射性廃液として扱われる。
2. Description of the Related Art Spent nuclear fuel produced in a nuclear power plant is mainly composed of unburned uranium, plutonium produced from uranium during combustion, and transuranic elements, although there are differences depending on the composition, burnup and cooling period of the fuel. Americium, curium, etc. are present, and other fission products such as strontium, zirconium, cesium, ruthenium, etc. are present. Such spent nuclear fuel was finely cut, then treated by a solvent extraction method called the Purex method to recover uranium and plutonium, and reused for nuclear reactors. In this method, as shown in FIG. 3, spent nuclear fuel is dissolved in 2-4 normal nitric acid and brought into contact with tributyl phosphate to extract uranium and plutonium (referred to as co-decontamination), and a trace amount is mixed in this organic solvent. The fission products and transuranic elements are removed by washing with nitric acid, and a reducing agent is added to the organic solvent to separate plutonium from uranium as a non-extractable chemical form. As a result, transuranium elements such as americium and curium are treated as high-level radioactive liquid waste together with fission products.

【0003】しかるに、超ウラン元素は概して半減期が
極端に長いので、保存処理するに当たり極めて慎重な安
全性の確保が要請される。そこで、このような廃棄物管
理の負担を軽減するための開発が行われている。例え
ば、高レベル放射性廃液から超ウラン元素のみを分離し
(群分離と称す)、再びウランやプルトニウムと混合し
て軽水炉又は高速増殖炉に燃料として使用すれば、それ
らは短寿命の核種へと変換され消滅する(群分離消滅法
と称す)。しかしながら、この方法では高レベル放射性
廃液から超ウラン元素を回収するプロセスおよび超ウラ
ン元素をウランやプルトニウムと混合するというプロセ
スを含み、繁雑と言わざるを得ない。
However, transuranic elements generally have extremely long half-lives, and therefore extremely careful safety is required for preservation. Therefore, development is being made to reduce the burden of such waste management. For example, if only transuranic elements are separated from high-level radioactive liquid waste (referred to as group separation) and mixed again with uranium or plutonium and used as fuel in light water reactors or fast breeder reactors, they are converted into short-lived nuclides. And disappears (called the group separation extinction method). However, this method includes a process of recovering transuranic elements from a high-level radioactive liquid waste and a process of mixing transuranic elements with uranium or plutonium, and thus must be said to be complicated.

【0004】[0004]

【発明が解決しようとする課題】そこで超ウラン元素を
プルトニウムと共に抽出(一括群分離法と称す)できれ
ば経済性、安全性並びに核物質防護等の点で効果が大で
ある。このような観点から、使用済核燃料からウランと
プルトニウムとを同時に有機溶媒中に抽出分離する際
に、超ウラン元素を有機溶媒側に抽出し、その後ウラン
からプルトニウムと超ウラン元素を組み合わせて分離す
る方法が検討されたが実現されていない。そこで本発明
は、上記問題点を克服して使用済核燃料からウラン、プ
ルトニウムおよび超ウラン元素を一括分離する方法を実
現する使用済核燃料の再処理方法を提供するものであ
る。
Therefore, if the transuranium element can be extracted together with plutonium (referred to as a batch group separation method), the effect is great in terms of economic efficiency, safety, and protection of nuclear materials. From such a viewpoint, when uranium and plutonium are simultaneously extracted and separated from the spent nuclear fuel into the organic solvent, the transuranic element is extracted into the organic solvent side, and then the uranium is separated by combining the plutonium and the transuranic element. Methods have been examined but have not been realized. Therefore, the present invention provides a spent nuclear fuel reprocessing method that overcomes the above problems and realizes a method for collectively separating uranium, plutonium, and transuranium elements from spent nuclear fuel.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に第1の本発明は、使用済核燃料を硝酸に溶解後この硝
酸溶解液を、還元条件下でリン酸トリブチルと接触させ
ることにより、該リン酸トリブチル中にウランを抽出
し、抽出廃液中にプルトニウム、超ウラン元素および核
分裂生成物を残留させる点に特徴がある。
[Means for Solving the Problems] In order to achieve the above object, the first invention is to dissolve a spent nuclear fuel in nitric acid and then bring the nitric acid solution into contact with tributyl phosphate under reducing conditions. It is characterized in that uranium is extracted into the tributyl phosphate and plutonium, transuranium element and fission products remain in the extraction waste liquid.

【0006】第2の本発明は、使用済核燃料を硝酸に溶
解後この硝酸溶解液を、還元条件下でリン酸トリブチル
(1)と接触させることにより、該リン酸トリブチル中
にウランを抽出し、抽出廃液(1)中にプルトニウム、
超ウラン元素および核分裂生成物を残留させ、該抽出廃
液(1)を硝酸により酸濃度を13規定以上に調整し、
リン酸トリブチル(2)と接触させて該リン酸トリブチ
ル(2)中にプルトニウムと超ウラン元素とを抽出し、
核分裂生成物を抽出廃液(2)中に残留させる点に特徴
がある。
In the second aspect of the present invention, after dissolving spent nuclear fuel in nitric acid, the nitric acid solution is brought into contact with tributyl phosphate (1) under reducing conditions to extract uranium into the tributyl phosphate. , Plutonium in the extraction waste liquid (1),
The transuranic element and the fission product are left, and the acid concentration of the extraction waste liquid (1) is adjusted to 13 N or more by nitric acid,
Contacting with tributyl phosphate (2) to extract plutonium and transuranium element into the tributyl phosphate (2),
It is characterized in that fission products are left in the extraction waste liquid (2).

【0007】[0007]

【作用】使用済核燃料は燃料の組成、燃焼度および冷却
期間などによって異なるが、一般的な軽水炉燃料の場合
はウラン、プルトニウムおよびその他の核分裂生成物と
超ウラン元素が重量比で100:1:4で存在するもの
である。該使用済核燃料を溶解する硝酸は2〜4規定の
通常品で良い。リン酸トリブチルはドデカンあるいはケ
ロシンに溶解し通常20〜60%溶液として使用するも
のであればよい。該硝酸溶解液とリン酸トリブチルを接
触させるにはミキサセトラまたはパルスカラムなどを挙
げることができるが、液−液接触型の抽出器ならば特に
限定されない。
The function of the spent nuclear fuel depends on the composition, burnup and cooling period of the fuel, but in the case of general LWR fuel, uranium, plutonium and other fission products and transuranic elements are in a weight ratio of 100: 1 :. 4 exists. The nitric acid that dissolves the spent nuclear fuel may be a normal product of 2 to 4N. Tributyl phosphate may be dissolved in dodecane or kerosene and usually used as a 20 to 60% solution. A mixer, a pulse column, or the like can be used to bring the nitric acid solution and tributyl phosphate into contact with each other, but is not particularly limited as long as it is a liquid-liquid contact type extractor.

【0008】液−液接触時に還元条件を作り出す必要が
あり例えば、硝酸ウラナス、硝酸ヒドロキシルアミン等
の無機還元剤の添加が挙げられる。これらの物質を化学
量論の3〜8倍添加すればプルトニウムを4価から3価
へと還元しリン酸トリブチルには溶解しにくくなる。ま
た還元性の金属としてAl,Zn,Mg等の使用も考え
られるが不純物質を増やすことにもなるので良くない。
プルトニウムの還元を電気分解的に行っても差し支えな
い。
It is necessary to create reducing conditions at the time of liquid-liquid contact, and examples thereof include addition of an inorganic reducing agent such as uranus nitrate and hydroxylamine nitrate. If these substances are added in an amount 3 to 8 times the stoichiometric amount, plutonium is reduced from tetravalent to trivalent, and it becomes difficult to dissolve it in tributyl phosphate. It is also possible to use Al, Zn, Mg or the like as a reducing metal, but this is not preferable because it also increases impurities.
The reduction of plutonium may be performed electrolytically.

【0009】図1に本発明の方法を示すように、上記の
還元条件下での抽出処理でウランはリン酸トリブチル
(1)中に抽出させ、プルトニウム、超ウラン元素、核
分裂生成物等は抽出廃液(1)中に残留する。このと
き、還元剤をミキサセトラの複数の段、あるいはパルス
カラムの複数の位置に分割して添加することで還元作用
が効率的となる。
As shown in the method of the present invention in FIG. 1, uranium is extracted into tributyl phosphate (1) by the extraction treatment under the above-mentioned reducing conditions, and plutonium, transuranium element, fission products, etc. are extracted. It remains in the waste liquid (1). At this time, the reducing action becomes efficient by dividing and adding the reducing agent to a plurality of stages of the mixer settler or a plurality of positions of the pulse column.

【0010】リン酸トリブチルに対するウランの飽和度
を80%以上にして維持すると該リン酸トリブチル溶媒
(1)に混入する不純物量をピュレックス法の5分の1
程度とすることができる。また該リン酸トリブチル溶媒
(1)から不純物を除去するために該還元剤と1〜3規
定の硝酸で洗浄すれば効果的である。
When the saturation of uranium with respect to tributyl phosphate is maintained at 80% or more, the amount of impurities mixed in the tributyl phosphate solvent (1) is reduced to one fifth of that of the Purex method.
It can be a degree. Further, it is effective to wash with the reducing agent and 1 to 3 N nitric acid in order to remove impurities from the tributyl phosphate solvent (1).

【0011】次に図2にプルトニウムと超ウラン元素と
核分裂生成物を含有した抽出廃液(1)を処理する方法
を示す。該抽出廃液(1)に硝酸を添加し酸濃度を13
規定以上としなければならない。この処理によって、超
ウラン元素例えばアメリシウムやキュリウムなどとプル
トニウムが3価から4価へと酸化されリン酸トリブチル
によって抽出され易くなる。一方、核分裂生成物は抽出
廃液(2)中に残留させることができる。なお、該リン
酸トリブチル溶媒(2)中には微量の核分裂生成物が混
入することもあるので13規定以上の硝酸で洗浄しこの
洗浄廃液を該抽出廃液(1)に添加混入すれば良い。
Next, FIG. 2 shows a method for treating the extraction waste liquid (1) containing plutonium, transuranium element and fission product. Nitric acid was added to the extraction waste liquid (1) to adjust the acid concentration to 13
It must be above the regulation. By this treatment, transuranium elements such as americium and curium and plutonium are oxidized from trivalent to tetravalent and are easily extracted by tributyl phosphate. On the other hand, fission products can be left in the extraction effluent (2). Since a small amount of fission products may be mixed in the tributyl phosphate solvent (2), it may be washed with nitric acid of 13 N or more and this washing waste liquid is added and mixed in the extraction waste liquid (1).

【0012】また、上記工程で得られたリン酸トリブチ
ル溶媒(1)と(2)からウラン、プルトニウムおよび
超ウラン元素を分離回収するには希硝酸と接触させて逆
抽出させれば得ることができる。分離後のリン酸トリブ
チルは本発明の方法に再利用することができる。回収後
のウランおよびプルトニウムと超ウラン元素とは脱硝
し、濃縮処理した後、適当な混合率で混合し原子炉用に
燃料として再利用できる。
Further, in order to separate and recover uranium, plutonium and transuranium elements from the tributyl phosphate solvents (1) and (2) obtained in the above step, it is possible to obtain them by contacting with dilute nitric acid and back-extracting. it can. Tributyl phosphate after separation can be reused in the method of the present invention. The recovered uranium and plutonium and transuranic elements can be denitrified, concentrated and then mixed at an appropriate mixing ratio and reused as fuel for a nuclear reactor.

【0013】[0013]

【実施例】【Example】

(実施例1)本実施例に使用したフローシートを図4に
示す。先ず、ノルマルドデカンによって30vol%に
希釈したリン酸トリブチルを全10段の小型ミキサセト
ラの第10段に毎時500ml供給し、第1段から洗浄
液−硝酸,HNO3 2N−を毎時40mlで供給し、さ
らに第3段および第7段から還元剤−硝酸ウラナス,U
(NO34 0.5mol/l、ヒドラジン(硝酸ウラ
ナスの安定剤)N25 NO3 0.5mol/l、硝酸
HNO3 2N−をそれぞれ毎時2mlおよび毎時8ml
で供給した。運転開始から約1時間後に、使用済核燃料
の溶解液を模擬した模擬溶解液−硝酸ウラニルUO2
(NO32 1mol/l、硝酸セリウム(プルトニウ
ムの模擬物質)Ce(NO34 0.01mol/l、
硝酸ガドリニウム(核分裂生成物の模擬物質)Gd(N
33 0.5mol/l、硝酸ネオジウム(超ウラン
元素の模擬物質)Nd(NO32 0.5mol/l、
硝酸HNO3 3N−を第5段に毎時200mlで供給し
さらに4時間運転し、ミキサセトラの出口から流出する
有機溶媒および抽出廃液中の成分濃度の変化からほぼ定
常運転状態に至ったことを確認した。その結果、リン酸
トリブチル溶媒(1)中のウラン濃度は約0.41mo
l/l、抽出廃液(1)の硝酸水溶液中のウラン濃度は
0.0005mol/l以下であり、ほぼ100%のウ
ランが回収された。リン酸トリブチル溶媒中のセリウム
濃度は10-5mol/l以下、ネオジウムとガドリニウ
ムは共に10-6mol/l以下であり、ウラン以外の成
分はほぼ100%抽出廃液(1)の硝酸水溶液中に残留
することがわかった。表1に各成分の収支を示す。
Example 1 The flow sheet used in this example is shown in FIG. First, tributyl phosphate diluted with normaldodecane to 30 vol% was supplied to the 10th stage of a compact mixer set with 10 stages in total at 500 ml / hour, and the washing liquid-nitric acid and HNO 3 2N- was supplied at 40 ml / hour from the 1st stage. From the 3rd and 7th stages, the reducing agent-uranas nitrate, U
(NO 3 ) 4 0.5 mol / l, hydrazine (stabilizer of Uranus nitrate) N 2 H 5 NO 3 0.5 mol / l, nitric acid HNO 3 2 N- 2 ml / hr and 8 ml / hr, respectively.
Supplied by. About 1 hour after the start of operation, a simulated solution simulating a solution of spent nuclear fuel-uranyl nitrate UO 2
(NO 3 ) 2 1 mol / l, cerium nitrate (simulating substance of plutonium) Ce (NO 3 ) 4 0.01 mol / l,
Gadolinium Nitrate (simulating substance of fission product) Gd (N
O 3 ) 3 0.5 mol / l, neodymium nitrate (simulating substance of transuranium element) Nd (NO 3 ) 2 0.5 mol / l,
HNO 3 3N-nitric acid was supplied to the fifth stage at 200 ml / h and operated for an additional 4 hours, and it was confirmed that almost steady operation was reached due to changes in the component concentrations in the organic solvent and the extraction waste liquid flowing out from the outlet of the mixer-settler. . As a result, the uranium concentration in the tributyl phosphate solvent (1) was about 0.41 mo.
The concentration of uranium in the nitric acid aqueous solution of the extraction waste liquid (1) was 0.0005 mol / l or less, and almost 100% of uranium was recovered. The cerium concentration in the tributyl phosphate solvent is 10 -5 mol / l or less, both neodymium and gadolinium are 10 -6 mol / l or less, and almost 100% of the components other than uranium are contained in the nitric acid aqueous solution of the extraction waste liquid (1). It was found to remain. Table 1 shows the balance of each component.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例2)本実施例では図5に示すフロ
ーシートのウランおよびプルトニウムの挙動を計算コー
ドDYNACを用いて解析した。この計算コードDYN
ACは、リン酸トリブチル−ウラン−プルトニウム−硝
酸系でのパルスカラム抽出装置内の物理化学的挙動を精
度良く推定することができる。本実施例では2塔のパル
スカラム(有効高さ8m、カラム径35cm)の第1塔
の頂部に模擬溶解液−硝酸ウラニル,UO2 (NO3
2 1.05mol/l、硝酸プルトニウム,Pu(NO
34 0.012mol/l、硝酸,HNO3 3規定−
を毎時600リットルで、第1塔の底部から有機溶媒−
リン酸トリブチル30%、ノルマルドデカン70%−を
毎時1500リットルで、第2塔の頂部から洗浄液−硝
酸,HNO3 2規定−を毎時100リットルで、第1塔
の中央部および第2塔の底部より1mの高さに還元剤−
硝酸ウラナス,U(NO34 0.42mol/l、ヒ
ドラジン,N25 NO3 0.5mol/l、硝酸,H
NO3 2規定−をそれぞれ毎時5リットルおよび毎時3
0リットルで供給した。表2に計算の結果得られた定常
運転状態における抽出廃液(1)の硝酸水溶液とリン酸
トリブチル溶媒(1)に含まれるウランとプルトニウム
の収支を示す。表2からリン酸トリブチル溶媒中にはほ
ぼ100%のウランが回収され、抽出廃液(1)の硝酸
水溶液中にほぼ100%のプルトニウムが回収されるこ
とがわかった。
Example 2 In this example, the behavior of uranium and plutonium in the flow sheet shown in FIG. 5 was analyzed by using the calculation code DYNAC. This calculation code DYN
AC can accurately estimate the physicochemical behavior in the pulse column extraction device in the tributyl phosphate-uranium-plutonium-nitric acid system. In this example, a simulated solution-uranyl nitrate, UO 2 (NO 3 ) was added to the top of the first column of the two column pulse columns (effective height 8 m, column diameter 35 cm).
2 1.05 mol / l, plutonium nitrate, Pu (NO
3 ) 4 0.012 mol / l, nitric acid, HNO 3 3 normal-
At 600 liters / hour from the bottom of the first tower with organic solvent
Tributyl phosphate 30%, normal dodecane 70% -at 1500 liters per hour, the washing liquid from the top of the second column-nitric acid, HNO 3 2 normal-at 100 liters per hour, the center of the first column and the bottom of the second column. Reducing agent to a height of 1m-
Uranus nitrate, U (NO 3 ) 4 0.42 mol / l, hydrazine, N 2 H 5 NO 3 0.5 mol / l, nitric acid, H
NO 3 2 regulation-5 liters per hour and 3 per hour respectively
Supplied with 0 liter. Table 2 shows the balance of uranium and plutonium contained in the aqueous nitric acid solution of the extraction waste liquid (1) and the tributyl phosphate solvent (1) in the steady operation state obtained as a result of the calculation. From Table 2, it was found that almost 100% of uranium was recovered in the tributyl phosphate solvent and almost 100% of plutonium was recovered in the nitric acid aqueous solution of the extraction waste liquid (1).

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例3)本実施例に使用したフローシ
ートを図6に示す。まず、8段の小型ミキサセトラの第
1段から洗浄液−硝酸,HNO3 14.4N−を毎時2
0mlで供給し、ノルマルドデカンで30vol%に希
釈したリン酸トリブチルを第8段から毎時100mlで
供給した。運転開始から約2時間後に硝酸13規定に調
製した抽出廃液(1)の模擬含プルトニウム溶液−硝酸
セリウム(プルトニウムの模擬物質)Ce(NO34
0.01mol/l、硝酸ガドリニウム(核分裂生成物
の模擬物質)Gd(NO33 0.4mol/l、硝酸
ネオジウム(超ウラン元素の模擬物質)Nd(NO3
2 0.4mol/l、硝酸,HNO3 13N−を第4段
から毎時100mlで供給しさらに4時間運転し、ミキ
サセトラの出口から流出するリン酸トリブチル溶媒
(2)および抽出廃液(2)中の成分濃度の変化からほ
ぼ定常運転状態に至ったことを確認した。その結果、セ
リウムおよびネオジウムのほぼ100%がリン酸トリブ
チル溶媒(2)中に回収され、ガドリニウムは99%以
上が抽出廃液(2)の硝酸水溶液中に回収された。表3
に得られた各成分の収支を示す。
Example 3 The flow sheet used in this example is shown in FIG. First, the washing solution-nitric acid, HNO 3 14.4N-from the first stage of the eight-stage small mixer-settler was used for 2 hours per hour.
0 ml and tributyl phosphate diluted with normaldodecane to 30 vol% were fed from the eighth stage at 100 ml / h. Approximately 2 hours after the start of operation, a simulated plutonium-containing solution of the extraction waste liquid (1) prepared in 13N nitric acid-cerium nitrate (plutonium simulating substance) Ce (NO 3 ) 4
0.01 mol / l, Gadolinium nitrate (simulator of fission product) Gd (NO 3 ) 3 0.4 mol / l, neodymium nitrate (simulator of transuranium element) Nd (NO 3 ).
2 0.4 mol / l, nitric acid and HNO 3 13N- were supplied from the 4th stage at 100 ml / h, and the operation was continued for another 4 hours. The tributyl phosphate solvent (2) and the extraction waste liquid (2) flowing out from the outlet of the mixer settra were extracted. It was confirmed that almost steady operation was reached due to the change in component concentration. As a result, almost 100% of cerium and neodymium were recovered in the tributyl phosphate solvent (2), and 99% or more of gadolinium was recovered in the nitric acid aqueous solution of the extraction waste liquid (2). Table 3
Figure 3 shows the balance of each component obtained.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】使用済核燃料からウラン、プルトニウム
および超ウラン元素を一括分離する方法を実現する使用
済核燃料の再処理方法を提供するもので、超ウラン元素
をプルトニウムと共に抽出でき、経済性、安全性並びに
核物質防護等の点で効果が大である。
The present invention provides a reprocessing method for spent nuclear fuel that realizes a method for collectively separating uranium, plutonium and transuranium elements from spent nuclear fuel. It is possible to extract transuranic elements together with plutonium, which is economical and safe. The effect is great in terms of sex and protection of nuclear materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】使用済核燃料の硝酸水溶液からウランとプルト
ニウム、核分裂生成物、超ウラン元素を抽出あるいは残
留させるプロセス図である。
FIG. 1 is a process diagram for extracting or remaining uranium and plutonium, fission products, and transuranium elements from a nitric acid aqueous solution of spent nuclear fuel.

【図2】プルトニウム、核分裂生成物、超ウラン元素を
含有する硝酸水溶液からプルトニウム、超ウラン元素を
抽出し核分裂生成物を残留させるプロセス図である。
FIG. 2 is a process diagram for extracting plutonium and transuranium elements from an aqueous nitric acid solution containing plutonium, fission products, and transuranium elements to leave fission products.

【図3】使用済核燃料の硝酸水溶液のピュレックス法プ
ロセス図を示す。
FIG. 3 shows a process diagram of a Purex method for an aqueous nitric acid solution of spent nuclear fuel.

【図4】実施例1のプロセス図である。FIG. 4 is a process diagram of Example 1.

【図5】実施例2のプロセス図である。5 is a process diagram of Example 2. FIG.

【図6】実施例3のプロセス図である。FIG. 6 is a process diagram of Example 3.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 使用済核燃料を硝酸に溶解後この硝酸溶
解液を、還元条件下でリン酸トリブチル(1)と接触さ
せることにより、該リン酸トリブチル中にウランを抽出
し、抽出廃液(1)中にプルトニウム、超ウラン元素お
よび核分裂生成物を残留させることを特徴とする使用済
核燃料の再処理方法。
1. A spent nuclear fuel is dissolved in nitric acid, and then this nitric acid solution is brought into contact with tributyl phosphate (1) under reducing conditions to extract uranium into the tributyl phosphate, and the extraction waste liquid (1) is extracted. ) Plutonium, transuranium element and fission product remain in the process).
【請求項2】 使用済核燃料を硝酸に溶解後この硝酸溶
解液を、還元条件下でリン酸トリブチル(1)と接触さ
せることにより、該リン酸トリブチル中にウランを抽出
し、抽出廃液(1)中にプルトニウム、超ウラン元素お
よび核分裂生成物を残留させ、該抽出廃液(1)を硝酸
により酸濃度を13規定以上に調整し、リン酸トリブチ
ルと接触させて該リン酸トリブチル(2)中にプルトニ
ウムと超ウラン元素とを抽出し、核分裂生成物を抽出廃
液(2)中に残留させることを特徴とする使用済核燃料
の再処理方法。
2. The spent nuclear fuel is dissolved in nitric acid, and then this nitric acid solution is brought into contact with tributyl phosphate (1) under reducing conditions to extract uranium into the tributyl phosphate, and the extraction waste liquid (1 ), Plutonium, transuranium element and fission products remain, and the extraction waste liquid (1) is adjusted to have an acid concentration of 13 N or more with nitric acid, and then contacted with tributyl phosphate to obtain tributyl phosphate (2). 2. A method for reprocessing spent nuclear fuel, which comprises extracting plutonium and transuranium elements into the extraction waste solution and leaving fission products in the extraction waste liquid (2).
JP19770593A 1993-07-16 1993-07-16 Reprocessing method for spent nuclear fuel Pending JPH0735894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19770593A JPH0735894A (en) 1993-07-16 1993-07-16 Reprocessing method for spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19770593A JPH0735894A (en) 1993-07-16 1993-07-16 Reprocessing method for spent nuclear fuel

Publications (1)

Publication Number Publication Date
JPH0735894A true JPH0735894A (en) 1995-02-07

Family

ID=16378992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19770593A Pending JPH0735894A (en) 1993-07-16 1993-07-16 Reprocessing method for spent nuclear fuel

Country Status (1)

Country Link
JP (1) JPH0735894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118585A (en) * 2019-01-25 2020-08-06 日立Geニュークリア・エナジー株式会社 Processing method and processing system of spent fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118585A (en) * 2019-01-25 2020-08-06 日立Geニュークリア・エナジー株式会社 Processing method and processing system of spent fuel

Similar Documents

Publication Publication Date Title
RU2400841C2 (en) Improved purex method and use thereof
Schulz et al. The truex process and the management of liquid TRU uwaste
RU2558332C9 (en) Method of treating spent nuclear fuel without need for reductive re-extraction of plutonium
JP6688873B2 (en) Method for the treatment of aqueous nitric acid solution resulting from the dissolution of spent nuclear fuel in a single cycle and without any operation involving reductive back-extraction of plutonium
US8354085B1 (en) Actinide and lanthanide separation process (ALSEP)
US4528165A (en) Separation of uranium from technetium in recovery of spent nuclear fuel
Law et al. Development and testing of SREX flowsheets for treatment of Idaho chemical processing plant sodium-bearing waste using centrifugal contactors
US8454913B2 (en) Use of butyraldehyde oxime as an anti-nitrous agent in an operation for the reductive stripping of plutonium
Natarajan Reprocessing of spent fast reactor nuclear fuels
RU2454742C1 (en) Method for processing of spent nuclear fuel of nuclear power plants
JPH0735894A (en) Reprocessing method for spent nuclear fuel
JPS63198897A (en) Method particularly used for reprocessing irradiated nuclear fuel in order to separate technetium existing in organic solvent together with one kind or more of other metal such as zirconium and uranium or plutonium
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
RU2200993C2 (en) Method for recovery of irradiated thorium materials
CN114561561B (en) Method for recovering plutonium from plutonium-containing organic phase
JP3308045B2 (en) Technetium decontamination method in co-decontamination process of spent nuclear fuel reprocessing
JP7108519B2 (en) Isolation method for minor actinides
US3560169A (en) Manner of processing plutonium-containing uranium fuel from nuclear reactors
JP2019015533A (en) Method for separating minor actinoid
Arai et al. Modified TRUEX process for the treatment of high-level liquid waste
JP7155031B2 (en) Method for reducing disposal load of high-level radioactive waste
JPH0815483A (en) Method for solvent extraction of transuranium elements
JPH11287890A (en) Reprocessing method for spent nuclear fuel
JPS61236615A (en) Method of recovering uranium from nucleus fuel scrap
WO1999023668A1 (en) Nuclear fuel reprocessing