JPH11287890A - Reprocessing method for spent nuclear fuel - Google Patents

Reprocessing method for spent nuclear fuel

Info

Publication number
JPH11287890A
JPH11287890A JP9122998A JP9122998A JPH11287890A JP H11287890 A JPH11287890 A JP H11287890A JP 9122998 A JP9122998 A JP 9122998A JP 9122998 A JP9122998 A JP 9122998A JP H11287890 A JPH11287890 A JP H11287890A
Authority
JP
Japan
Prior art keywords
reprocessing
fuel
uranium
plutonium
fast reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9122998A
Other languages
Japanese (ja)
Inventor
Mamoru Kamoshita
守 鴨志田
Akira Sasahira
朗 笹平
Tetsuo Fukazawa
哲生 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9122998A priority Critical patent/JPH11287890A/en
Publication of JPH11287890A publication Critical patent/JPH11287890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To reprocess spent fast reactor fuel at low cost, by recovering plutonium and uranium from fast reactor fuel in a reprocessing facility for fast reactor and from light water reactor fuel and recovered residual liquid of facility for fast reactor. SOLUTION: Sheared pieces of fast reactor accepted in a reprocessing facility are heated and solved in nitric acid as solution, which is controlled at specific concentration of uranium, plutonium and nitric acid and sent to a multiple step extraction device. The solution is flown from the first step to the final step of the multiple step extractor. Also, mixture solvent of a specific composition is flown from the final step to the first step at a specific flow ratio. By this, the mixture in mixed oxide(MOX) fuel composition can be separated. The solution liquid from the final step of the multiple step extractor is sent to a reprocessing facility for light water reactor. On the other hand, mixed solvent which uranium and plutonium are extracted from is contacted in counter- current with diluted nitric acid water solution containing reducer by using the multiple step extractor. By this, the mixture of totally stripped plutonium and uranium is taken out as diluted nitric acid water solution, denitrated and converted into oxide to be MOX fuel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力発電所から
発生する使用済原子燃料の再処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reprocessing spent nuclear fuel generated from a nuclear power plant.

【0002】[0002]

【従来の技術】原子力発電所から発生する使用済原子燃
料中のウランとプルトニウムは、ピュレックス法と呼ば
れる化学分離プロセスにより分離回収されている。ピュ
レックス法はM.Benedict他2名によるNuclear Chemical
Engineering第2版McGraw- Hill社発行の466頁か
ら514頁に記載されている。
2. Description of the Related Art Uranium and plutonium in spent nuclear fuel generated from a nuclear power plant are separated and recovered by a chemical separation process called the Purex method. The Purex method is based on Nuclear Chemical by M. Benedict and two others.
Engineering, 2nd edition, pages 466 to 514, published by McGraw-Hill.

【0003】軽水炉燃料を対象としたピュレックス法で
は、使用済原子燃料を硝酸で溶解して、共除染工程にお
いて30%のトリブチルリン酸(TBP)をノルマルド
デカンに溶解した溶媒を用いて、ウランとプルトニウム
の全量を抽出して核分裂生成核種から分離する。共除染
工程では、パルスカラム等の抽出器を多段に組み合わせ
て、向流抽出を行っている。向流抽出器は、抽出部とス
クラブ部からなっている。
In the Purex method for light water reactor fuel, spent nuclear fuel is dissolved in nitric acid, and a solvent in which 30% of tributyl phosphoric acid (TBP) is dissolved in normal dodecane in a co-decontamination process is used. The total amount of uranium and plutonium is extracted and separated from fission product nuclides. In the co-decontamination step, countercurrent extraction is performed by combining extractors such as pulse columns in multiple stages. The countercurrent extractor includes an extraction unit and a scrub unit.

【0004】抽出部ではウランとプルトニウムとを溶解
液から抽出するが、現行のピュレックス法の抽出条件は
ウランをプルトニウムよりも優先的に抽出する条件であ
るので、プルトニウムの破過がおきないように、溶解液
に対するTBPの流量比に余裕をもたせている。このと
き、余剰のTBPにより核分裂生成核種が抽出されるの
で、スクラブ部においてTBPを硝酸水溶液で洗浄す
る。抽残液とスクラブ液は混合して、廃液処理系に送ら
れる。
[0004] In the extraction unit, uranium and plutonium are extracted from the solution. However, the current extraction condition of the Purex method is a condition for extracting uranium preferentially over plutonium. In addition, the flow rate ratio of TBP to the dissolving liquid has a margin. At this time, since fission product nuclides are extracted by surplus TBP, the TBP is washed with a nitric acid aqueous solution in the scrub portion. The raffinate and the scrub liquid are mixed and sent to a waste liquid treatment system.

【0005】一方、ウランとプルトニウムとを抽出した
TBPは分配工程に送られ、還元剤を含む希薄硝酸でプ
ルトニウムを還元しながら逆抽出した後、ウランを希薄
硝酸で逆抽出して、両者を分離する。ウランとプルトニ
ウムは、それぞれ精製工程に送られて精製される。
On the other hand, the TBP from which uranium and plutonium have been extracted is sent to a distribution step, where the plutonium is back-extracted while reducing plutonium with dilute nitric acid containing a reducing agent. I do. Uranium and plutonium are each sent to a purification process and purified.

【0006】高速炉燃料では、軽水炉ほどの製品純度が
要求されない。高速炉燃料を対象としたピュレックス法
では、炉心燃料とブランケット燃料を硝酸で溶解して、
共除染工程でウランとプルトニウムとをともに全量抽出
して分配する工程までは上記と同一のフローであるが、
精製工程は省略することができる。
[0006] Fast reactor fuels do not require as high a product purity as light water reactors. In the Purex method for fast reactor fuel, the core fuel and blanket fuel are dissolved with nitric acid,
Up to the step of extracting and distributing both uranium and plutonium together in the co-decontamination step, the flow is the same as above,
The purification step can be omitted.

【0007】ピュレックス法で回収したプルトニウム
は、ウランとともに混合酸化物燃料(MOX燃料)とし
て利用される。このため使用済の軽水炉燃料及び高速炉
燃料から回収したプルトニウムは、それぞれ軽水炉用及
び高速炉用のMOX燃料の組成になるように再度ウラン
とプルトニウムとを混合している。
[0007] Plutonium recovered by the Purex process is used together with uranium as a mixed oxide fuel (MOX fuel). For this reason, plutonium recovered from spent light water reactor fuel and fast reactor fuel is mixed with uranium and plutonium again so as to have the composition of MOX fuel for light water reactor and fast reactor, respectively.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、設備
的及び経済的な負荷が小さい高速炉燃料用再処理施設を
提供することにある。そのために、高速炉再処理施設に
おける重金属処理量を小さくすることが課題となる。高
速炉燃料を再処理する場合には、燃料中のプルトニウム
/ウラン比は0.1程度である。これをMOX燃料とし
て0.3程度まで高める場合には70%程度のウランが
余剰になる。この余剰ウランを適切に処理することによ
り重金属処理量を低減できる。本発明は、この課題を以
下のような手段で解決した。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fast reactor fuel reprocessing facility having a small facility and economical load. Therefore, it is an issue to reduce the heavy metal processing amount in the fast reactor reprocessing facility. When reprocessing the fast reactor fuel, the plutonium / uranium ratio in the fuel is about 0.1. When this is increased to about 0.3 as MOX fuel, about 70% of uranium becomes surplus. By appropriately treating the surplus uranium, the amount of heavy metal to be treated can be reduced. The present invention has solved this problem by the following means.

【0009】[0009]

【課題を解決するための手段】本発明の再処理方法の第
一の特徴は、高速炉用の再処理施設と軽水炉用の再処理
施設を併用することにある。高速炉用の再処理施設で
は、高速炉で使用した炉心燃料とブランケット燃料を受
け入れ、高速炉のMOX燃料組成のプルトニウムとウラ
ンとの混合製品のみを回収する。軽水炉用の再処理施設
では、軽水炉で使用した燃料と高速炉用の再処理施設か
らの回収残液とを受け入れ、軽水炉用のMOX燃料組成
の混合製品とウランとを回収する。
A first feature of the reprocessing method of the present invention resides in that a reprocessing facility for a fast reactor and a reprocessing facility for a light water reactor are used together. The fast reactor reprocessing facility receives the core fuel and blanket fuel used in the fast reactor, and collects only the mixed product of plutonium and uranium of the MOX fuel composition of the fast reactor. The light water reactor reprocessing facility receives the fuel used in the light water reactor and the residual liquid collected from the fast reactor reprocessing facility, and recovers a mixed product of the MOX fuel composition for the light water reactor and uranium.

【0010】本発明の再処理方法の第二の特徴は、軽水
炉用の再処理施設は、既設の再処理施設を用いることに
ある。すなわち、使用済の高速炉燃料中のウランの一部
を、軽水炉用として既に運転している再処理施設に移送
して処理する。
[0010] A second feature of the reprocessing method of the present invention is that an existing reprocessing facility is used as a reprocessing facility for a light water reactor. That is, part of the uranium in the spent fast reactor fuel is transferred to a reprocessing facility that is already operating for light water reactors and processed.

【0011】本発明の第三の特徴は、高速炉用の再処理
施設において、トリブチルリン酸(TBP)とトリノル
マルオクチルアミン(TOA)との混合溶媒を用いて、
燃料溶解液からプルトニウムの全量を混合酸化物燃料と
同等の組成になるような比率のウランとともに抽出して
分離することにある。このとき、混合溶媒の組成は請求
項4に記載の組成である。
A third feature of the present invention is that, in a reprocessing facility for a fast reactor, a mixed solvent of tributylphosphoric acid (TBP) and trinormal octylamine (TOA) is used.
The purpose of the present invention is to extract and separate the entire amount of plutonium from a fuel solution together with uranium in such a ratio that the composition becomes equivalent to that of the mixed oxide fuel. At this time, the composition of the mixed solvent is the composition described in claim 4.

【0012】即ち、本発明により設備的及び経済的な負
荷が小さい再処理施設を提供できる原理は以下の通りで
ある。
That is, the principle by which the present invention can provide a reprocessing facility with small equipment and economical load is as follows.

【0013】高速炉で使用した燃料は、プルトニウムの
量が大きいために、臨界管理の観点から軽水炉用の再処
理施設で受け入れることはできない。安全性の観点で
は、高速炉用と軽水炉用の2つの再処理施設が必要とな
る。しかしながら、使用済の高速炉燃料からプルトニウ
ムの全量を回収すれば、臨界管理の負荷が軽減されるの
で、軽水炉用の再処理施設に受け入れることが可能とな
る。そこで、高速炉用の再処理施設では高速炉で使用す
るMOX燃料組成の混合製品のみを回収して、余剰のウ
ランは使用済軽水炉燃料とともに軽水炉用の再処理施設
で処理する。
[0013] The fuel used in the fast reactor cannot be accepted in a light water reactor reprocessing facility from the viewpoint of criticality control because of the large amount of plutonium. From the viewpoint of safety, two reprocessing facilities for the fast reactor and the light water reactor are required. However, if the entire amount of plutonium is recovered from spent fast reactor fuel, the load of criticality management is reduced, so that it can be accepted into a light water reactor reprocessing facility. Therefore, in the reprocessing facility for the fast reactor, only the mixed product of the MOX fuel composition used in the fast reactor is recovered, and the surplus uranium is treated together with the spent light water reactor fuel in the reprocessing facility for the light water reactor.

【0014】このとき既設の再処理施設を利用すること
により、新たに必要になる高速炉用の再処理施設では、
プルトニウムの全量とウランの一部を抽出するのに必要
な量の抽出溶媒のみが必要となる。燃料溶解液中のウラ
ンはプルトニウムの10倍程度が含まれるので、ウラン
とプルトニウムとをともに全量抽出する場合に比べる
と、ウランについては一部のみを回収する場合は、抽出
溶媒の量が少なくて済む。
At this time, by using the existing reprocessing facility, the newly required reprocessing facility for the fast reactor is:
Only the amount of extraction solvent needed to extract all of the plutonium and part of the uranium is needed. Since uranium in the fuel solution contains about 10 times as much as plutonium, the amount of extraction solvent is small when recovering only part of uranium as compared with the case where both uranium and plutonium are extracted in total. I'm done.

【0015】この結果、溶媒再生系や廃溶媒処理系の負
荷が小さくなり、廃溶媒に起因する廃棄物発生量が少な
くて済む。またプルトニウムとウランをMOX燃料組成
になるように抽出した場合には、逆抽出によって両者を
分離する必要がない。このため分配工程は単なる逆抽出
操作のみなので、逆抽出液量が少なくて済む。この結
果、製品を濃縮系の負担が小さい。以上により、高速炉
用の再処理施設の設備的及び経済的負荷が小さくなる。
一方、軽水炉用の再処理施設に関しては、上記施設から
ウランを受け入れるので処理量は大きくなるが、プルト
ニウムの割合が低下するので、臨界管理がより容易にな
る。
As a result, the load on the solvent regeneration system and the waste solvent treatment system is reduced, and the amount of waste generated due to the waste solvent can be reduced. When plutonium and uranium are extracted to have a MOX fuel composition, there is no need to separate them by back extraction. For this reason, since the distribution step is only a simple back-extraction operation, the amount of back-extraction liquid can be reduced. As a result, the burden on the product concentration system is small. As described above, the equipment and economic load of the reprocessing facility for the fast reactor is reduced.
On the other hand, as for the reprocessing facility for light water reactors, uranium is received from the above facility, so that the throughput increases, but the ratio of plutonium decreases, so that criticality management becomes easier.

【0016】高速炉用の再処理施設において、プルトニ
ウムの全量とウランの一部とを回収するのは、TBPと
TOAとの混合溶媒を用いた溶媒抽出法により達成でき
る。これは、発明者らが独自に行った研究の結果に基づ
いている。30%のTBPと3%以上のTOAとを混合
することにより達成できる。しかしながらTOA濃度が
7%未満の時にはTBPとTOAが協同効果を示し、抽
出挙動が複雑となる。そのためTOA濃度が7%以上で
あることが望ましい。その場合、高濃度のウランを抽出
することにより第3相が生成する。
In the reprocessing facility for a fast reactor, the total amount of plutonium and a part of uranium can be recovered by a solvent extraction method using a mixed solvent of TBP and TOA. This is based on the results of independent research conducted by the inventors. This can be achieved by mixing 30% of TBP with 3% or more of TOA. However, when the TOA concentration is less than 7%, TBP and TOA show a synergistic effect, and the extraction behavior becomes complicated. Therefore, it is desirable that the TOA concentration be 7% or more. In that case, a third phase is formed by extracting a high concentration of uranium.

【0017】これはイソオクチルアルコールを添加する
ことにより解決される。例えば、TOA濃度が10%の
時には8%のイソオクチルアルコールが必要である。TO
A濃度が高くなると、第3相抑制のために必要なイソオ
クチルアルコール濃度も高くなるが、それに伴ってプル
トニウムの分配係数が低下し、17%を超えるとウラン
よりもプルトニウムの分配係数が小さくなる。
This can be solved by adding isooctyl alcohol. For example, when the TOA concentration is 10%, 8% isooctyl alcohol is required. TO
When the A concentration increases, the isooctyl alcohol concentration required for the suppression of the third phase also increases, but the distribution coefficient of plutonium decreases accordingly, and when it exceeds 17%, the distribution coefficient of plutonium becomes smaller than that of uranium. .

【0018】これらから、イソオクチルアルコール濃度
は10%程度であることが望ましい。このとき第3相が
生成しないTOAの最高濃度は15%である。
From these, it is desirable that the isooctyl alcohol concentration is about 10%. At this time, the maximum concentration of TOA in which the third phase is not formed is 15%.

【0019】以上から、本発明にかかる混合溶媒は、3
0%のTBPと3%以上で望ましくは7ないし15%の
TOAと8ないし17%で望ましくは10%程度のイソ
オクチルアルコールとをノルマルドデカンで希釈したも
のである。これを用いて、プルトニウムとウランをMO
X燃料の組成になるように分離する。
From the above, the mixed solvent according to the present invention is 3
0% TBP, 3% or more, preferably 7 to 15% TOA, and 8 to 17%, preferably about 10% isooctyl alcohol diluted with normal dodecane. Using this, plutonium and uranium can be MO
Separate to the composition of X fuel.

【0020】[0020]

【発明の実施の形態】(実施例1)本発明にかかる第一
の実施例を、図1を用いて説明する。本実施例では、1
5%のTOAと30%のTBPと10%のイソオクチル
アルコールとをノルマルドデカンで希釈した混合溶媒を
用いて、燃料溶解液からプルトニウムの全量をMOX燃料
の組成になるような比率のウランとともに抽出する。こ
の後、余剰ウランを上記と同じ組成の混合溶媒を用いて
抽出する。以下、ウランがプルトニウムの約10倍量存
在する使用済燃料の再処理を例に、工程の詳細を記載す
る。
(Embodiment 1) A first embodiment according to the present invention will be described with reference to FIG. In this embodiment, 1
Using a mixed solvent of 5% TOA, 30% TBP, and 10% isooctyl alcohol diluted with normal dodecane, the total amount of plutonium is extracted from the fuel solution together with uranium in such a ratio as to make the composition of MOX fuel. I do. Thereafter, excess uranium is extracted using a mixed solvent having the same composition as above. Hereinafter, the process will be described in detail by taking as an example the reprocessing of spent fuel in which uranium is present in an amount about 10 times that of plutonium.

【0021】高速炉燃料を再処理施設に受け入れ、一定
期間貯蔵して冷却する。この後、剪断工程1において、
後の溶解工程3で溶解し易いように剪断機を用いて機械
的に剪断する。剪断片は溶解槽に移され、数規定の硝酸
を用いて加熱しながら溶解する。清澄工程3において
は、例えば遠心清澄器等を用いて、溶解液から不溶解残
さを除去した後、計量・調整槽において、ウランとプル
トニウムの濃度を分析し、これらの濃度が合計200な
いし250g/L、硝酸濃度が3規定になるように調整
し、中間貯留槽に送られる。以上の工程では、従来のピ
ュレックス法で用いられている公知技術が適用できる。
[0021] The fast reactor fuel is received in a reprocessing facility, stored and cooled for a period of time. Thereafter, in the shearing step 1,
It is mechanically sheared using a shearing machine so as to be easily dissolved in the subsequent dissolving step 3. The sheared fragments are transferred to a dissolving tank and dissolved by heating with a specified amount of nitric acid. In the fining step 3, the concentration of uranium and plutonium is analyzed in a measuring / adjusting tank after removing insoluble residues from the lysate using, for example, a centrifugal fining device. The concentration of L and nitric acid is adjusted to 3N and sent to the intermediate storage tank. In the above steps, a known technique used in the conventional Purex method can be applied.

【0022】溶解液は、中間貯留槽からプルトニウム−
ウラン共抽出工程に送られる。ここでは、ミキサセトラ
あるいは遠心抽出器等の抽出器を多段に組んだ抽出装置
を用いる。溶解液を多段抽出器の第1段から最後段に向
かって流し、上記の混合溶媒を最後段から第1段に向か
って流す。このとき、プルトニウムの全量とプルトニウ
ムの3倍量のウランを抽出すること、及び混合溶媒中の
TBPとTOAともに90%程度以上がウランあるいは
プルトニウムと結合するように混合溶媒と溶解液の流量
比を決定する。
The dissolving solution is supplied from the intermediate storage tank to plutonium-
It is sent to the uranium co-extraction step. Here, an extraction device in which extractors such as a mixer setra or a centrifugal extractor are assembled in multiple stages is used. The lysis solution flows from the first stage to the last stage of the multistage extractor, and the mixed solvent flows from the last stage to the first stage. At this time, the total amount of plutonium and uranium in an amount three times the amount of plutonium are extracted, and the flow ratio of the mixed solvent and the solution is adjusted so that about 90% or more of both TBP and TOA in the mixed solvent are combined with uranium or plutonium. decide.

【0023】これにより、MOX燃料組成の混合物を核
分裂生成核種から良好に除染しながら分離することがで
きる。多段抽出器の最後段から出た溶解液は、既設の軽
水炉用再処理施設に送られる。一方、ウランとプルトニ
ウムとを抽出した混合溶媒は、スクラブをしないで、プ
ルトニウム−ウラン逆抽出工程に送られる。
As a result, the mixture of the MOX fuel composition can be separated from the fission product nuclides while being excellently decontaminated. The lysate from the last stage of the multistage extractor is sent to the existing light water reactor reprocessing facility. On the other hand, the mixed solvent obtained by extracting uranium and plutonium is sent to a plutonium-uranium back extraction step without scrubbing.

【0024】プルトニウム−ウラン逆抽出工程では、混
合溶媒と2価の鉄イオン等の還元剤を含む希薄硝酸水溶
液とを、上記と同じような多段抽出器を用いて向流接触
させる。これにより、プルトニウムを4価から3価に還
元しながら全量を逆抽出し、同時にウランも全量を逆抽
出する。こうして、プルトニウムとウランとの混合物は
希薄硝酸水溶液として取り出され、マイクロ波を照射す
る等により脱硝して酸化物に転換し、MOX燃料とす
る。逆抽出後の混合溶媒は溶媒洗浄系に送られ、炭酸ア
ルカリ水溶液等と接触させることにより、劣化生成物や
テクネチウムや白金族元素等の抽出性核分裂生成核種を
洗浄・除去し、混合溶媒組成の分析及び調整をして、再
利用する。
In the plutonium-uranium back extraction step, the mixed solvent is brought into countercurrent contact with a dilute aqueous nitric acid solution containing a reducing agent such as divalent iron ion using the same multistage extractor as described above. Thereby, the whole amount is back-extracted while reducing plutonium from tetravalent to trivalent, and at the same time, the whole amount of uranium is also back-extracted. In this way, the mixture of plutonium and uranium is taken out as a dilute aqueous nitric acid solution, denitrated by irradiating microwaves or the like, converted into oxides, and used as MOX fuel. The mixed solvent after back-extraction is sent to a solvent washing system, where it is brought into contact with an aqueous solution of alkali carbonate or the like to wash and remove degraded products and extractable fission product nuclides such as technetium and platinum group elements, and to adjust the mixed solvent composition Analyze and adjust and reuse.

【0025】[0025]

【発明の効果】以上、本実施例によれば、安価な使用済
高速炉燃料再処理が可能になる。
As described above, according to this embodiment, inexpensive spent fast reactor fuel reprocessing can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる高速炉燃料の再処理方法の分離
フローを示すフローチャート。
FIG. 1 is a flowchart showing a separation flow of a fast reactor fuel reprocessing method according to the present invention.

【符号の説明】[Explanation of symbols]

1…剪断工程、2…溶解工程、3…清澄工程。 1 ... shearing step, 2 ... dissolving step, 3 ... fining step.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】使用済原子燃料の再処理方法において、高
速炉燃料溶解液からプルトニウムの全量とウランの一部
とを高速炉の炉心燃料組成になるように回収する第1の
再処理施設と、前記再処理施設で発生する回収残液と軽
水炉燃料溶解液とからウランとプルトニウムを回収する
第2の再処理施設とを用いることを特徴とした使用済原
子燃料の再処理方法。
In a reprocessing method for spent nuclear fuel, a first reprocessing facility for recovering a total amount of plutonium and a part of uranium from a fuel solution of a fast reactor so as to have a core fuel composition of the fast reactor. And a second reprocessing facility for recovering uranium and plutonium from a residual solution collected in the reprocessing facility and a light water reactor fuel solution, and a method for reprocessing spent nuclear fuel.
【請求項2】前項請求項1記載の再処理方法において、
第2の再処理施設が既設の軽水炉燃料用の再処理施設で
あることを特徴とする使用済原子燃料の再処理方法。
2. The reprocessing method according to claim 1, wherein
A method for reprocessing spent nuclear fuel, wherein the second reprocessing facility is an existing light water reactor fuel reprocessing facility.
【請求項3】請求項1記載の再処理方法において、第1
の再処理施設では、3級アミン系の抽出試薬とトリブチ
ルリン酸とを混合した混合溶媒を用いた溶媒抽出法によ
りプルトニウムの全量とウランの一部とを当該組成で回
収することを特徴とした使用済原子燃料の再処理方法。
3. The reprocessing method according to claim 1, wherein
Is characterized in that the entire amount of plutonium and a part of uranium are recovered with the composition by a solvent extraction method using a mixed solvent obtained by mixing a tertiary amine-based extraction reagent and tributyl phosphoric acid. Reprocessing of spent nuclear fuel.
【請求項4】前項請求項1記載の再処理方法において、
混合溶媒の組成が30%のトリブチルリン酸と、3%以
上で望ましくは7ないし15%のトリノルマルオクチル
アミンと、8ないし17%で望ましくは10%程度のイ
ソオクチルアルコールとをノルマルドデカンで希釈した
混合溶媒であることを特徴とした使用済原子燃料の再処
理方法。
4. The reprocessing method according to claim 1, wherein
Dilute a mixture of 30% tributyl phosphoric acid, 3% or more, preferably 7 to 15% trinormal octylamine, and 8 to 17%, preferably about 10% isooctyl alcohol with normal dodecane. Reprocessing of spent nuclear fuel, characterized in that it is a mixed solvent.
JP9122998A 1998-04-03 1998-04-03 Reprocessing method for spent nuclear fuel Pending JPH11287890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9122998A JPH11287890A (en) 1998-04-03 1998-04-03 Reprocessing method for spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9122998A JPH11287890A (en) 1998-04-03 1998-04-03 Reprocessing method for spent nuclear fuel

Publications (1)

Publication Number Publication Date
JPH11287890A true JPH11287890A (en) 1999-10-19

Family

ID=14020606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9122998A Pending JPH11287890A (en) 1998-04-03 1998-04-03 Reprocessing method for spent nuclear fuel

Country Status (1)

Country Link
JP (1) JPH11287890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
CN109727696A (en) * 2017-10-30 2019-05-07 中核四0四有限公司 MOX pellet recycling and reusing method
US10950356B2 (en) 2010-11-15 2021-03-16 Atomic Energy Of Canada Limited Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799414B2 (en) 2010-09-03 2017-10-24 Atomic Energy Of Canada Limited Nuclear fuel bundle containing thorium and nuclear reactor comprising same
US10176898B2 (en) 2010-11-15 2019-01-08 Atomic Energy Of Canada Limited Nuclear fuel containing a neutron absorber
US10950356B2 (en) 2010-11-15 2021-03-16 Atomic Energy Of Canada Limited Nuclear fuel containing recycled and depleted uranium, and nuclear fuel bundle and nuclear reactor comprising same
CN109727696A (en) * 2017-10-30 2019-05-07 中核四0四有限公司 MOX pellet recycling and reusing method
CN109727696B (en) * 2017-10-30 2023-02-21 中核四0四有限公司 MOX pellet recycling method

Similar Documents

Publication Publication Date Title
RU2400841C2 (en) Improved purex method and use thereof
JP4312969B2 (en) Reprocessing method of spent nuclear fuel
KR101900112B1 (en) Method for treating spent nuclear fuel not requiring a plutonium reductive back-extraction operation
RU2706954C2 (en) Method of treating aqueous nitrate solution obtained during dissolution of spent nuclear fuel, performed in one cycle and not requiring any operation, including reductive re-extraction of plutonium
CN102473467B (en) Improved method for treating spent nuclear fuel
US6623710B1 (en) Nuclear fuel reprocessing
Natarajan Reprocessing of spent fast reactor nuclear fuels
JPH11287890A (en) Reprocessing method for spent nuclear fuel
US3949049A (en) Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes
US3954654A (en) Treatment of irradiated nuclear fuel
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
RU2727140C1 (en) Irradiated nuclear fuel extraction processing method
RU2080666C1 (en) Method for processing of active nitrate raffinates produced by regeneration of nuclear fuel
JPS63198897A (en) Method particularly used for reprocessing irradiated nuclear fuel in order to separate technetium existing in organic solvent together with one kind or more of other metal such as zirconium and uranium or plutonium
JPH0453277B2 (en)
RU2454740C1 (en) Method for neptunium removal during separation of long-living radionuclides
RU2012075C1 (en) Method of processing of irradiated fuel of atomic power plants
Volk et al. New technology and hardware for reprocessing spent nuclear fuel from thermal reactors
JP3308045B2 (en) Technetium decontamination method in co-decontamination process of spent nuclear fuel reprocessing
Arai et al. Modified TRUEX process for the treatment of high-level liquid waste
JP2002516810A (en) Nuclear fuel reprocessing
US3560169A (en) Manner of processing plutonium-containing uranium fuel from nuclear reactors
RU2066489C1 (en) Method of reducing separation of neptunium and plutonium
JPH1184073A (en) Method and device for reprocessing spent nuclear fuel
JPH11202086A (en) Reprocessing method for spent fuel