JP2530150B2 - How to recover valuable metals - Google Patents

How to recover valuable metals

Info

Publication number
JP2530150B2
JP2530150B2 JP62078876A JP7887687A JP2530150B2 JP 2530150 B2 JP2530150 B2 JP 2530150B2 JP 62078876 A JP62078876 A JP 62078876A JP 7887687 A JP7887687 A JP 7887687A JP 2530150 B2 JP2530150 B2 JP 2530150B2
Authority
JP
Japan
Prior art keywords
treatment
liquid
magnetic
paramagnetic
valuable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62078876A
Other languages
Japanese (ja)
Other versions
JPS63242929A (en
Inventor
千枝 三宅
純康 清水
善弘 見目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI KANKYO ENJINIARINGU KK
Original Assignee
NIPPON DENKI KANKYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI KANKYO ENJINIARINGU KK filed Critical NIPPON DENKI KANKYO ENJINIARINGU KK
Priority to JP62078876A priority Critical patent/JP2530150B2/en
Publication of JPS63242929A publication Critical patent/JPS63242929A/en
Application granted granted Critical
Publication of JP2530150B2 publication Critical patent/JP2530150B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/015Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液中に含まれた有価金属イオンを磁気的に分
離回収する方法、特に核燃料再処理に伴って排出された
液中の有価金属の回収に好適な有価金属イオンの回収方
法に関する。
The present invention relates to a method for magnetically separating and recovering valuable metal ions contained in a liquid, and particularly to a valuable metal contained in the liquid discharged along with reprocessing of nuclear fuel. The present invention relates to a method of recovering valuable metal ions suitable for recovering valuable metals.

〔従来の技術〕 従来より、核燃料の再処理過程には溶媒抽出法が用い
られ、その殆どに溶媒としてリン酸トリブチル(TBP)
を用いるピューレックス(Purex)法が採用されてい
る。第3図にピューレックス法による処理のプロセスの
概要を示す。
[Prior Art] Conventionally, a solvent extraction method has been used in the reprocessing process of nuclear fuel, and most of them have tributyl phosphate (TBP) as a solvent.
Purex method using is adopted. Fig. 3 shows an outline of the process of treatment by the Purex method.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、溶媒抽出法によれば抽出過程と逆抽出
過程との繁雑な繰り返し処理に伴って汚染された廃棄物
が排出されるという問題がある。又、放射線の影響等に
よる溶媒劣化生成物及び溶解成分の沈澱が生じ、いわゆ
る第3相を形成して抽出効率の低下を招くという欠点が
あり、これが抽出処理の障害となっている。
However, the solvent extraction method has a problem that contaminated waste is discharged due to the complicated and repeated processes of the extraction process and the back extraction process. Further, there is a drawback that a solvent deterioration product and a dissolved component are precipitated due to the influence of radiation or the like, and a so-called third phase is formed to lower the extraction efficiency, which is an obstacle to the extraction process.

本発明は上記問題点を解消した高勾配磁気分離回収方
法を提供することにある。
The present invention provides a high gradient magnetic separation and recovery method that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明による有価金属の回
収方法においては、磁気生成物生成処理と、分離処理と
を有する有価金属の回収方法であって、 磁気生成物生成処理は、有価金属イオンを含有する液
中に酸性条件の下で陰イオンを添加して常磁性金属塩の
生成条件を液中に形成する処理であり、 分離処理は、磁気生成物の生成処理によって液中に生
成した常磁性金属塩を液中から磁気分離する処理であ
る。
In order to achieve the above object, in the method for recovering a valuable metal according to the present invention, there is provided a method for recovering a valuable metal having a magnetic product producing process and a separation process, wherein the magnetic product producing process is a process for producing a valuable metal ion. The anion is added to the contained liquid under acidic conditions to form the paramagnetic metal salt forming condition in the liquid, and the separation treatment is the process of forming the paramagnetic metal salt in the liquid by the forming treatment of the magnetic product. This is a treatment for magnetically separating the magnetic metal salt from the liquid.

また、原子価調整処理と、磁気生成物生成処理と、分
離処理とを有する有価金属の回収方法であって、 原子価調整処理は、2種以上の有価金属イオンを含有
する液中に酸性条件の下で1種の有価金属の原子価を、
その塩が常磁性になり得る原子価に調整する処理であ
り、 磁気生成物生成処理は、原子価調整処理後の液中に酸
性条件の下で陰イオンを添加して常磁性金属塩と非磁性
金属の塩との生成条件を液中に形成する処理であり、 分離処理は、磁気生成物生成処理によって液中に生成
した常磁性金属塩を液中から選択的に磁気分離する処理
であり、 原子価調整処理と、磁気生成物生成処理と、分離処理
とは、分離すべき有価金属イオンの種類に応じて繰返し
行うものである。
A method for recovering a valuable metal having a valence adjustment treatment, a magnetic product production treatment, and a separation treatment, wherein the valence adjustment treatment is carried out under acidic conditions in a liquid containing two or more kinds of valuable metal ions. The valence of one valuable metal under
The salt is a process for adjusting the valence so that it can become paramagnetic, and the magnetic product forming process is one in which the anion is added to the liquid after the valence adjusting process under acidic conditions to make it non-parasitic with the paramagnetic metal salt. The separation treatment is a treatment for forming a magnetic metal salt in the liquid under the conditions for the formation, and the separation treatment is a treatment for selectively magnetically separating the paramagnetic metal salt generated in the liquid by the magnetic product generation treatment from the liquid. The valence adjustment process, the magnetic product production process, and the separation process are repeatedly performed according to the type of valuable metal ion to be separated.

〔原理・作用〕[Principle / Action]

従来のピューレックス法によれば、第3図に示すよう
に抽出・分配の後段の回収処理として有価金属イオンを
含有した液中に酸ナトリウム等を添加し、酸塩の沈
澱(例PU(C2O4)2・6H2O等)を生じさせ、固液分離を行
うもので、これはプルトニウムの精製を目的としたもの
であるのに対し、本発明では抽出の前処理として磁気生
成物生成処理を行い、有価金属イオン含有水中に常磁性
金属塩の生成条件を形成し、次いで磁気処理を行い、液
中に生成した常磁性金属塩を磁気的に捕捉するものであ
る。この条件の形成は、液の酸性条件の下で特定の陰イ
オンを含む成分(たとえばH2C2O4など)を添加し、常磁
性の塩を生成させることによって得られる。
According to the conventional Purex method, as shown in FIG. 3, sodium acid or the like is added to a liquid containing valuable metal ions as a recovery process in the latter stage of extraction / distribution, and salt precipitation (eg, P U ( C 2 O 4) 2 · 6H 2 O , etc.) cause, which performs solid-liquid separation, which is a magnetic product whereas those for the purpose of purification of plutonium, as a pretreatment for extraction in the present invention This is a process for producing a paramagnetic metal salt in water containing valuable metal ions, and then performing a magnetic treatment to magnetically capture the paramagnetic metal salt produced in the liquid. The formation of this condition is obtained by adding a component containing a specific anion (such as H 2 C 2 O 4 ) under acidic conditions of the liquid to form a paramagnetic salt.

常磁性金属塩は磁気的に分離回収が可能である。第1
図は本発明による処理の要領を示している。液中に2種
以上の有価金属イオンを含む場合に、磁気生成物生成処
理の前処理としてさらに原子価調整処理を行い、各々の
金属の原子価を調整して1種の有価金属の塩が常磁性に
なり得る原子価に調整して常磁性有価金属塩と非磁性有
価金属塩とを液中に生成させれば、常磁性有価金属塩を
選択的に磁気分離できる。さらに非磁性金属の塩を含む
液に対し、再び原子価調整処理,磁気生成物生成処理,
分離処理を繰返して分離すべき有価金属の塩を順次選択
的に磁気分離して回収できる。
Paramagnetic metal salts can be magnetically separated and collected. First
The figure shows the outline of the processing according to the present invention. When the liquid contains two or more kinds of valuable metal ions, a valence adjustment treatment is further performed as a pretreatment of the magnetic product generation treatment, and the valence of each metal is adjusted so that a salt of one valuable metal is obtained. The paramagnetic valuable metal salt can be selectively magnetically separated by adjusting the valence to be paramagnetic and generating the paramagnetic valuable metal salt and the nonmagnetic valuable metal salt in the liquid. Furthermore, for liquids containing salts of non-magnetic metals, valence adjustment treatment, magnetic product generation treatment,
By repeating the separation treatment, the salts of valuable metals to be separated can be sequentially magnetically separated and collected.

〔実施例〕〔Example〕

以下に本発明の実施例を示す。 Hereinafter, examples of the present invention will be described.

核燃料再処理過程における水溶液系はいずれも強い酸
性であるため、この条件の下で常磁性錯体を形成する有
価金属イオンCe,Nd,Uの酸塩を合成した。
Since the aqueous solutions in the process of reprocessing nuclear fuel are all strongly acidic, salts of valuable metal ions Ce, Nd, and U that form paramagnetic complexes were synthesized under these conditions.

実験は、まず、上記金属イオンの化合物をそれぞれ1
規定の硝酸を含む液中に溶解させ、次いでH2C2O4を加
え、各々の酸塩、Ce2(C2O4)3・9H2O,Nd2(C2O4)3・10H
2O及びU(C2O4)2・6H2Oを生成させた。第2図にこれら
酸塩の磁化率−温度特性を示す。図に明らかなとおり、
温度の低下とともに単調に磁化率が増大し、この温度領
域でほぼ正常な常磁性を示すことが判る。
In the experiment, first, 1 each of the above-mentioned metal ion compounds was used.
Dissolved in a liquid containing a prescribed nitrate, followed by H 2 C 2 O 4 was added, each of the salts, Ce 2 (C 2 O 4 ) 3 · 9H 2 O, Nd 2 (C 2 O 4) 3 · 10H
2 O and U (C 2 O 4 ) 2 .6H 2 O were produced. FIG. 2 shows the magnetic susceptibility-temperature characteristics of these acid salts. As you can see in the figure,
It can be seen that the magnetic susceptibility increases monotonously with a decrease in temperature, and exhibits almost normal paramagnetism in this temperature range.

上記処理によって得られたNd2(C2O4)3・10H2O(酸
ネオジウム)を含む溶液について、強磁性金属繊維フィ
ルター充填カラムに液を通し、下記条件によって磁気分
離を行った。なお、被検液中に含まれるNdは1000ppm,C2
O4は1500ppmである。
The solution containing Nd 2 (C 2 O 4 ) 3 · 10H 2 O (neodymium acid) obtained by the above treatment was passed through a column filled with a ferromagnetic metal fiber filter, and magnetic separation was performed under the following conditions. Nd contained in the test solution was 1000 ppm, C 2
O 4 is 1500 ppm.

実験条件 印加磁界強度 1.5T 流速 13ml/min 強磁性金属繊維フィルター充填率 4.5% 強磁性金属繊維フィルター材質 sus430 上記実験によれば液中より94.2%の捕集率でNd2(C
2O4)3を捕集できた。他の成分の酸塩についても同じ
要領で磁気的に捕集できるのはいうまでもない。
Experimental condition Applied magnetic field strength 1.5T Flow velocity 13 ml / min Ferromagnetic metal fiber filter packing rate 4.5% Ferromagnetic metal fiber filter material sus430 According to the above experiment, Nd 2 (C
2 O 4 ) 3 could be collected. It goes without saying that the acid salts of other components can be magnetically collected in the same manner.

また、酸ネオジウム(Nd2(C2O4)3・10H2O)は第2図
に明らかなとおり、200〜270゜Kの温度領域では酸ウラ
ンU(C2O4)2と類似した傾向の常磁性を示している。又、
上記4価のUと6価のPUとは同様の電子状態にあり、6
価PUの酸塩PU(C2O4)3も同様の常磁性を示すと考えら
れる。
In addition, neodymium acid (Nd 2 (C 2 O 4 ) 3 · 10H 2 O) was similar to uranium acid U (C 2 O 4 ) 2 in the temperature range of 200 to 270 ° K, as is clear from Fig. 2. It shows a trend of paramagnetism. or,
The above-mentioned 4-valent U and 6-valent P U have the same electronic state,
It is considered that the valence P U salt P U (C 2 O 4 ) 3 also exhibits similar paramagnetism.

ウランは4価、6価の原子価をとり得るが、常磁性を
示すのは4価の塩である。もっとも、水溶液中のイオン
状態にあるウランは殆ど6価であり、(UO2)2+として存
在していることが知られている。
Uranium can have tetravalent and hexavalent valences, but it is a tetravalent salt that exhibits paramagnetism. However, it is known that uranium in an ionic state in an aqueous solution is almost hexavalent and exists as (UO 2 ) 2+ .

一方、プルトニウムは3価、4価、6価の原子価をと
り得るが、いずれも常磁性を示す。
On the other hand, plutonium can have trivalent, tetravalent, and hexavalent atomic valences, but all exhibit paramagnetism.

上記酸ウランU(C2O4)2のウランの原子価は4価であ
るため、常磁性を示しているが、核燃料再処理過程にお
ける核分裂生成物(FP)中に含まれるUとPUとについ
て、例えばUを6価に調整し、PUを3,4,6価のいずれか
に調整することにより、上記Nd2(C2O4)3の磁気分離と同
様の処理により、Uを非磁性体に、PUを磁性体に改質し
て両者を分離できることは明らかである。
Since the uranium valence of the above uranium acid U (C 2 O 4 ) 2 is tetravalent, it shows paramagnetism, but U and P U contained in fission products (FP) in the nuclear fuel reprocessing process With respect to and, for example, by adjusting U to hexavalent and adjusting P U to any of 3,4,6, the same treatment as the magnetic separation of Nd 2 (C 2 O 4 ) 3 described above is performed. It is clear that the two can be separated by modifying P to a non-magnetic substance and P U to a magnetic substance.

すなわち、第1図に示すように使用済核燃料を硝酸溶
液に溶解した不揮発性核分裂生成物の殆どを含有する水
溶液にリン酸トリブチル等を用いた溶媒抽出除染処理を
適用し、まずUとPUとを除く他の成分を分離除去する。
次に溶液中にNaNO3を投入し、Uの原子価を6価、PU
原子価を4価に調整した後、酸ナトリウムなどを添加
し、常磁性の酸プルトニウム(PU(C2O4)2)と非磁性
の酸ウラニル(UO2C2O4)を液中に生成させ、磁気分
離処理を行って両者を分離する。実施例に示すUとPU
の分離の場合には、PUは3価、4価、6価のいずれの原
子価の状態においても常磁性を示すために、必然的にPU
を常磁性生成物、Uを非磁性生成物として分離すること
になるが、2種以上の有価金属を含む場合に、いずれの
成分も原子価によって常磁性、非磁性を示すときにはい
ずれか一方の成分を常磁性生成物に改質して選択的に分
離する。また、3種以上の成分分離を行うときには第1
成分をまず常磁性生成物に改質し、上記手順を繰返しつ
つ順次磁気分離を行えばよい。
That is, as shown in FIG. 1, a solvent extraction decontamination process using tributyl phosphate or the like is applied to an aqueous solution containing most of the non-volatile fission products obtained by dissolving spent nuclear fuel in a nitric acid solution. Other components except U and U are separated and removed.
Next, NaNO 3 was added to the solution to adjust the valence of U to 6 and the valence of P to 4 and then add sodium acid or the like to add the paramagnetic acid plutonium (P U (C 2 O 4 ) 2 ) and non-magnetic uranyl acid (UO 2 C 2 O 4 ) are generated in the liquid, and magnetic separation treatment is performed to separate the two. In the case of separating U and P U shown in the examples, since P U exhibits paramagnetism in any of the trivalent, tetravalent, and hexavalent states, P U is inevitable.
Will be separated as a paramagnetic product and U as a non-magnetic product. When two or more valuable metals are contained, when either component shows paramagnetic or non-magnetic depending on the valence, either The components are modified into paramagnetic products and selectively separated. Also, when separating three or more components, the first
The components may be first modified into paramagnetic products, and magnetic separation may be performed sequentially by repeating the above procedure.

なお、実施例に示したような核燃料再処理過程におい
て、実際にはウランは最も安定なウラニルイオン(UO2)
2+として常に存在しておりこの磁気的性質は非磁性であ
る。その磁化率は第2図に示した常磁性塩の1000分の1
程度である。従って実施例の場合には複雑な原子価調整
を必要としないで他の常磁性イオンと磁気的に分離精製
ができる。
In the nuclear fuel reprocessing process shown in the example, uranium is actually the most stable uranyl ion (UO 2 ).
It always exists as 2+ and its magnetic property is non-magnetic. Its magnetic susceptibility is 1/1000 of the paramagnetic salt shown in Fig. 2.
It is a degree. Therefore, in the case of Example, it is possible to magnetically separate and purify from other paramagnetic ions without requiring complicated valence adjustment.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば分離回収すべき成分の少
なくとも一つを常磁性に改質して磁気分離を可能ならし
めたため、処理操作がきわめて容易であり、従来の溶媒
抽出方法よりも処理に伴って排出される廃水・廃溶媒が
減少し、原子価調整の化学的操作のみによって溶媒劣化
生成物(第3相)に起因する回収障害を回避できる。も
っとも液中に既に常磁性金属塩の生成条件ができていれ
ば、特別の原子価調整の操作を要することなく特定の陰
イオンの添加により直ちに磁気分離が可能となる。本発
明は特に使用済核燃料の回収精製に適用して、効果的、
経済的に容易に、クリーンに再処理できる効果を有す
る。
As described above, according to the present invention, since at least one of the components to be separated and recovered is modified to be paramagnetic to enable magnetic separation, the treatment operation is extremely easy and the treatment is performed more than the conventional solvent extraction method. As a result, the amount of waste water / solvent discharged is reduced, and the recovery obstacle caused by the solvent deterioration product (third phase) can be avoided only by the chemical operation for adjusting the valence. However, if the conditions for forming the paramagnetic metal salt have already been established in the liquid, magnetic separation can be immediately performed by adding a specific anion without requiring a special valence adjustment operation. The present invention is particularly effective when applied to the recovery and purification of spent nuclear fuel,
It has the effect that it can be economically easily reprocessed cleanly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を用いた使用済核燃料再処理工程のチャ
ートを示すブロック図、第2図は金属酸塩の磁化率−
温度特性を示す図、第3図は従来の使用済核燃料再処理
工程のチャートを示す図である。
FIG. 1 is a block diagram showing a chart of a spent nuclear fuel reprocessing process using the present invention, and FIG. 2 is a magnetic susceptibility of a metal salt.
FIG. 3 is a diagram showing temperature characteristics, and FIG. 3 is a diagram showing a chart of a conventional spent nuclear fuel reprocessing step.

フロントページの続き (56)参考文献 特開 昭61−194122(JP,A) 特開 昭56−58935(JP,A) 米国特許4726895(US,A) 国際公開84/01503(WO,A)Continuation of the front page (56) Reference JP-A-61-194122 (JP, A) JP-A-56-58935 (JP, A) US Patent 4726895 (US, A) International Publication 84/01503 (WO, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気生成物生成処理と、分離処理とを有す
る有価金属の回収方法であって、 磁気生成物生成処理は、有価金属イオンを含有する液中
に酸性条件の下で陰イオンを添加して常磁性金属塩の生
成条件を液中に形成する処理であり、 分離処理は、磁気生成物の生成処理によって液中に生成
した常磁性金属塩を液中から磁気分離する処理であるこ
とを特徴とする有価金属の回収方法。
1. A method of recovering a valuable metal, which comprises a magnetic product generation treatment and a separation treatment, wherein the magnetic product generation treatment is carried out by adding an anion to a liquid containing the valuable metal ion under acidic conditions. Addition is a process of forming paramagnetic metal salt in the liquid under the conditions for producing paramagnetic metal salt. Separation is a process of magnetically separating from the liquid the paramagnetic metal salt produced in the liquid by the process of producing magnetic products. A method for recovering valuable metals, which is characterized in that
【請求項2】原子価調整処理と、磁気生成物生成処理
と、分離処理とを有する有価金属の回収方法であって、 原子価調整処理は、2種以上の有価金属イオンを含有す
る液中に酸性条件の下で1種の有価金属の原子価を、そ
の塩が常磁性になり得る原子価に調整する処理であり、 磁気生成物生成処理は、原子価調整処理後の液中に酸性
条件の下で陰イオンを添加して常磁性金属塩と非磁性金
属の塩との生成条件を液中に形成する処理であり、 分離処理は、磁気生成物生成処理によって液中に生成し
た常磁性金属塩を液中から選択的に磁気分離する処理で
あり、 原子価調整処理と、磁気生成物生成処理と、分離処理と
は、分離すべき有価金属イオンの種類に応じて繰返し行
うものであることを特徴とする有価金属の回収方法。
2. A method for recovering a valuable metal, which comprises a valence adjustment treatment, a magnetic product production treatment, and a separation treatment, wherein the valence adjustment treatment is performed in a liquid containing two or more kinds of valuable metal ions. Is a process for adjusting the valence of one valuable metal under acidic conditions to a valency at which its salt can become paramagnetic. The magnetic product formation process is an acid treatment in the liquid after the valence adjustment process. Anion is added under the conditions to form in the liquid a condition for forming a paramagnetic metal salt and a salt of a non-magnetic metal. This is a treatment for selectively magnetically separating a magnetic metal salt from a liquid.Valence adjustment treatment, magnetic product generation treatment, and separation treatment are performed repeatedly according to the type of valuable metal ion to be separated. A method for recovering valuable metals, characterized by being present.
JP62078876A 1987-03-31 1987-03-31 How to recover valuable metals Expired - Lifetime JP2530150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078876A JP2530150B2 (en) 1987-03-31 1987-03-31 How to recover valuable metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078876A JP2530150B2 (en) 1987-03-31 1987-03-31 How to recover valuable metals

Publications (2)

Publication Number Publication Date
JPS63242929A JPS63242929A (en) 1988-10-07
JP2530150B2 true JP2530150B2 (en) 1996-09-04

Family

ID=13674016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078876A Expired - Lifetime JP2530150B2 (en) 1987-03-31 1987-03-31 How to recover valuable metals

Country Status (1)

Country Link
JP (1) JP2530150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476216B2 (en) 2002-10-15 2009-01-13 Nippon Shika Yakuhin Co., Ltd. Electric syringe for dental anesthetic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500460B (en) * 2011-09-26 2014-04-30 中国科学院过程工程研究所 Air-assist superparamagnetic extraction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476216B2 (en) 2002-10-15 2009-01-13 Nippon Shika Yakuhin Co., Ltd. Electric syringe for dental anesthetic

Also Published As

Publication number Publication date
JPS63242929A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
Choppin et al. Actinide separation science
Mathur et al. Extraction of actinides and fission products by octyl (phenyl)-N, N-diisobutylcarbamoylmethyl-phosphine oxide from nitric acid media
CA2084049C (en) Composition and process for decontamination of radioactive materials
CA1097925A (en) Method for the recovery of actinide elements from nuclear reactor waste
JP5948639B2 (en) Method for separating americium present in acidic aqueous phase or organic phase from other metal elements and its application
Birkett et al. Recent developments in the Purex process for nuclear fuel reprocessing: Complexant based stripping for uranium/plutonium separation
WO2001080251A2 (en) A method for isolating and purifying ?90y from 90¿strontium in multi-curie quantities
AU2001251607A1 (en) A method for isolating and purifying 90Y from 90strontium in multi-curie quantities
JP2530150B2 (en) How to recover valuable metals
JPH10115695A (en) Method for selective separation of actinoids (iii) and lanthanoids (iii)
US3122414A (en) Process for recovery of strontium values from fission product waste solutions
Donnet et al. Development of the SESAME process
Navratil et al. Removal of actinides from selected nuclear fuel reprocessing wastes
Choppin Separation processes for actinide elements
Jenkins Solvent extraction chemistry in the atomic energy industry—a review
RU2713010C1 (en) Method of purifying nitrate solutions from americium
Jarvenin Precipitation and crystallization processes
Bond et al. Methods for removal of actinides from high-level wastes
US2899452A (en) Thorium oxalate-uranyl acetate cou-
JP3159887B2 (en) Reprocessing of spent nuclear fuel
JP4395589B2 (en) Method for selectively separating and recovering uranium (VI) present in aqueous solution with branched N, N-dialkylmonoamide
JP4036357B2 (en) Modification of actinide extraction solvents containing tridentate ligands
Tkachenko et al. Dynamic test of extraction process for americium partitioning from the PUREX raffinate
RU2540342C2 (en) Method of processing irradiated nuclear fuel
JP3159220B2 (en) Method for recovering uranium, plutonium and neptunium from spent nuclear fuel