JP4036357B2 - Modification of actinide extraction solvents containing tridentate ligands - Google Patents

Modification of actinide extraction solvents containing tridentate ligands Download PDF

Info

Publication number
JP4036357B2
JP4036357B2 JP2002129673A JP2002129673A JP4036357B2 JP 4036357 B2 JP4036357 B2 JP 4036357B2 JP 2002129673 A JP2002129673 A JP 2002129673A JP 2002129673 A JP2002129673 A JP 2002129673A JP 4036357 B2 JP4036357 B2 JP 4036357B2
Authority
JP
Japan
Prior art keywords
extraction
todga
solvent
phase
dodecane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129673A
Other languages
Japanese (ja)
Other versions
JP2003322699A (en
Inventor
勝一 館盛
祐二 佐々木
Original Assignee
独立行政法人 日本原子力研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人 日本原子力研究開発機構 filed Critical 独立行政法人 日本原子力研究開発機構
Priority to JP2002129673A priority Critical patent/JP4036357B2/en
Publication of JP2003322699A publication Critical patent/JP2003322699A/en
Application granted granted Critical
Publication of JP4036357B2 publication Critical patent/JP4036357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、使用済み核燃料中のネプツニウム(Np)、アメリシウム(Am)やキュリウム(Cm)等のマイナーアクチノイド(MA)を効果的に抽出・分離・除去する技術に関するものである。
【0002】
【従来の技術】
使用済み核燃料の再処理によってウランとプルトニウムを分離・回収した後のいわゆる高レベル放射性廃液中には様々な放射性元素が含まれている。高レベル放射性廃棄物の処理・処分において特に問題となるのは、半減期が非常に長く放射能毒性の大きなネプツニウム(Np)やアメリシウム(Am)、キュリウム(Cm)等のMAである。これら元素の選択的除去が可能となれば、高レベル放射性廃棄物の処理・処分に伴う長期間の環境影響の心配は大幅に低減される。そのため、世界各国においては、過去数十年間にわたってMAの分離・除去の研究が続けられてきた。
【0003】
ここで主として問題となるのは、高レベル放射性廃液中にAmやCmと共にその数十倍量も存在する希土類元素(Ln)である。このLnは溶液中においては3価が安定であり、同様に3価として安定に存在するMA(III)と化学的性質が類似し、分離が困難である。MAをそのまま高レベル放射性廃液から直接分離できることが最も好ましいが、それは非常に困難なので、現在各国ともまずMAをLnと共に高レベル放射性廃液から一括して分離回収し、それから両者の分離を行うという方策を指向している。
【0004】
MAとLnとを一括して抽出・分離する抽出剤として米国ではオクチル(フェニル)−N,N−ジイソブチルカルバモイルメチルホスフィン オキサイド(octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide) (CMPO)が開発され、これを用いた分離プロセスであるTRUEX法が開発された。
【0005】
またフランスではN,N’−ジメチル−N,N’−ジブチルテトラデシルマロンアミド(N,N'-dimethyl-N,N'-dibutyltetradecylmalonamide) (DMDBTDMA)のようなジアミド型抽出剤の研究が行われ、これを用いる分離プロセスであるDIAMEX法が開発された。
【0006】
またわが国においては最近日本原子力研究所においてDMDBTDMAの抽出能を遥かに上回る性能を有する抽出剤であるTODGAが開発された(館盛勝一・日本原子力学会誌・42巻、1124-1129 (2000年))。これらの抽出剤ではMAとLnとが3M程度の濃度の硝酸水溶液である高レベル放射性廃液中より一括して抽出・分離され、稀薄濃度の硝酸中に逆抽出される。
【0007】
一方、このような逆抽出液からMAを選択的に抽出することによりLnとの分離を達成する抽出剤の探索も各国で行われてきた。中国のZhuらはCyanex 301の主成分であるビス(2,4,4’−トリメチルフェニル)ジチオホスフィン酸(bis(2,4,4'-trimethylpentyl)dithiophosphinic acid)がこのような目的に適していることを見出した(Solvent Extraction Ion Exchange, 14巻、61-68 (1996年))。ユーロピウム(Eu)からのAmの分離係数は6,000以上と報告されている。しかしこのCyanex 301は空気により容易に酸化を受け易く、場合によっては1週間程度で酸化されることにより両者の分離機能を失う。
【0008】
一方、ドイツのKolarikらは2,6−ジ(5,6−ジプロピル−1,2,4−トリアジン−3−イル)ピリジン)(2,6-di(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine :DPTP)がこのような目的に適した抽出剤であることを見出した(Solvent Extraction Ion Exchange, 17巻、1155-1170 (1999年))。しかしこの抽出剤は合成が煩雑で、抽出中に沈殿物を生ずるなどの問題点を抱えている。
【0009】
上で述べたMAとLnの一括抽出分離の場合、対象高レベル廃棄物中に含まれるLnの総量はAm+Cmの量の数十倍であり、抽出剤の抽出容量が問題となる。すなわち、抽出工程における有機相への金属装荷量が大きいならば、有機溶媒の流量が少なくて済む。しかしながら多くの抽出系においては、有機溶媒中の金属濃度がある程度大きくなると、有機相は、金属が濃縮された重い相と希釈剤が主な軽い相に分裂する。この様な重い相(第三相と呼ぶ)が生成すると抽出工程の物質収支が乱され運転の異常や所定の分離性能が得られない場合が生じる。
【0010】
第3相の生成を避けようとすると、有機溶媒への金属負荷量を化学量論から期待される量に比べ非常に低く抑えなければならない。上記のCMPOやDMDBTDMAのような二座配位抽出剤系でも、特に希釈剤にドデカンのような非極性溶媒を用いるために第三相の生成が大きな障壁となっている。しかしながら、両者とも第三相の生成を抑制するための対応策を採用している。すなわち、CMPOでは溶媒中にリン酸トリブチル(TBP)を添加して極性を上げ、またDMDBTDMAでは枝分かれパラフィンを希釈剤に採用することで第三相生成限界を緩和して所定の負荷容量を得ている。 日本原子力研究所が開発したTODGA抽出剤も、ドデカンを希釈剤に用いる系では、有機溶媒へのランタノイドの負荷量が増すと第三相を生成し、高レベル放射性廃液の処理に適用する際に、有機相の金属濃度を第三相が生成しない低濃度領域に抑えなければならず、所定の処理量を確保するには工程の溶媒流量を増さねばならず装置の規模が大きくなるという欠点を有している。
【0011】
Smithらは、N,N’ーテトラアルキルマロンアミドードデカン(N,N'-tetraalkylmalonamide-dodecane)抽出剤系において、第三相生成限界を緩和するための改質剤としてジアルキルモノアミド(dialkylmonoamide)を溶媒に添加した時の効果を報告した(Separation Sci. and Technol., 1997, 32(1-4),149-173.)。
【0012】
【発明が解決しようとする課題】
本発明は、ランタノイドやアクチノイドに対して大きな抽出能を有するTODGA−ドデカン抽出系の第三相生成を抑制することである。
【0013】
即ち、本発明は、ネプツニウム(Np)、アメリシウム(Am)やキュリウム(Cm)等のマイナーアクチノイド(MA)を効果的に抽出・分離・除去する技術に関するものである。ランタノイドやアクチノイドに対して大きな抽出能を有するN,N,N’N’−テトラオクチル−3−オキサペンタンジアミド(TODGA)-ドデカン抽出溶媒系を使用する際に、上記抽出系の第三相の生成を防ぐために、従来、溶媒量を増加し又は装置規模を大きくしなければならない欠点があった。しかし、本発明はかかる欠点を改良するものである。
【0014】
【課題を解決するための手段】
本発明者は、有機溶媒に抽出される金属錯体の溶解度が、溶媒の極性に大きく依存することを利用し、非極性溶媒であるドデカンに極性の大きな溶媒を混合することで、金属錯体の溶解性を改良する。具体的には、極性と脂溶性が大きくTODGAと類似のアミド基を有し、TODGAの抽出性能に大きな影響を及ぼさないジアルキルモノアミド(ここでは、N,N−ジヘキシル オクタンアミド:N,N-dihexyl octanamide: DHOA)を20〜40vol.パーセント加えて、TODGA-DHOA-ドデカン混合溶媒として用いると、第三相は生成しなくなる。
【0015】
【発明の実施の形態】
本発明は、 ドデカンを希釈剤として用い、N,N,N’N’−テトラオクチル−3−オキサペンタンジアミド(TODGA)等のジグリコールアミド抽出剤を主として用いる溶媒抽出系において、極性の高いジアルキルモノアミド(ここでは、DHOA)を20〜40体積パーセント加えることを特徴とするアクチノイドを溶媒抽出する際の抽出溶媒における改質法である。
【0016】
本発明において使用されるアクチノイドとランタノイドの抽出に有効な三座配位子とは多くの配位子の1種である。即ち、金属に結合してある化合物を生成する物質として配位子があるが、抽出剤もかかる配位子の一種である。配位子は金属と結合する時に1個の結合部位がある場合に単座配位子といい、2個以上の結合部位がある場合に二座、三座又は多座配位子といわれる。
【0017】
例えば、1個の金属イオンに3個の抽出剤が結合して金属錯体として有機相に抽出される場合、ML3(M:金属、L:配位子)としてその錯体を表記する。そこで、下記の実施例2の図2に示される場合、有機相の抽出剤が100%消費された時の有機相中の金属量(濃度)は抽出剤の量の1/3であり、これが化学量論に基づく値となる。図2では、抽出剤濃度が0.1Mの時の結果として0.1/3=0.033Mが化学量論に基づく飽和濃度となり、実際にその値に接近していることを示している。以下、本発明を実施例に基づいてさらに詳細に説明する。
【0018】
【実施例】
(実施例1)改質剤を添加しない抽出溶媒
0.1M TODGA/ドデカン、を用いて、硝酸水溶液からのネオジム: Nd(III)のバッチ抽出実験を行って、有機相のNd(III)の最高濃度を調べたところ、有機相のNd(III)負荷量を増すと第三相が生成し、この境界が最大負荷量を決定した。境界濃度として図1に示す結果が得られた。図1には水相の硝酸濃度(M)を横軸にとり、第三相が現れない有機相最大負荷量(M)を縦軸にとってある。この結果では、硝酸濃度が1〜3Mと高い系では、最大負荷量は、〜0.006M Nd(III)と非常に低い値となった。
【0019】
(実施例2)ドデカン溶媒の改質剤としてDHOAを0.5M〜1M加えた抽出溶媒 0.1M TODGA-DHOA/ドデカンを用いて、硝酸水溶液からのネオジム: Nd(III)のバッチ抽出実験を行って、有機相のNd(III)の最高濃度を調べた。その結果を図2に示す。第三相はいかなる濃度においても生成せず、有機相の飽和濃度は0.1M TODGA:〜0.033M Nd(III)となり、ほぼ金属錯体の化学量論(Nd:TODGA=1:3)に一致した。同様に0.2M TODGA:〜0.066M Nd(III)となった。以上のことから、この溶媒系は金属錯体の化学量論(Nd:TODGA=1:3)に一致して金属を抽出できることが示された。
【0020】
(実施例3)
改質剤であるDHOAの添加がTODGAの抽出特性に及ぼす影響を調べるために、0.1M TODGA/ドデカン溶媒系におけるアメリシウム:Am(III)のバッチ抽出実験を行った。その結果を図3に示す。ここでは、横軸は水相の平衡硝酸濃度、縦軸はAm(III)の分配比である。この分配比は有機相と水相における241Am(III)の放射能の比で示される。この図からわかる様に、この抽出系ではDHOAの添加はAm(III)の分配比を僅かだけ減少させるが、その効果は無視できるほど小さい。
【0021】
(実施例4)
改質剤であるDHOAが、主要な抽出剤であるTODGAの放射線分解に及ぼす影響を調べた結果を図4に示す。図には横軸にγ線照射線量(MGy)をとり、縦軸はTODGAの濃度(M)を示す。試料はTODGAを種々の希釈溶媒に溶かして0.1Mの溶液にしたものであり、100%ドデカンに溶かしたTODGAが最も大きな分解量を示した。それに対し、0.1M TODGA-1M DHOA/ドデカン溶液では、TODGAの分解量は100%ドデカン中におけるよりも相当抑制されていることがわかる。即ち、TODGA-DHOA/ドデカン溶液の方が、100%ドデカン溶液よりγ線照射によるTODGAの分解量が少ないことを示している。
【0022】
【発明の効果】
抽出過程で有機溶媒中の金属濃度が大きくなる場合、金属が濃縮された重い有機相(第三相)と稀釈剤が主な軽い相とが生ずるが、本発明においては、かかる第三相を生成させることなくマイナーアクチノイド(MA)の抽出、分離、除去が可能になる、という本発明に特有な顕著な効果が生ずる。
【図面の簡単な説明】
【図1】 N,N,N’,N’−テトラオクチル−3−オキサペンタンジアミド(TODGA)/ドデカンの溶媒抽出系を使用した場合の有機相におけるNd(III)の最高濃度(第三相の生成限界)の抽出結果を示した図である。
【図2】 N,N,N’,N’−テトラオクチル−3−オキサペンタンジアミド(TODGA)−N,N−ジヘキシルオクタンアミド(DHOA)/ドデカンの溶媒抽出系を使用した場合の有機相におけるNd(III)の最高濃度(第三相の生成限界)の抽出結果を示した図である。
【図3】 N,N,N’,N’−テトラオクチル−3−オキサペンタンジアミド(TODGA)単独溶媒系、TODGAとN,N−ジヘキシルオクタミド(DHOA)との混合溶媒抽出系について、Am(III)の抽出分配比がほぼ同じであることを示した図である。
【図4】 DHOAが、主要な抽出剤であるTODGAの放射線分解に及ぼす影響を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for effectively extracting, separating and removing minor actinides (MA) such as neptunium (Np), americium (Am) and curium (Cm) in spent nuclear fuel.
[0002]
[Prior art]
Various radioactive elements are contained in so-called high-level radioactive liquid waste after separation and recovery of uranium and plutonium by reprocessing spent nuclear fuel. Particularly problematic in the treatment and disposal of high-level radioactive waste is MA such as neptunium (Np), americium (Am), and curium (Cm), which have a very long half-life and are highly radioactive. If these elements can be selectively removed, the long-term environmental impacts associated with the treatment and disposal of high-level radioactive waste will be greatly reduced. For that reason, research on the separation and removal of MA has been continued in the world over the past several decades.
[0003]
The main problem here is rare earth elements (Ln), which are present in the high-level radioactive liquid waste by several tens of times as well as Am and Cm. This Ln is stable in trivalence in solution, and similarly has a chemical property similar to that of MA (III), which exists stably as trivalent, and is difficult to separate. It is most preferable to be able to separate MA directly from high-level radioactive liquid waste, but it is very difficult, so in each country, MA is first separated and collected from high-level radioactive liquid waste together with Ln, and then both are separated. Is oriented.
[0004]
In the United States, octyl (phenyl) -N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) has been developed as an extractant for extracting and separating MA and Ln in a lump. The TRUEX method, which is a separation process using this, was developed.
[0005]
In France, diamide-type extractants such as N, N'-dimethyl-N, N'-dibutyltetradecylmalonamide (DMDBTDMA) have been studied. The DIAMEX method, which is a separation process using this, was developed.
[0006]
In Japan, TODGA, an extractant with performance far exceeding that of DMDBTDMA, was recently developed at the Japan Atomic Energy Research Institute (Katsuichi Tatemori, Journal of the Atomic Energy Society of Japan, 42, 1124-1129 (2000)). ). In these extractants, MA and Ln are extracted and separated in a batch from high-level radioactive liquid waste, which is an aqueous nitric acid solution with a concentration of about 3M, and back extracted into dilute nitric acid.
[0007]
On the other hand, search for an extractant that achieves separation from Ln by selectively extracting MA from such a back-extracted solution has been conducted in various countries. China's Zhu et al. Recommend that bis (2,4,4'-trimethylphenyl) dithiophosphinic acid, the main component of Cyanex 301, is suitable for this purpose. (Solvent Extraction Ion Exchange, Vol. 14, 61-68 (1996)). The separation factor of Am from Europium (Eu) has been reported to be over 6,000. However, this Cyanex 301 is easily oxidized by air, and in some cases, it is oxidized in about one week and loses the separation function of both.
[0008]
On the other hand, Kolarik et al., 2,6-di (5,6-dipropyl-1,2,4-triazin-3-yl) pyridine) (2,6-di (5,6-dipropyl-1,2, 4-triazin-3-yl) pyridine: DPTP) was found to be an extractant suitable for such purposes (Solvent Extraction Ion Exchange, Vol. 17, 1155-1170 (1999)). However, this extractant is complicated to synthesize and has problems such as formation of precipitates during extraction.
[0009]
In the case of collective extraction separation of MA and Ln as described above, the total amount of Ln contained in the target high-level waste is several tens of times the amount of Am + Cm, and the extraction capacity of the extractant becomes a problem. That is, if the amount of metal loaded on the organic phase in the extraction process is large, the flow rate of the organic solvent is small. However, in many extraction systems, when the metal concentration in the organic solvent increases to some extent, the organic phase splits into a heavy phase enriched with the metal and a main light phase with the diluent. When such a heavy phase (referred to as a third phase) is generated, the mass balance of the extraction process is disturbed, and abnormal operation or predetermined separation performance may not be obtained.
[0010]
In order to avoid the formation of the third phase, the amount of metal loaded on the organic solvent must be kept very low compared to the amount expected from stoichiometry. Even in the above bidentate extractant systems such as CMPO and DMDBTDMA, a non-polar solvent such as dodecane is used as a diluent. However, both adopt measures to suppress the generation of the third phase. That is, CMPO adds tributyl phosphate (TBP) to the solvent to increase polarity, and DMDBTDMA uses branched paraffin as a diluent to reduce the third phase formation limit and obtain a predetermined load capacity. Yes. The TODGA extractant developed by the Japan Atomic Energy Research Institute also produces a third phase in the system using dodecane as a diluent when the lanthanoid load on the organic solvent increases, and is applied to the treatment of high-level radioactive liquid waste. The disadvantage is that the metal concentration of the organic phase must be kept in a low concentration region where the third phase is not generated, and the solvent flow rate of the process must be increased in order to secure a predetermined treatment amount, resulting in an increase in the scale of the apparatus. have.
[0011]
Smith et al. Used dialkylmonoamide as a modifier to alleviate the third-phase formation limit in N, N'-tetraalkylmalonamide-dodecane extractant system. The effect when added to a solvent was reported (Separation Sci. And Technol., 1997, 32 (1-4), 149-173.).
[0012]
[Problems to be solved by the invention]
The present invention is to suppress the formation of the third phase of the TODGA-dodecane extraction system having a large extraction ability for lanthanoids and actinoids.
[0013]
That is, the present invention relates to a technique for effectively extracting, separating and removing minor actinides (MA) such as neptunium (Np), americium (Am) and curium (Cm). When using the N, N, N′N′-tetraoctyl-3-oxapentanediamide (TODGA) -dodecane extraction solvent system, which has a large extraction capacity for lanthanoids and actinoids, Conventionally, in order to prevent the formation, there has been a drawback that the amount of solvent must be increased or the scale of the apparatus must be increased. However, the present invention improves upon such drawbacks.
[0014]
[Means for Solving the Problems]
The present inventor utilizes the fact that the solubility of a metal complex extracted in an organic solvent greatly depends on the polarity of the solvent, and mixes a highly polar solvent with dodecane which is a nonpolar solvent, thereby dissolving the metal complex. Improve sex. Specifically, a dialkyl monoamide ( here , N, N-dihexyl octanamide: N, N-dihexyl) that has a polarity and fat solubility and has an amide group similar to TODGA and does not greatly affect the extraction performance of TODGA. When 20 to 40 vol. percent of octanamide: DHOA) is added and used as a TODGA-DHOA-dodecane mixed solvent, the third phase does not form.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a highly polar dialkyl in a solvent extraction system using dodecane as a diluent and mainly using a diglycolamide extractant such as N, N, N′N′-tetraoctyl-3-oxapentanediamide (TODGA). A modification method in an extraction solvent for solvent extraction of an actinide, characterized by adding 20 to 40 volume percent of monoamide ( here, DHOA).
[0016]
The tridentate ligand effective in the extraction of actinides and lanthanoids used in the present invention is one of many ligands. That is, there is a ligand as a substance that forms a compound bonded to a metal, but an extractant is also a kind of such a ligand. A ligand is referred to as a monodentate ligand when there is one binding site when binding to a metal, and a bidentate, tridentate or multidentate ligand when there are two or more binding sites.
[0017]
For example, when three extractants bind to one metal ion and are extracted into the organic phase as a metal complex, the complex is expressed as ML 3 (M: metal, L: ligand). Therefore, in the case shown in FIG. 2 of Example 2 below, the amount of metal (concentration) in the organic phase when 100% of the organic phase extractant is consumed is 1/3 of the amount of the extractant. The value is based on stoichiometry. FIG. 2 shows that 0.1 / 3 = 0.033M is a saturated concentration based on stoichiometry as a result when the extractant concentration is 0.1M, and is actually approaching that value. Hereinafter, the present invention will be described in more detail based on examples.
[0018]
【Example】
(Example 1) Extraction solvent to which no modifier is added
Using 0.1M TODGA / dodecane, a batch extraction experiment of neodymium: Nd (III) from aqueous nitric acid was conducted to examine the maximum concentration of Nd (III) in the organic phase. Increasing the load produced a third phase, and this boundary determined the maximum load. The result shown in FIG. 1 was obtained as the boundary concentration. In FIG. 1, the concentration of nitric acid (M) in the aqueous phase is plotted on the horizontal axis, and the maximum organic phase load (M) at which the third phase does not appear is plotted on the vertical axis. As a result, in the system having a high nitric acid concentration of 1 to 3M, the maximum load amount was as low as ~ 0.006M Nd (III).
[0019]
(Example 2) An extraction solvent containing 0.5M to 1M of DHOA as a modifier of dodecane solvent 0.1M TODGA-DHOA / dodecane was used to conduct a batch extraction experiment of neodymium: Nd (III) from an aqueous nitric acid solution. The highest concentration of Nd (III) in the organic phase was examined. The result is shown in FIG. The third phase does not form at any concentration, and the saturation concentration of the organic phase is 0.1M TODGA: ~ 0.033M Nd (III), which almost agrees with the stoichiometry of the metal complex (Nd: TODGA = 1: 3). . Similarly, it became 0.2M TODGA: -0.066M Nd (III). These results indicate that this solvent system can extract metals in accordance with the stoichiometry of metal complexes (Nd: TODGA = 1: 3).
[0020]
(Example 3)
In order to investigate the effect of addition of the modifier DHOA on the extraction characteristics of TODGA, a batch extraction experiment of americium: Am (III) in 0.1M TODGA / dodecane solvent system was conducted. The result is shown in FIG. Here, the horizontal axis is the equilibrium nitric acid concentration of the aqueous phase, and the vertical axis is the distribution ratio of Am (III). This distribution ratio is indicated by the ratio of the radioactivity of 241 Am (III) in the organic and aqueous phases. As can be seen from this figure, in this extraction system, the addition of DHOA slightly reduces the distribution ratio of Am (III), but the effect is negligibly small.
[0021]
Example 4
FIG. 4 shows the results of examining the influence of the modifying agent DHOA on the radiolysis of TODGA, which is the main extractant. In the figure, the horizontal axis represents γ-ray irradiation dose (MGy), and the vertical axis represents TODGA concentration (M). Samples were prepared by dissolving TODGA in various dilution solvents to give a 0.1 M solution, and TODGA dissolved in 100% dodecane showed the largest amount of degradation. In contrast, in the 0.1M TODGA-1M DHOA / dodecane solution, it can be seen that the decomposition amount of TODGA is considerably suppressed compared to that in 100% dodecane. That is, it is shown that the TODGA-DHOA / dodecane solution has a smaller amount of TODGA degradation by γ-ray irradiation than the 100% dodecane solution.
[0022]
【The invention's effect】
When the metal concentration in the organic solvent is increased during the extraction process, a heavy organic phase enriched with metal (third phase) and a light phase mainly composed of a diluent are formed. The remarkable effect peculiar to the present invention that the extraction, separation and removal of minor actinides (MA) can be performed without generating them.
[Brief description of the drawings]
FIG. 1 shows the highest concentration of Nd (III) in the organic phase (third phase) when a solvent extraction system of N, N, N ′, N′-tetraoctyl-3-oxapentanediamide (TODGA) / dodecane is used. It is the figure which showed the extraction result of (the production | generation limit).
FIG. 2: In the organic phase when using a solvent extraction system of N, N, N ′, N′-tetraoctyl-3-oxapentanediamide (TODGA) -N, N-dihexyloctaneamide (DHOA) / dodecane It is the figure which showed the extraction result of the highest density | concentration (3rd generation | occurrence | production limit) of Nd (III).
FIG. 3 shows Am, N, N, N ′, N′-tetraoctyl-3-oxapentanediamide (TODGA) single solvent system, mixed solvent extraction system of TODGA and N, N-dihexyloctamide (DHOA). It is the figure which showed that the extraction distribution ratio of (III) is substantially the same.
FIG. 4 shows the effect of DHOA on the radiolysis of TODGA, the main extractant.

Claims (1)

ノルマルドデカン溶媒を希釈剤として用い、N,N,N’N’−テトラオクチル−3−オキサペンタンジアミドを抽出剤として用いて、高レベル放射性廃液中のアクチノイドを溶媒抽出する際の抽出溶媒系の改質方法において、前記抽出溶媒系にN,N−ジヘキシルオクタンアミドを 20 40 体積パーセント加えることにより、前記抽出溶媒系の有機相において金属が濃縮されて生成する重い相から成る第三相の生成を防ぐことを特徴とする、前記方法 Extraction solvent system for solvent extraction of high-level radioactive liquid waste using normal dodecane solvent as diluent and N, N, N′N′-tetraoctyl-3-oxapentanediamide as extractant In the reforming method, by adding 20 to 40 volume percent of N, N-dihexyloctaneamide to the extraction solvent system, a third phase consisting of a heavy phase formed by concentration of metals in the organic phase of the extraction solvent system Said method, characterized by preventing generation .
JP2002129673A 2002-05-01 2002-05-01 Modification of actinide extraction solvents containing tridentate ligands Expired - Fee Related JP4036357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129673A JP4036357B2 (en) 2002-05-01 2002-05-01 Modification of actinide extraction solvents containing tridentate ligands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129673A JP4036357B2 (en) 2002-05-01 2002-05-01 Modification of actinide extraction solvents containing tridentate ligands

Publications (2)

Publication Number Publication Date
JP2003322699A JP2003322699A (en) 2003-11-14
JP4036357B2 true JP4036357B2 (en) 2008-01-23

Family

ID=29543012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129673A Expired - Fee Related JP4036357B2 (en) 2002-05-01 2002-05-01 Modification of actinide extraction solvents containing tridentate ligands

Country Status (1)

Country Link
JP (1) JP4036357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534000B2 (en) * 2004-09-02 2010-09-01 独立行政法人 日本原子力研究開発機構 A method of back-extracting Am (III) and Pu (IV) in an organic solvent using a nitric acid solution having a concentration of 0.1 M or more in which an N, N-dipropyldiglycolamidic acid (PDGAA) compound is dissolved.
DE602006015068D1 (en) * 2006-10-17 2010-08-05 Ct Investig Energeticas Ciemat Bis-diglycolamides (BISDGA) as new extractants for lanthanoids ÄLa (III) Ü and actinide ÄAn (III) Ü in aqueous, highly radioactive waste
CN106929675A (en) * 2017-01-04 2017-07-07 北京科技大学 It is a kind of to be enriched with 14 kinds of methods of rare earth element respectively

Also Published As

Publication number Publication date
JP2003322699A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
Modolo et al. Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe
Kumari et al. A review on UREX processes for nuclear spent fuel reprocessing
US9051629B2 (en) Process for separating americium from other metallic elements present in an acidic aqueous or organic phase
Moyer Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19
US8475747B1 (en) Processing fissile material mixtures containing zirconium and/or carbon
US8753420B2 (en) Method for selectively recovering americium from a nitric aqueous phase
JP4524394B2 (en) Extraction method of americium and neodymium present in acidic solution
JP4056581B2 (en) Method for selective separation of actinide (III) and lanthanoid (III)
US5468456A (en) Batch extracting process using magneticparticle held solvents
JP4036357B2 (en) Modification of actinide extraction solvents containing tridentate ligands
Suneesh et al. Lanthanide–actinide separation by bis-2-ethylhexylphosphoric acid from citric acid–nitric acid medium
Lumetta et al. Combining octyl (phenyl)-N, N-diisobutyl-carbamoylmethylphosphine oxide and bis-(2-ethylhexyl) phosphoric acid extractants for recovering transuranic elements from irradiated nuclear fuel
Tkachenko et al. Dynamic test of extraction process for americium partitioning from the PUREX raffinate
JP4117491B2 (en) Method for back-extracting trivalent and tetravalent actinide ions in a separation process solvent into a highly concentrated nitric acid solution with N, N, N ', N'-tetraethyldiglycolamide
Marie et al. Development of a selective americium separation process using TPAEN as a water-soluble stripping agent
Bubenikova et al. Studies on Am (III) separation from simulated high-level waste using cobalt bis (dicarbollide)(1−) ion derivative covalently bound to N, N′-di-n-octyl diglycol diamide as extractant and DTPA as stripping agent
Wagner et al. AmSel, a new system for extracting only americium from PUREX raffinate
Westwood et al. Controlling Actinide Extraction Chemistry (Separation of Actinides from Lanthanides as Part of Nuclear Fuel Recycling)
Murali et al. Extraction of plutonium from acidic media using various phosphine oxides
Rudisill et al. Distribution of lanthanide and actinide elements between bis-(2-ethylhexyl) phosphoric acid and buffered lactate solutions containing selected complexants
JP2530150B2 (en) How to recover valuable metals
RU2620583C2 (en) Extraction mixture for extraction of actinides from nitric acid solutions
JP2005214706A (en) Method for selectively separating and recovering uranium (vi) existing in aqueous solution by branched n, n-dialkyl monoamide
Peng et al. Selective separation of rare earth, Sr, Mo, and Zr from simulated raffinate of uranium/plutonium co-purification process
Taylor et al. Complexation of lanthanides and actinides by acetohydroxamic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees