JPH01134297A - Method for recovering platinum group element from waste of nuclear fuel reprocessing - Google Patents

Method for recovering platinum group element from waste of nuclear fuel reprocessing

Info

Publication number
JPH01134297A
JPH01134297A JP62291862A JP29186287A JPH01134297A JP H01134297 A JPH01134297 A JP H01134297A JP 62291862 A JP62291862 A JP 62291862A JP 29186287 A JP29186287 A JP 29186287A JP H01134297 A JPH01134297 A JP H01134297A
Authority
JP
Japan
Prior art keywords
platinum group
fluoride
group elements
group element
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62291862A
Other languages
Japanese (ja)
Inventor
Koji Haneda
羽田 晃治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP62291862A priority Critical patent/JPH01134297A/en
Publication of JPH01134297A publication Critical patent/JPH01134297A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To separate and extract platinum groups from the insoluble residues generated in nuclear fuel reprocessing by converting platinum group elements to fluorides. CONSTITUTION:The insoluble residues 1 are heated together with gaseous O2/N2 3 and thereafter, gaseous fluorine is fed thereto to effect fluorination reaction in a fluorinating and evaporating device 2. The formed and evaporated gas is sent to a cooling condenser 7. The fluorides of the solidified platinum group elements (ruthenium, rhodium, palladium, etc.) are separated from the carrier gas to obtain fine particles 9 of the fluorides in a cyclone capturing device 8. The fine particles 9 of the fluorides are charged into a fused salt electrolytic bath 10 which has the fused salt compsn. consisting of 66mol.% LiF and 34mol.% BeF and is heated to a high temp. Electrolytic refining is executed by inserting an anode electrode 11 and a cathode electrode 12 into the bath. Platinum group element-deposited lumps 13 deposited on the cathode electrode 12 are stripped and recovered. The platinum group elements are economically and efficiently recovered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は核燃料再処理廃棄物からの白金族元素の回収方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for recovering platinum group elements from nuclear fuel reprocessing waste.

[従来の技術] 核燃料再処理プラントでは、原子炉から発生する使用済
核燃料を解体、剪断して硝酸などに溶解し、その後続工
程で核燃料物質(ウラン、プルトニウムなど)と核分裂
生成物(いわゆるもえ滓)を分離し、核燃料物質は燃料
加工工程などを経て再び核燃料として原子炉で再利用さ
れる。一方、核分裂生成物は長期にわたって放射能レベ
ルが極めて高いことから、生物圏とは隔離する必要があ
り、このためガラス固化/耐食性容器内への密封等の処
理が施された後、しかるべき施設で地中深く貯蔵・処分
されることになっている。しかし、これら核分裂生成物
の中には白金族元素に属する金属及びそれらに近い性質
を有する元素群が含まれており、その元素としてはモリ
ブデン、テクネチウム、ルテニウム、ロジウム、パラジ
ウムが挙げられる。これらの元素群は酸溶解工程でも余
り溶解せず、微粒子状で存在し、再処理の各工程を流れ
下って高レベル廃液タンクなどにスラッジ状態に蓄積さ
れることになる。更に、これらの元素群に加え燃料被覆
管剪断層、燃料被覆管外表面に付着していた水垢なども
酸溶解工程であまり溶解せずにスラッジ成分に入ってく
る。それらは総称して不溶性残渣と呼ばれている。この
不溶性残渣はその後のガラス固化処理によっても硼珪酸
ガラスマトリックスには均質な相としてガラス相に取り
込まれ難い性質を有するため高レベルガラス固化体の放
射性物質包蔵特性に著しい悪影響を与える。
[Conventional technology] In a nuclear fuel reprocessing plant, spent nuclear fuel generated from a nuclear reactor is dismantled, sheared, and dissolved in nitric acid, etc. In the subsequent process, nuclear fuel materials (uranium, plutonium, etc.) and fission products (so-called moe) are The slag) is separated, and the nuclear fuel material undergoes fuel processing and other processes and is reused as nuclear fuel in a nuclear reactor. On the other hand, since nuclear fission products have extremely high radioactivity levels over a long period of time, they need to be isolated from the biosphere. For this reason, after being treated by vitrification/sealing in a corrosion-resistant container, they must be placed in an appropriate facility. It will be stored and disposed of deep underground. However, these fission products include metals belonging to the platinum group elements and elements having properties similar to these metals, such as molybdenum, technetium, ruthenium, rhodium, and palladium. These elements do not dissolve much even in the acid dissolution process, and exist in the form of fine particles, which flow down through each reprocessing process and accumulate in a sludge state in high-level waste liquid tanks and the like. Furthermore, in addition to these elements, the shear layer of the fuel cladding tube, scales of water adhering to the outer surface of the fuel cladding tube, etc. are not significantly dissolved in the acid dissolution process and enter the sludge component. They are collectively called insoluble residues. This insoluble residue has a property that it is difficult to be incorporated into the glass phase as a homogeneous phase in the borosilicate glass matrix even during the subsequent vitrification treatment, and therefore has a significant adverse effect on the radioactive substance encapsulation properties of the high-level vitrified material.

[発明が解決しようとする問題点] 白金族元素(ルテニウム、ロジウム、パラジウム)は我
国にほとんど産出しないばかりでなく、世界的にみても
資源に乏しい上、産出国も偏在しており、極めて高価な
金属となっている。
[Problems to be solved by the invention] Platinum group elements (ruthenium, rhodium, palladium) are not only hardly produced in Japan, but also resources are scarce worldwide, and the countries where they are produced are unevenly distributed, making them extremely expensive. It is made of metal.

一方、使用済核燃料中には、ウラン、プルトニウムなど
の核分裂により生成する白金族元素が相当量台まれてお
り、もし、その全量が回収されれば我国消費量全体の数
十%以上にも相当するものとなり準国産資源として利用
していくことができる。
On the other hand, spent nuclear fuel contains a considerable amount of platinum group elements produced through nuclear fission, such as uranium and plutonium, and if all of this was recovered, it would account for more than several tens of percent of Japan's total consumption. It can be used as a quasi-domestic resource.

核燃料再処理で発生する高レベル廃棄物(不溶性残渣)
中に含まれる白金族の存在形態は今まで人類が経験して
いる天然鉱石中のそれとは全く性状の異なるものであり
、現在のところこれを分離抽出して回収する方法はまだ
開発されていない。
High-level waste (insoluble residue) generated during nuclear fuel reprocessing
The existence form of the platinum group contained therein is completely different from that in natural ores that humankind has experienced up until now, and a method to separate and extract it has not yet been developed. .

従って、本発明の目的は核燃料再処理で発生する不溶性
残渣から白金族元素を分離・抽出する方法を提供するに
ある。
Therefore, an object of the present invention is to provide a method for separating and extracting platinum group elements from insoluble residues generated during nuclear fuel reprocessing.

[問題点を解決するための手段] すなわち、本発明は(a)核燃料再処理操作で発生する
不溶性残渣とフッ素ガスを400〜600℃で反応させ
ることにより不溶性残渣中の白金族元素のみをフッ化・
揮発させて気相へ抽出し;(b)前記抽出工程で得られ
た白金族元素のフッ化物を同伴しているフッ素ガスを1
0℃以下の温度に冷却して白金族元素のフッ化物を固相
として凝縮・微粒子化させ;(C)フッ素ガスに同伴・
浮遊している白金族元素のフッ化物微粒子を固体−気体
分離装置により捕集し;(d)得られな白金族元素のフ
ッ化物微粒子を、溶融塩電解浴組成がLiF30〜67
モル%、B e F 270〜33モル%である溶融塩
電解浴へ投入し、白金族元素のフッ化物微粒子を溶解し
、次に、電解浴温度400〜600℃、電解精錬電圧1
.0〜10ボルトの範囲内で電解精錬を行ない、カソー
ド電極に白金族元素塊を析出させ、且つ(e)白金族元
素塊をカソード電極から剥離、回収することを特徴とす
る核燃料再処理操作で発生する不溶性残渣からの白金族
元素の回収方法に係る。
[Means for Solving the Problems] That is, the present invention (a) fluorine only the platinum group elements in the insoluble residue by reacting the insoluble residue generated in the nuclear fuel reprocessing operation with fluorine gas at 400 to 600°C.・
Volatize and extract into the gas phase; (b) 1 fluorine gas containing the platinum group element fluoride obtained in the extraction step;
Cooling to a temperature of 0°C or lower to condense and finely particulate the fluoride of platinum group elements as a solid phase; (C) entrainment with fluorine gas;
Collecting floating fluoride particles of platinum group elements by a solid-gas separator; (d) collecting the unobtained fluoride particles of platinum group elements in a molten salt electrolytic bath with a composition of LiF30 to 67;
mol%, B e F 270 to 33 mol% in a molten salt electrolytic bath to dissolve the fluoride fine particles of platinum group elements, and then the electrolytic bath temperature was 400 to 600°C, and the electrolytic refining voltage was 1.
.. A nuclear fuel reprocessing operation characterized by performing electrolytic refining within a range of 0 to 10 volts to deposit platinum group element lumps on the cathode electrode, and (e) peeling off and recovering the platinum group element lumps from the cathode electrode. This invention relates to a method for recovering platinum group elements from generated insoluble residue.

[作 用] 本発明方法で原料となる使用済核燃料の再処理で発生す
る不溶性残渣の総量は処理対象とする燃料の燃焼度など
により異なるが、燃料単位トン当たりおよそ2〜6kg
であり、その組成内訳は次の通りである。
[Function] The total amount of insoluble residue generated in the reprocessing of spent nuclear fuel as a raw material in the method of the present invention varies depending on the burnup of the fuel to be processed, but is approximately 2 to 6 kg per unit ton of fuel.
The composition breakdown is as follows.

超ウラン元素      :0.8〜3.7重量%白金
族元素(Moも含めて)ニア0〜95重量%被覆管剪断
屑など   =2.5〜14重景%また、白金族元素(
Moも含めて)の各元素別の構成割合は次のようになる
Transuranic elements: 0.8 to 3.7% by weight, platinum group elements (including Mo), 0 to 95% by weight, cladding tube sheared waste, etc. = 2.5 to 14% by weight, and platinum group elements (including Mo).
The composition ratio of each element (including Mo) is as follows.

Mo:10〜55重量% Ru:30〜50重量% Rh:1〜20重量% Pd:5〜10重量% T c : 2〜20重量% 本発明による白金族金属回収方法はフッ化・揮発装置、
サイクロン捕集装置、溶融塩電解精錬装置などを使用す
る。
Mo: 10-55% by weight Ru: 30-50% by weight Rh: 1-20% by weight Pd: 5-10% by weight Tc: 2-20% by weight The platinum group metal recovery method according to the present invention uses a fluorination/volatilization device. ,
Uses cyclone collection equipment, molten salt electrolytic refining equipment, etc.

まず、上述のような組成をもつ不溶性残渣が高レベル廃
液からtIi集され、フッ化・揮発装置に送られる。
First, insoluble residue having the above-mentioned composition is collected from the high-level waste liquid and sent to a fluoridation/volatization device.

このフッ化・揮発装置は不溶性残渣に含まれる白金族元
素とフッ素とを高温で反応させて沸点の低いフッ化物を
生成せしめ、これを揮発・ガス化して抽出するものであ
る。フッ化・揮発装置の操作温度は400〜600℃で
あり、その温度においてフッ素ガスと反応させると白金
族元素は揮発性のフッ化物に転換される。なお、白金族
元素のフッ化物の融点及び沸点の一例を以下に記載する
This fluorination/volatilization device reacts the platinum group elements contained in the insoluble residue with fluorine at high temperature to produce fluoride with a low boiling point, which is then extracted by volatilization and gasification. The operating temperature of the fluorination/volatization device is 400 to 600°C, and when reacted with fluorine gas at that temperature, the platinum group elements are converted to volatile fluorides. In addition, an example of the melting point and boiling point of a fluoride of a platinum group element is described below.

ムL似1−11仄止−−沸1B5p− MoFa    17.5     35RuFs  
  54     227RI+ F s〜6 70 
  約500フツ化物は上述のような沸点をもち、前記
操作温度ではほとんどのフッ化物はガス化されている。
MuL similar 1-11 stop--boiling 1B5p- MoFa 17.5 35RuFs
54 227RI+ F s~6 70
Approximately 500 fluoride has a boiling point as indicated above, and at the operating temperature most of the fluoride is gasified.

一方、不溶性残渣成分中の白金族元素以外の超ウラン元
素や被覆管剪断層は前記のような反応条件下でフッ化・
揮発することはないので、このフッ化・揮発工程であら
かたの白金族元素だけをフッ化物として分離・抽出する
ことができる。
On the other hand, transuranium elements other than platinum group elements and cladding shear layers in the insoluble residue components are fluorinated and oxidized under the above reaction conditions.
Since it does not volatilize, only all platinum group elements can be separated and extracted as fluorides in this fluorination/volatilization step.

上述のフッ化・揮発工程で得られたガス状の白金族元素
のフッ化物は反応ガスであるフッ素ガスに同伴されてサ
イクロン捕集装置に送られる。サイクロン捕集装置及び
これに付属する冷却凝縮器では、ガス状で送られてきた
白金族元素のフッ化物を融点以下の温度、例えば10℃
以下にまで急速に冷却して凝縮・固化して白金族元素の
フッ化物の微粒子状の凝固体とし、この凝固体をサイク
ロン捕集器で同伴ガスと分離して捕集する。同伴のフッ
素ガスは沸点が一188℃であるため気相に溜まり、ま
た、生成した微粒子状の凝固体は粒径0.01〜1.0
μ、密度2.0〜5.0y/am’を有するために、前
記サイクロン捕集装置において捕集される。なお、冷却
凝縮器におけるガス冷却温度は各白金族元素のフッ化物
の融点を充分に下回る必要性から10℃以下の温度を選
定することが好ましい。
The gaseous platinum group element fluoride obtained in the above-mentioned fluorination and volatilization step is sent to a cyclone collection device along with fluorine gas, which is a reaction gas. In the cyclone collection device and the cooling condenser attached thereto, the platinum group element fluoride sent in gaseous form is heated to a temperature below its melting point, e.g. 10°C.
It is rapidly cooled to a temperature below and condensed and solidified to form a fine particle-like solidified body of fluoride of a platinum group element, and this solidified body is separated from accompanying gas and collected in a cyclone collector. The entrained fluorine gas has a boiling point of 1188°C, so it accumulates in the gas phase, and the fine particle coagulation that is produced has a particle size of 0.01 to 1.0°C.
μ and a density of 2.0 to 5.0 y/am', it is collected in the cyclone collection device. Note that the gas cooling temperature in the cooling condenser is preferably selected to be 10° C. or lower because it needs to be sufficiently below the melting point of the fluoride of each platinum group element.

次に、上述のようにサイクロン捕集装置に捕集された微
粒子状の白金族元素のフッ化物はフッ化物溶融塩電解浴
に装入し、フッ化物溶融塩に溶解させる。フッ化物浴の
成分には融点、操作性、腐食性などの観点からLiF及
びBeF2を主成分として選定した。LiFとBeFz
の割合は電解精錬操作温度がなるべく低くし、操作温度
が400〜600℃程度になるようにとの条件から、第
1表のLiF−BeF、の相平衡図を使用して以下のよ
うに決定した。
Next, the particulate platinum group element fluoride collected in the cyclone collection device as described above is charged into a fluoride molten salt electrolytic bath and dissolved in the fluoride molten salt. LiF and BeF2 were selected as the main components of the fluoride bath from the viewpoint of melting point, operability, corrosivity, etc. LiF and BeFz
The ratio is determined as follows using the phase equilibrium diagram of LiF-BeF in Table 1, under the conditions that the electrolytic refining operation temperature is as low as possible and the operation temperature is about 400 to 600 ° C. did.

LiF  :30〜67モル% BeF2ニア0〜33モル% 白金族元素のフッ化物はフッ化物溶融塩に非常に良く溶
解し、また、溶解させることにより個々のフッ化物の揮
発性は著しく抑制される。操作温度は電解効率及び電解
速度の向上、融液の腐食性、揮発性の抑制の観点から浴
組成(LiFとBeF、の割合)で決まる液相温度から
液相温度+100℃までの温度、すなわち400〜60
0℃とする。
LiF: 30-67 mol% BeF2nia 0-33 mol% Fluorides of platinum group elements dissolve very well in molten fluoride salts, and by dissolving them, the volatility of individual fluorides is significantly suppressed. . The operating temperature is determined from the liquidus temperature to the liquidus temperature + 100°C, which is determined by the bath composition (ratio of LiF and BeF), from the viewpoint of improving electrolysis efficiency and electrolysis rate, and suppressing corrosivity and volatility of the melt. 400-60
The temperature shall be 0°C.

このようにして操作温度を設定後、電解浴に電極を挿入
し、直流電圧を印加して溶融塩電解精錬を開始する。電
解精錬に必要な最小セル電圧は以下に記載する反応にお
ける熱力学的函数から理論的に導くことができるが、実
際は電解精錬効率、電極過電圧などの工学的因子を加味
して1.0〜10ボルトを選定した。
After setting the operating temperature in this manner, electrodes are inserted into the electrolytic bath, and DC voltage is applied to start molten salt electrolytic refining. The minimum cell voltage required for electrolytic refining can be theoretically derived from the thermodynamic function in the reaction described below, but in reality it is 1.0 to 10, taking into account engineering factors such as electrolytic refining efficiency and electrode overvoltage. I chose the bolt.

M ”+ n −e−= M (陰極反応)nF″″ 
  −+n/2F2+n−e−(陽極反応)式中、Mは
白金族元素を表し、Fはフッ素元素を表す。
M ”+ n −e−= M (cathode reaction) nF″″
-+n/2F2+ne-e- (anodic reaction) In the formula, M represents a platinum group element, and F represents a fluorine element.

この場合、電解浴液に装荷する白金族元素フッ化物の量
は、その揮発性をできるだけ抑制し、また、電解浴液本
来の物理化学的性質を大きく変えないことと電解精錬効
率をできるだけ高くしたいとする要請から、電解浴液量
の0.5〜5%の範囲が適切である。
In this case, the amount of platinum group element fluoride loaded into the electrolytic bath should be controlled to suppress its volatility as much as possible, to not significantly change the original physicochemical properties of the electrolytic bath, and to increase the electrolytic refining efficiency as much as possible. In view of this requirement, a range of 0.5 to 5% of the amount of electrolytic bath liquid is appropriate.

また、耐熱性、耐食性、分極特性などを検討した結果、
アノード電極及び電解槽材質にはハステロイを選定し、
カソード電極材質にはオーステナイト系ステンレス鋼を
選定した。
In addition, as a result of examining heat resistance, corrosion resistance, polarization characteristics, etc.
Hastelloy was selected for the anode electrode and electrolytic cell material.
Austenitic stainless steel was selected as the cathode electrode material.

電解精錬終了後、カソード電極を引き上げて冷却し、カ
ソード電極に析出した白金族元素群の塊を剥離、回収す
る。これを充分に洗浄して付着している溶融塩を除去し
て白金族元素群を得ることができる。得られた白金族元
素群は必要に応じて元素側の分離、精製を行なって一般
の需要に供することができる。
After electrolytic refining is completed, the cathode is pulled up and cooled, and the platinum group elements deposited on the cathode are peeled off and collected. The platinum group elements can be obtained by thoroughly washing this to remove the attached molten salt. The obtained platinum group element group can be subjected to elemental separation and purification as required, and then provided for general demand.

[実 施 例] 及丸匠 本発明の1実施態様を第2図のフローシートに従って説
明する。
[Example] Takumi Oimaru One embodiment of the present invention will be described according to the flow sheet shown in FIG.

取扱いの便宜上からペレット状に固められている核燃料
再処理工程から回収された不溶性残渣(1)をフッ化・
揮発装置(2)に装荷した。フッ化反応を効率良く行な
うために前記ペレットを多段充填式に装填した。フッ化
・揮発袋! (2)内にまずo2/ N 2ガス(3)
を送りながら、加熱袋? (5)を用いて徐々に加熱し
、フッ化・揮発装置(2)内を550℃まで昇温し、次
に、ガス切換バルブ(6)を切換えてフッ素ガス(4〉
を送り、フッ化反応を行なった。こうして生成・揮発し
た白金族元素のフッ化物はフッ素ガスに同伴して排出さ
れ、次の冷却凝縮器(〕)に装入した。
Fluorinated and
It was loaded into the volatilizer (2). In order to carry out the fluorination reaction efficiently, the pellets were loaded in multiple stages. Fluoride/volatile bag! (2) First o2/N2 gas (3)
A heating bag while sending it? (5) to gradually heat the inside of the fluoridation/volatilization device (2) to 550°C, then switch the gas switching valve (6) to turn on the fluorine gas (4).
was sent to perform the fluorination reaction. The platinum group element fluoride thus generated and volatilized was discharged together with the fluorine gas and charged into the next cooling condenser ().

冷却凝縮器())へ流入してきたガスを10℃以下に冷
却すると、白金族元素のフッ化物は凝固して微粒子状と
なり、サイクロン捕集装置(8)のような固体−気体分
離装置により同伴ガスから分離・捕集され、白金族元素
のフッ化物微粒子が得られた。
When the gas flowing into the cooling condenser () is cooled to below 10°C, the fluorides of platinum group elements solidify into fine particles and are entrained by a solid-gas separator such as a cyclone collector (8). Fluoride particles of platinum group elements were obtained by separating and collecting from the gas.

次に、得られた白金族元素のフッ物微粒子(9)を所定
の温度に調整された溶融塩電解浴(10)へ投入して溶
解した。溶融塩組成はLiF:66モル%、BeFz:
34モル%とし、浴温度は550℃とした。
Next, the obtained fluoride fine particles (9) of a platinum group element were introduced into a molten salt electrolytic bath (10) adjusted to a predetermined temperature and dissolved therein. Molten salt composition is LiF: 66 mol%, BeFz:
The concentration was 34 mol%, and the bath temperature was 550°C.

次に、この溶融塩電解浴にアノード電極(11)及びカ
ソード電極(12)を挿入し、直流電圧として2.0ボ
ルトの電圧を印加して電解精錬を行なって白金族元素は
カソード電極(12)に析出させた。
Next, the anode electrode (11) and the cathode electrode (12) are inserted into this molten salt electrolytic bath, and electrolytic refining is performed by applying a voltage of 2.0 volts as a DC voltage. ) was precipitated.

白金族元素の析出が終了すると、セル電圧が急増し、こ
の時点を電解精錬操作の終点として電極を引き上げ、冷
却し、カソード環!(12)に析出した白金族元素析出
塊(13)を剥離、回収する0回収した白金族元素析出
塊(13)を充分に水洗して表面に付着している溶融塩
を除去すると、白金族元素群が得られた。この操作を通
しての総括回収率は90%以上であった。
When the precipitation of platinum group elements is completed, the cell voltage increases rapidly, and this point is considered the end point of the electrolytic refining operation.The electrode is pulled up, cooled, and the cathode ring is removed! Peel off and collect the platinum group element precipitated lump (13) precipitated in step (12).0 When the collected platinum group element precipitated lump (13) is sufficiently washed with water to remove the molten salt adhering to the surface, the platinum group element precipitated lump (13) is removed. A group of elements was obtained. The overall recovery rate through this operation was over 90%.

なお、サイクロン捕集装置(8)を出た排ガスはフッ素
ガススクラバー(14)により処理され、フッ素ガス(
15)とその他のフッ化物不純物に分けられ、フッ素ガ
ス(14)は回収して再利用され、また、その他のフッ
化物不純物は洗浄廃液(16)として排出される。
Note that the exhaust gas exiting the cyclone collection device (8) is treated by a fluorine gas scrubber (14), and is treated with fluorine gas (
15) and other fluoride impurities, the fluorine gas (14) is recovered and reused, and the other fluoride impurities are discharged as cleaning waste liquid (16).

[発明の効果] 本発明により核燃料再処理プラントで発生する高レベル
廃棄物(不溶性残渣)よりルテニウム、ロジウム、パラ
ジウムなどの白金族元素(有用貴金属)を経済的且つ効
率的に回収することができる。
[Effects of the invention] According to the present invention, platinum group elements (useful precious metals) such as ruthenium, rhodium, and palladium can be economically and efficiently recovered from high-level waste (insoluble residue) generated in nuclear fuel reprocessing plants. .

例えば、核燃料再処理プラントの処理能力を800トン
−07年とすると、そこで発生する不溶性残渣から本発
明方法により白金族元素を回収すると、ロジウム:約5
00 kg/年、ルテニウム:約2400 kg/年、
パラジウム:約1400 ky/年にも達し、本発明方
法の潜在的価値は非常に大きい。
For example, assuming that the processing capacity of a nuclear fuel reprocessing plant is 800 tons in 2007, if platinum group elements are recovered by the method of the present invention from the insoluble residue generated there, rhodium: approximately 5
00 kg/year, Ruthenium: approx. 2400 kg/year,
Palladium: reaching approximately 1400 ky/year, the potential value of the method of the present invention is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はLiF−BeF2の相平衡図であり、第2図は
本発明方法の1実施態様を示すフローシートである。 図中: 1・・・不溶性残渣   2・・・フッ化・揮発装置3
・・・N210□ガス  4・・・フッ素ガス5・・・
加熱装置    6・・・ガス切換バルブ7・・・冷却
凝縮器   8・・・サイクロン捕集装置9・・・白金
族元素のフッ化物微粒子 10・・・溶融塩電解浴  11・・・アノード電極1
2・・・カソード電極  13・・・白金族元素の析出
塊14・・・フッ素ガススクラバー 15・・・フッ素ガス   16・・・洗浄廃液特許出
願人 三菱原子カニ業株式会社 温度(’C) −m−に
FIG. 1 is a phase equilibrium diagram of LiF-BeF2, and FIG. 2 is a flow sheet showing one embodiment of the method of the present invention. In the figure: 1... Insoluble residue 2... Fluorination/volatilization device 3
...N210□ gas 4...Fluorine gas 5...
Heating device 6... Gas switching valve 7... Cooling condenser 8... Cyclone collection device 9... Fluoride fine particles of platinum group element 10... Molten salt electrolytic bath 11... Anode electrode 1
2... Cathode electrode 13... Precipitated mass of platinum group elements 14... Fluorine gas scrubber 15... Fluorine gas 16... Washing waste liquid patent applicant Mitsubishi Atomic Crab Industry Co., Ltd. Temperature ('C) - m-to

Claims (1)

【特許請求の範囲】 (a)核燃料再処理操作で発生する不溶性残渣とフッ素
ガスを400〜600℃で反応させることにより不溶性
残渣中の白金族元素のみをフッ化・揮発させて気相へ抽
出し; (b)前記抽出工程で得られた白金族元素のフッ化物を
同伴しているフッ素ガスを10℃以下の温度に冷却して
白金族元素のフッ化物を固相として凝縮・微粒子化させ
; (c)フッ素ガスに同伴・浮遊している白金族元素のフ
ッ化物微粒子を固体−気体分離装置により捕集し; (d)得られた白金族元素のフッ化物微粒子を、溶融塩
電解浴組成がLiF30〜67モル%、BeF_270
〜33モル%である溶融塩電解浴へ投入し、白金族元素
のフッ化物微粒子を溶解し、次に、電解浴温度400〜
600℃、電解精錬電圧1.0〜10ボルトの範囲内で
電解精錬を行ない、カソード電極に白金族元素塊を析出
させ;且つ(e)白金族元素塊をカソード電極から剥離
、回収することを特徴とする核燃料再処理操作で発生す
る不溶性残渣からの白金族元素の回収方法。
[Claims] (a) By reacting insoluble residue generated in nuclear fuel reprocessing operations with fluorine gas at 400 to 600°C, only the platinum group elements in the insoluble residue are fluorinated and volatilized and extracted into the gas phase. (b) Cooling the fluorine gas accompanied by the fluoride of the platinum group element obtained in the extraction step to a temperature of 10 ° C. or less to condense and finely particulate the fluoride of the platinum group element as a solid phase; (c) Collecting fine particles of fluoride of platinum group elements entrained and suspended in fluorine gas using a solid-gas separator; (d) The fine particles of fluoride of platinum group elements thus obtained are collected in a molten salt electrolytic bath. Composition is LiF30-67 mol%, BeF_270
The fluoride fine particles of the platinum group element were poured into a molten salt electrolytic bath with a concentration of ~33 mol%, and then the electrolytic bath temperature was raised to ~400 mol%.
Perform electrolytic refining at 600° C. and an electrolytic refining voltage within the range of 1.0 to 10 volts to deposit a platinum group element mass on the cathode electrode; and (e) peeling off and recovering the platinum group element mass from the cathode electrode. Features: A method for recovering platinum group elements from insoluble residues generated during nuclear fuel reprocessing operations.
JP62291862A 1987-11-20 1987-11-20 Method for recovering platinum group element from waste of nuclear fuel reprocessing Pending JPH01134297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62291862A JPH01134297A (en) 1987-11-20 1987-11-20 Method for recovering platinum group element from waste of nuclear fuel reprocessing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62291862A JPH01134297A (en) 1987-11-20 1987-11-20 Method for recovering platinum group element from waste of nuclear fuel reprocessing

Publications (1)

Publication Number Publication Date
JPH01134297A true JPH01134297A (en) 1989-05-26

Family

ID=17774389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62291862A Pending JPH01134297A (en) 1987-11-20 1987-11-20 Method for recovering platinum group element from waste of nuclear fuel reprocessing

Country Status (1)

Country Link
JP (1) JPH01134297A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102298A (en) * 1989-09-18 1991-04-26 Japan Atom Energy Res Inst Recovery of palladium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102298A (en) * 1989-09-18 1991-04-26 Japan Atom Energy Res Inst Recovery of palladium

Similar Documents

Publication Publication Date Title
US4814046A (en) Process to separate transuranic elements from nuclear waste
JPH03123896A (en) Recovery of actinides
JP3342968B2 (en) Reprocessing of spent fuel
JP3120002B2 (en) Reprocessing of spent fuel
McPheeters et al. Electrometallurgically treating metal, oxide, and al alloy spent nuclear fuel types
JP2000056075A (en) Recycling method for spent oxide fuel
JP5017069B2 (en) Reprocessing of spent fuel
JPH01134297A (en) Method for recovering platinum group element from waste of nuclear fuel reprocessing
JP4679070B2 (en) Method for reprocessing spent oxide fuel
CN113846355A (en) Method for controlling uranium-containing calcium fluoride slag
JPH09257985A (en) Reprocessing method for spent fuel
Butterworth Can we recycle fusion materials?
JPH07209483A (en) Chemical reprocessing method of spent fuel
US2865737A (en) Method of purifying uranium metal
JP2004028808A (en) Reprocessing method for spent fuel
JPH05188186A (en) Separation and recovery of depleted uranium from spent nuclear fuel
JP3910605B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
JPH1010285A (en) Reprocessing method for nuclear fuel
JP3030372B2 (en) How to separate fission-generated noble metals
JP2007101495A (en) Reprocessing method of spent nuclear fuel or radioactive waste
JPH01147025A (en) Method for recovering platinum element from waste of chemical reprocessing of spent nuclear fuel
Selvaduray et al. Survey of nuclear fuel reprocessing technologies
Bronson et al. Pyrochemical Treatment of Metals and Oxides
JP2941742B2 (en) Dry reprocessing of spent nuclear fuel
Boussier et al. Waste Minimization Study on Pyrochemical Reprocessing Processes