JP2966066B2 - How to separate fission-generated noble metals - Google Patents

How to separate fission-generated noble metals

Info

Publication number
JP2966066B2
JP2966066B2 JP22627490A JP22627490A JP2966066B2 JP 2966066 B2 JP2966066 B2 JP 2966066B2 JP 22627490 A JP22627490 A JP 22627490A JP 22627490 A JP22627490 A JP 22627490A JP 2966066 B2 JP2966066 B2 JP 2966066B2
Authority
JP
Japan
Prior art keywords
lead
palladium
fission
melting
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22627490A
Other languages
Japanese (ja)
Other versions
JPH04106499A (en
Inventor
奎爾 内藤
恒雄 松井
弘 中平
正俊 北川
浩 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA DAIGAKU GAKUCHO
Sumitomo Metal Mining Co Ltd
Original Assignee
NAGOYA DAIGAKU GAKUCHO
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA DAIGAKU GAKUCHO, Sumitomo Metal Mining Co Ltd filed Critical NAGOYA DAIGAKU GAKUCHO
Priority to JP22627490A priority Critical patent/JP2966066B2/en
Publication of JPH04106499A publication Critical patent/JPH04106499A/en
Application granted granted Critical
Publication of JP2966066B2 publication Critical patent/JP2966066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、使用済核燃料の再処理工程で発生する不溶
解残渣及び高レベル廃液中に含まれる核分裂生成貴金属
の分離方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for separating insoluble residues generated in a reprocessing step of spent nuclear fuel and fission-generated noble metals contained in high-level waste liquid.

〔従来の技術〕[Conventional technology]

使用済核燃料中には、燃料の組成,燃焼度及び冷却期
間等によって相違するが、主としてルテニウム(Ru),
ロジウム(Rh)及びパラジウム(Pb)等の核分裂生成貴
金属が含まれ、その含有量は全核分裂生成物の1/4にも
達する。これらの核分裂生成貴金属は、硝酸による再処
理工程を経ると不溶解残渣と高レベル廃液の双方に含ま
れるが、かかる核分裂生成貴金属を回収する方法として
鉛溶融による方法が知られている。先づ、高レベル廃液
中からの回収方法として、高レベル廃液を加熱脱硝した
後、ガラス形成剤,一酸化鉛,活性炭等の還元剤を混合
して1100〜1200℃で加熱溶融することにより、活性炭に
よって還元された金属鉛中に貴金属が回収され、一方、
超ウラン元素等はガラスに抽出される(例えば、Nuclea
r Teclnology Vol.65 May 1984又は日本原子力学会「19
89秋の大会」予稿集等)。又、不溶解残渣からの貴金属
の分離方法としては、不溶解残渣にガラス形成剤や金属
鉛を混合して550〜1100℃で加熱溶融することにより、
貴金属は鉛によって回収され、又、その他の超ウラン元
素がガラスによって抽出される(例えば、Journal of N
uclear Science and Technology vol.23,[6]1986日
本原子力学会「1985年年会」予稿集,又は日本原子力学
会「1989年年会」予稿集等)。上記方法によれば、核分
裂生成貴金属を効率よく回収でき、又、ガラスによって
分離された超ウラン元素がそのままガラス固化した状態
で処理することができる点でも優れている。このように
鉛溶融により回収されたルテニウム,ロジウム等を更に
相互分離する方法として乾式法と湿式法とがあるが、前
者では、鉛溶融により鉛合金として回収された貴金属を
亜鉛等の金属によって抽出し、その時の分配比の差で相
互分離を行ない、亜鉛中に抽出された貴金属が蒸留によ
り回収される。一方、湿式法では、鉛合金として回収さ
れた貴金属を酸に溶解し、この溶解した貴金属は溶媒抽
出法により相互分離される。
Spent nuclear fuel varies depending on fuel composition, burnup, cooling period, etc., but mainly ruthenium (Ru),
It contains fission-producing noble metals such as rhodium (Rh) and palladium (Pb), and its content is up to one-fourth of all fission products. These fission-generated noble metals are contained in both the insoluble residue and the high-level waste liquid after a reprocessing step with nitric acid. A method using lead melting is known as a method for recovering such fission-generated noble metals. First, as a method of recovering from high-level waste liquid, high-level waste liquid is heated and denitrified, then mixed with a reducing agent such as glass forming agent, lead monoxide, and activated carbon, and heated and melted at 1100 to 1200 ° C. Precious metals are recovered in metallic lead reduced by activated carbon, while
Transuranium elements are extracted into glass (for example, Nuclear
r Teclnology Vol.65 May 1984 or JAEA `` 19
89 Autumn Convention "Proceedings, etc.). In addition, as a method of separating the noble metal from the insoluble residue, by mixing a glass forming agent and metallic lead to the insoluble residue and heating and melting at 550 to 1100 ° C,
Noble metals are recovered by lead, and other transuranium elements are extracted by glass (eg, Journal of N
uclear Science and Technology vol.23, [6] Proceedings of the Atomic Energy Society of Japan, 1985 Annual Meeting, or Atomic Energy Society of Japan, 1989 Annual Meeting, etc.) According to the above method, the fission-generated noble metal can be efficiently recovered, and the transuranium element separated by the glass can be treated as it is in a vitrified state. As described above, there are a dry method and a wet method as methods for further separating ruthenium, rhodium, and the like recovered by lead melting. In the former, the noble metal recovered as a lead alloy by lead melting is extracted with a metal such as zinc. Then, mutual separation is performed based on the difference in the distribution ratio at that time, and the noble metal extracted in zinc is recovered by distillation. On the other hand, in the wet method, a noble metal recovered as a lead alloy is dissolved in an acid, and the dissolved noble metal is mutually separated by a solvent extraction method.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、従来の鉛溶融による核分裂生成貴金属
の回収方法では、特に放射能が強いルテニウムを単独で
分離することが難しく他の貴金属と同時に回収されざる
を得ないために、各貴金属元素毎に精製する際の操作が
極めて困難になるという問題があった。即ち、上記乾式
法による相互分離では、廃棄物の発生量が少なく装置が
コンパクトになる等の優れた点があるが、貴金属の相互
分離は極めて困難であった。又、湿式法の場合、鉛合金
として回収された貴金属を硝酸溶解したときに、パラジ
ウムは溶解するが、貴金属のうち最も価値が高いロジウ
ムはその大部分がルテニウムと共に残渣となり、該ロジ
ウムのみを分離することが不可能であった。このため次
工程で溶媒抽出を行なう際貴金属を溶液化しなければな
らず、従って化学的に安定なロジウムを溶液化し、しか
も同時にルテニウムと相互分離する操作は実質的に行な
い得なかった。
However, in the conventional method for recovering fission-generated noble metals by lead melting, it is particularly difficult to separate ruthenium, which has a strong radioactivity, by itself, and it must be recovered at the same time as other noble metals. There is a problem that the operation at the time becomes extremely difficult. That is, the mutual separation by the above-mentioned dry method has such advantages that the amount of waste is small and the apparatus is compact, but the mutual separation of noble metals is extremely difficult. In the case of the wet method, when the noble metal recovered as a lead alloy is dissolved in nitric acid, palladium is dissolved.However, most of the most valuable rhodium among the noble metals becomes a residue together with ruthenium, and only the rhodium is separated. It was impossible to do. For this reason, the precious metal had to be dissolved in the solvent extraction in the next step, so that chemically stable rhodium was dissolved in the solution, and at the same time, the operation of mutually separating it from ruthenium could not be substantially performed.

本発明は、かかる実情に鑑み、特にルテニウムをロジ
ウムやパラジウム等の他の貴金属から効率よく分離する
ことができ、しかも最も価値が高いロジウムを溶液化す
ることができて、溶媒抽出等の精製工程のために直接処
理可能の状態にし得る各分裂生成貴金属の分離方法を提
供することを目的とする。
In view of such circumstances, the present invention can efficiently separate ruthenium from other noble metals such as rhodium and palladium, and can form the most valuable rhodium into a solution, and purify the solution by solvent purification or the like. It is an object of the present invention to provide a method for separating each fission-produced noble metal which can be directly processed for the purpose.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による核分裂生成貴金属の分離方法は、不溶解
残渣及び高レベル廃液中に含まれる貴金属を鉛溶融法に
回収する時にビスマス又はパラジウムを添加すると共
に、得られた鉛合金を硝酸によって溶解することにより
行なわれる。
The method for separating fission-generated noble metal according to the present invention comprises adding bismuth or palladium when recovering the insoluble residue and the noble metal contained in the high-level waste liquid by the lead melting method, and dissolving the obtained lead alloy with nitric acid. It is performed by

又、鉛溶融時に添加するビスマス又はパラジウムは、
ロジウムに対する重量比が5倍以上、100倍以下の範囲
になっている。
In addition, bismuth or palladium added when melting lead is
The weight ratio to rhodium is in the range of 5 times or more and 100 times or less.

更に上記ビスマス又はパラジムウは、鉛溶融時に金属
鉛を用いる場合には金属の形態で、又、鉛溶融時に酸化
鉛を用いる場合には金属又は還元可能な酸化物の形態で
使用される。
Further, the above bismuth or palladium is used in the form of a metal when using lead metal when melting lead, and in the form of a metal or a reducible oxide when using lead oxide when melting lead.

〔作 用〕(Operation)

本発明方法によれば、核分裂生成貴金属を鉛溶融によ
り回収する時にビスマス又はパラジウムを添加するが、
これにより例えば貴金属のうちのロジウムは添加した上
記ビスマス等と金属間化合物を作って鉛中に分散する。
更に、これを硝酸溶解すると添加した元素が硝酸に溶解
するので金属間化合物を作っていたロジウムは微細の粒
子になり、活性化されて硝酸に溶融可能になる。一方、
ルテニウムは添加したビスマス等の元素や鉛とは金属間
化合物を作らないため、従って該ルテニウムは残渣とし
てそのまま残る。
According to the method of the present invention, bismuth or palladium is added when fission-generated noble metal is recovered by lead melting,
Thereby, for example, rhodium among the noble metals forms an intermetallic compound with the added bismuth or the like and is dispersed in lead.
Furthermore, when this is dissolved in nitric acid, the added element dissolves in nitric acid, so that rhodium, which has formed an intermetallic compound, becomes fine particles and is activated to be meltable in nitric acid. on the other hand,
Since ruthenium does not form an intermetallic compound with the added element such as bismuth or lead, the ruthenium remains as a residue.

又、上記添加すべきビスマス又はパラジウムは、ロジ
ウムに対する比率を一定範囲にすることにより、更に用
いる鉛の状態に応じてその形態を選定することにより、
ロジウムの相互分離を最も効率よく行なうことができ
る。
Further, the bismuth or palladium to be added, by setting the ratio to rhodium in a certain range, by further selecting the form according to the state of the lead used,
Rhodium can be separated most efficiently.

〔実施例〕〔Example〕

以下、本発明による核分裂生成貴金属の分離方法の第
一実施例を説明する。先づ、核分裂生成貴金属を回収す
べき不溶解残渣の組成は、核燃料の組成や燃焼度等によ
っても異なるが、軽水炉で生成する残渣の場合、その大
部分が貴金属で、モリブデン(Mo)とテクネチウム(T
c)を含む5元系の六方最密充填構造の合金である。そ
して、これらの合金中の元素モリブデン,テクネチウ
ム,ルテニウム,ロジウム及びパラジウムの原子の比率
(%)の例は概略Mo:Tc:Ru:Rh:Pb≒20:5:55:10:10(原
子%)のようであるが、本実施例ではモリブデン,ルテ
ニウム,ロジウム及びパラジウムの4元系の六方最密充
填構造の合金を模擬不溶解残渣として使用し、それらの
比率(原子%)はMo:Ru:Rh:Pb=20:60:10:10とした。
Hereinafter, a first embodiment of the method for separating fission-generated noble metals according to the present invention will be described. First, the composition of the insoluble residue from which fission-generated noble metals should be recovered depends on the composition and burnup of nuclear fuel, but in the case of residues generated in light water reactors, most of them are precious metals, molybdenum (Mo) and technetium. (T
It is an alloy having a pentagonal hexagonal close-packed structure including c). An example of the ratio (%) of the atoms of the elements molybdenum, technetium, ruthenium, rhodium and palladium in these alloys is roughly Mo: Tc: Ru: Rh: Pb ≒ 20: 5: 55: 10: 10 (atomic% However, in this embodiment, a quaternary hexagonal close-packed structure alloy of molybdenum, ruthenium, rhodium and palladium is used as a simulated insoluble residue, and their ratio (atomic%) is Mo: Ru. : Rh: Pb = 20: 60: 10: 10

鉛溶解条件は、模擬不溶解残渣に対してガラス形成剤
(ホウ酸ナトリウム)を10倍、金属鉛を50倍夫々加え、
又、該不溶解残渣中のロジウムに対してパラジウムを重
量比で5倍乃至100倍になるように添加した。そして、
これらを750〜1100℃の温度で加熱溶融せしめ、得られ
た鉛合金を硝酸(3N)で溶解したが、夫々の貴金属元素
の濃度をICP分析装置で測定した結果を次の表1に示
す。
The lead dissolution conditions were as follows: the glass forming agent (sodium borate) was added 10 times and the metallic lead was added 50 times to the simulated insoluble residue,
Also, palladium was added to the rhodium in the insoluble residue in a weight ratio of 5 to 100 times. And
These were heated and melted at a temperature of 750 to 1100 ° C., and the obtained lead alloy was dissolved with nitric acid (3N). The results of measurement of the concentration of each noble metal element by an ICP analyzer are shown in Table 1 below.

表1から明らかなように、ロジウムの溶解率はパラジ
ウム無添加の場合に比べて著しく高くなっており、しか
も添加したパラジウムの大部分が溶解した。一方、ルテ
ニウムはパラジウムの添加量に拘らず、ICP分析装置の
検出下限(0.1ppm)以下であり、その分離係数は10゜以
上の値になっている。
As is clear from Table 1, the dissolution rate of rhodium was significantly higher than that in the case where palladium was not added, and most of the added palladium was dissolved. On the other hand, ruthenium is below the lower limit of detection (0.1 ppm) of the ICP analyzer regardless of the amount of palladium added, and its separation factor is a value of 10 ° or more.

次に第二実施例においては、上記第一実施例のパラジ
ウムの代わりにビスマスを、ロジウムに対して重量比で
5倍乃至100倍になるように添加して行なった。この第
二実施例のICP分析装置による測定結果を次の表2に示
す。
Next, in the second embodiment, bismuth was added in place of the palladium of the first embodiment so that the weight ratio was 5 to 100 times that of rhodium. Table 2 below shows the measurement results obtained by the ICP analyzer of the second embodiment.

第二実施例の場合も、硝酸溶解時のロジウムの溶解率
は著しく高くなり、且つルテニウムはすべてICP分析装
置の下限以下になった。そしてルテニウムの分離係数は
104以上の値であり、又、溶融温度が750〜1100℃の範囲
で変化しても常に同様な結果が得られた。
Also in the case of the second embodiment, the dissolution rate of rhodium in dissolving nitric acid was extremely high, and all ruthenium was below the lower limit of the ICP analyzer. And the separation factor of ruthenium is
The value was 10 4 or more, and similar results were always obtained even when the melting temperature was changed in the range of 750 to 1100 ° C.

上記実施例において鉛溶融時に添加すべき元素は、ビ
スマス等の他に、ルテニウムとは合金化せずロジウム又
はパラジウムと合金化するものであればよいが、ビスマ
ス又はパラジウムが最適である。そして反応を促進させ
るために粒径が小さく不溶解残渣や高レベル廃液の脱硝
物とよく混合することが効果を高める上で好ましい。
又、添加すべきビスマス等の形態は、鉛溶融時に金属鉛
を用いる場合には、尚この場合、空気雰囲気又はアルゴ
ン,窒素等の不活性雰囲気下で十分行ない得るが、金属
の形態で使用することが好ましく、一方、酸化鉛を用い
る場合には、金属又は還元可能な酸化物の形態で使用す
ることが好ましい。更に、鉛溶融の際の加熱温度は600
〜1200℃の範囲であれば、上記実施例と同様な効果が得
られる。
In the above embodiment, the element to be added at the time of melting the lead is not limited to bismuth and the like, and may be any element that does not alloy with ruthenium but alloys with rhodium or palladium. Bismuth or palladium is most suitable. In order to promote the reaction, it is preferable to mix well with an insoluble residue or a high-level waste liquid denitration material having a small particle size in order to enhance the effect.
The form of bismuth or the like to be added can be sufficiently performed in an air atmosphere or an inert atmosphere such as argon or nitrogen in the case where metallic lead is used at the time of melting the lead. When lead oxide is used, it is preferably used in the form of a metal or a reducible oxide. Furthermore, the heating temperature when melting lead is 600
Within the range of -1200 ° C, the same effects as in the above embodiment can be obtained.

〔発明の効果〕〔The invention's effect〕

上述のように本発明方法によれば、使用済核燃料中の
核分裂生成貴金属の回収において、従来、相互分離不可
能であった各種貴金属、特にルテニウムを他の貴金属か
ら単独で分離することが、しかも該ルテニウムを残渣と
して他の貴金属を溶融の形で、溶媒抽出等の精製プロセ
ス以前の段階において高い分離係数で分離することがで
きる。従って、その後の精製工程において放射能に対す
る安全が向上すると共に精製工程自体を大幅に簡略化す
ることができる。又、精製工程の前処理として貴金属を
溶液化する必要があるが、本発明方法によればルテニウ
ムの分離と同時にロジウム及びパラジウムの溶液化が達
成される等の利点もある。
As described above, according to the method of the present invention, in the recovery of fission-generated noble metals in spent nuclear fuel, conventionally, various noble metals, particularly ruthenium, which could not be separated from each other, can be separately separated from other noble metals, and With the ruthenium as residue, other noble metals can be separated in a molten form with a high separation factor prior to a purification process such as solvent extraction. Therefore, the safety against radioactivity in the subsequent purification step is improved, and the purification step itself can be greatly simplified. In addition, it is necessary to convert a noble metal into a solution as a pretreatment in the purification step. However, according to the method of the present invention, there is an advantage that a solution of rhodium and palladium can be formed simultaneously with separation of ruthenium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北川 正俊 茨城県那珂郡東海村舟石川547―12 (72)発明者 岡田 浩 茨城県那珂郡東海村豊岡1873―2 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masatoshi Kitagawa 547-12 Funashikawa, Tokai-mura, Naka-gun, Ibaraki Prefecture (72) Inventor Hiroshi Okada 1873-2, Toyooka, Tokai-mura, Naka-gun, Ibaraki Prefecture

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】使用済核燃料の再処理工程で発生する不溶
解残渣及び高レベル廃液中に含まれる貴金属を鉛溶融法
により回収する時にビスマス又はパラジウムを添加する
と共に得られた鉛合金を硝酸によって溶解することによ
り、ルテニウムが残渣に、またパラジウム,ロジウム等
の貴金属が溶液になるようにしてルテニウムを分離する
ようにした核分裂生成貴金属の分離方法。
(1) When recovering the insoluble residue generated in the reprocessing step of spent nuclear fuel and the noble metal contained in the high-level waste liquid by the lead melting method, bismuth or palladium is added and the obtained lead alloy is treated with nitric acid. A method for separating fission-generated noble metals in which ruthenium is separated into a residue and ruthenium is separated by dissolving a noble metal such as palladium or rhodium into a solution.
【請求項2】鉛溶融時に添加すべき上記ビスマス又はパ
ラジウムは、核分裂生成貴金属のロジウムに対する重量
比が5倍以上100倍以下の範囲になるようにした特許請
求の範囲(1)に記載の核分裂生成貴金属の分離方法。
2. The fission according to claim 1, wherein the bismuth or palladium to be added at the time of melting the lead has a weight ratio of the fission-generated noble metal to rhodium in the range of 5 to 100 times. Separation method of generated noble metal.
【請求項3】鉛溶融時に添加すべき上記ビスマス又はパ
ラジウムは、鉛溶融時に金属鉛を用いる場合には、金属
の形態で、又、鉛溶融時に酸化鉛を用いる場合には、金
属又は還元可能な酸化物の形態で使用するようにした特
許請求の範囲(1)に記載の核分裂生成貴金属の分離方
法。
3. The bismuth or palladium to be added at the time of melting the lead is in the form of a metal when using metallic lead at the time of melting lead, or a metal or reducible when using lead oxide at the time of melting lead. The method for separating a fission-generated noble metal according to claim 1, wherein the method is used in the form of a simple oxide.
JP22627490A 1990-08-28 1990-08-28 How to separate fission-generated noble metals Expired - Lifetime JP2966066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22627490A JP2966066B2 (en) 1990-08-28 1990-08-28 How to separate fission-generated noble metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22627490A JP2966066B2 (en) 1990-08-28 1990-08-28 How to separate fission-generated noble metals

Publications (2)

Publication Number Publication Date
JPH04106499A JPH04106499A (en) 1992-04-08
JP2966066B2 true JP2966066B2 (en) 1999-10-25

Family

ID=16842643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22627490A Expired - Lifetime JP2966066B2 (en) 1990-08-28 1990-08-28 How to separate fission-generated noble metals

Country Status (1)

Country Link
JP (1) JP2966066B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887036B2 (en) * 1993-01-19 1999-04-26 住友金属鉱山株式会社 Separation and purification method of fission-generated noble metal
CN113528827B (en) * 2021-06-30 2023-01-31 济南恒誉环保科技股份有限公司 Method for separating precious metals from waste liquid phase organic matter by adopting thermal cracking

Also Published As

Publication number Publication date
JPH04106499A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
CA1337740C (en) Process to separate transuranic elements from nuclear waste
Naito et al. Recovery of noble metals from insoluble residue of spent fuel
WO2004048623A1 (en) Method for recovering trace elements from coal
US2778730A (en) Plutonium alloy and method of separating it from uranium
JPH03123896A (en) Recovery of actinides
JP2966066B2 (en) How to separate fission-generated noble metals
KR20150027259A (en) Process for separating at least one first chemical element e1 from at least one second chemical element e2 involving the use of a medium comprising a specific molten salt
US3034889A (en) Decontamination of uranium
Smith et al. Recovery of nonradioactive palladium and rhodium from radioactive waste
JP2887036B2 (en) Separation and purification method of fission-generated noble metal
US2914399A (en) Removal of certain fission product metals from liquid bismuth compositions
Goswami et al. Preconcentration and recovery of uranium and thorium from Indian monazite sand by using a modified fly ash bed
Naito et al. Recovery and mutual separation of noble metals from the simulated insoluble residue of spent fuel
JP2845413B2 (en) Reprocessing method of spent nitride fuel
JP6784369B2 (en) Separation and recovery method of long-lived nuclides contained in radioactive liquid waste
Jensen et al. Recovery and use of fission product noble metals
JPH07209483A (en) Chemical reprocessing method of spent fuel
Selvaduray et al. Survey of nuclear fuel reprocessing technologies
Monk The application of microchemical methods to radiochemical analysis: Part III. Solvent extraction of diethyldithiocarbamates and the radiochemical separation and purification of cobalt, nickel, palladium, silver and cadmium
US3148975A (en) Processing impure uranium
JP6515369B1 (en) Insoluble residue treatment process
RU2154318C1 (en) Method for extracting molybdenum from uranium base metal fuel
JPH06148390A (en) Separating method for fission product noble metal
Knighton et al. Purification of reactor fuels using liquid zinc
JPH07224333A (en) Dissolving method of noble metal

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term