JPH0310060B2 - - Google Patents

Info

Publication number
JPH0310060B2
JPH0310060B2 JP58089649A JP8964983A JPH0310060B2 JP H0310060 B2 JPH0310060 B2 JP H0310060B2 JP 58089649 A JP58089649 A JP 58089649A JP 8964983 A JP8964983 A JP 8964983A JP H0310060 B2 JPH0310060 B2 JP H0310060B2
Authority
JP
Japan
Prior art keywords
grain
grains
crushed
light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58089649A
Other languages
Japanese (ja)
Other versions
JPS59214742A (en
Inventor
Toshihiko Satake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP58089649A priority Critical patent/JPS59214742A/en
Publication of JPS59214742A publication Critical patent/JPS59214742A/en
Publication of JPH0310060B2 publication Critical patent/JPH0310060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain

Description

【発明の詳細な説明】 本発明は砕粒測定装置の改良に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to an improvement in a particle size measuring device.

搗精によつて砕米発生が多発すると食味を低下
させるばかりでなく搗精歩留を低下させることに
なる。したがつて常に砕粒の発生状況を検査しな
がら精米機の調整を行い極力少ない砕粒量におさ
める管理が必要である。
Frequent occurrence of broken rice due to milling not only reduces the taste but also reduces the milling yield. Therefore, it is necessary to constantly check the generation of crushed grains and adjust the rice milling machine to keep the amount of crushed grains as small as possible.

従来、精米中の砕粒の比率は精米機の排出口よ
り人為的に無作為に20Kgを抽出し米粒の長さが完
全粒の2/3から1/4までの粒を取出して砕粒比率を
計算し、その比率に応じて精米機の調整を行い精
米の品質管理を行つていた。たとえば、供試精米
を20Kg計り、米粒の長さを選別し、砕粒のみを計
量して重量比を算出し、比率の記録、砕粒の後処
理を行う従来の人為的な方法では搗精中の管理に
はすぐに間に合わないといつた欠点があり、搗精
中の品質管理に有効に役立てることができなかつ
た。
Conventionally, the ratio of crushed grains during rice milling was calculated by randomly extracting 20 kg from the outlet of the rice milling machine, taking out rice grains whose length was 2/3 to 1/4 of a full grain, and calculating the ratio of crushed grains. The quality of the rice was controlled by adjusting the rice milling machine according to the ratio. For example, the conventional artificial method of weighing 20 kg of sample milled rice, sorting the length of the rice grains, weighing only the crushed grains, calculating the weight ratio, recording the ratio, and post-processing the crushed grains is difficult to manage during milling. The disadvantage was that it could not be completed quickly, and it could not be used effectively for quality control during polishing.

本発明は上記の諸欠点を解消するもので、試料
精米から光学的に砕粒を自動的に測定し、また測
定した米粒の総粒数とその砕粒比率を短時間に表
示する高性能な自動化装置を開発して提供せんと
するものである。
The present invention solves the above-mentioned drawbacks, and is a high-performance automated device that automatically measures crushed grains optically from a sample of polished rice, and also displays the total number of measured rice grains and their crushed grain ratio in a short time. We aim to develop and provide this service.

本発明を実施例図について説明する。第1図お
よび第2図において、箱型機枠1の内部に横方向
に米粒を移送する送穀用条溝2を設けた振動送穀
樋3を横架状に設置し、その排出側に米粒を縦列
状に流下する流穀用条溝4を設けた傾斜状の流穀
樋5を連設し、該流穀樋5の側部に傾斜送穀樋6
を並列状に横架して該送穀樋6の排出口7を前記
送穀樋3を供給口8に連結し、また送穀樋6の低
位側受入部の上方に供給ホツパー9を設け、10
は傾斜送穀樋6の振動装置である。
The present invention will be explained with reference to embodiment figures. In FIGS. 1 and 2, a vibrating grain feeding trough 3 provided with grain feeding grooves 2 for laterally transferring rice grains is installed inside a box-shaped machine frame 1 in the form of a horizontal structure, and on the discharge side thereof. A slanted grain trough 5 provided with grain grooves 4 through which rice grains flow down in vertical rows is provided in series, and an slanted grain feeding trough 6 is installed on the side of the grain trough 5.
are laid horizontally in parallel, and the discharge port 7 of the grain feeding gutter 6 is connected to the grain feeding gutter 3 to the supply port 8, and a supply hopper 9 is provided above the lower receiving part of the grain feeding gutter 6, 10
is a vibration device for the inclined grain feeding trough 6.

次に、前記流穀樋6は、その流穀用条溝4内に
穀粒検出用透明部11を設け、該透明部11の上
下位置に光源12と受光素子13とをほぼ対向状
に配置し、前記透明部11を通過する米粒の透過
光線を受光する受光素子13を砕粒測定部14を
介して表示器15に電気的に連絡させてある。ま
た、前記流穀樋6に設けた透明部11の上流方向
に任意の所定距離Aを介して流速測定用透明窓1
6を設け、該透明窓16の上下位置に位置検出用
センサー17と光源18をほぼ対向状に配置し、
該検出用センサー17を導線によつて前記砕粒測
定部14に連結し、19は整粒の基準粒長を設定
する設定器である。
Next, the grain flow gutter 6 is provided with a grain detection transparent part 11 in the grain flow groove 4, and a light source 12 and a light receiving element 13 are arranged above and below the transparent part 11 in a substantially opposing manner. A light receiving element 13 that receives the transmitted light beam of the rice grains passing through the transparent part 11 is electrically connected to a display 15 via a grain measuring part 14. In addition, a transparent window 1 for flow velocity measurement is provided at an arbitrary predetermined distance A in the upstream direction of the transparent part 11 provided in the grain flow gutter 6.
6 is provided, and a position detection sensor 17 and a light source 18 are arranged above and below the transparent window 16 in a substantially opposing manner,
The detection sensor 17 is connected to the particle crushing measuring section 14 by a conductive wire, and 19 is a setting device for setting a reference particle length for particle size regulation.

第4図は、砕粒測定部14のブロツク図であ
り、砕粒測定部14の入力側に穀粒の粒長を測定
する受光素子13および穀粒の流速を測定するた
めの位置検出センサー17をそれぞれ連結すると
共に、砕粒測定部14の出力側に砕粒比率・測定
した穀粒総粒数等を表示する表示器15を連結し
てある。また砕粒測定部14の内部には、受光素
子13に連結され、受光素子13からの出力に応
じて測定米粒の総粒数を検出してその信号を表示
器15に送信する総粒数検出装置20、整粒の基
準粒長を設定する設定器19に連結した基準粒長
設定装置21、受光素子13に連結され、受光素
子13からの出力に応じて穀粒の粒長を測定する
粒長測定装置22、位置検出用センサー17およ
び受光素子13に連絡され、位置検出用センサー
17および受光素子13からの出力に応じて穀粒
の流下速度を検出してその速度変化によつて測定
した米粒の粒長を補正する穀粒速度補正装置2
3、粒長測定装置22に連絡して測定した砕粒数
を積算する砕粒数積算装置24、総粒数検出装置
20および砕粒数積算装置24に連絡して砕粒比
率を演算してその信号と表示器15に送信する砕
粒比率演算装置25を具備しており、表示器15
には砕粒比率・測定した穀粒総粒数等がそれぞれ
表示される。
FIG. 4 is a block diagram of the crushed grain measuring section 14, in which a light receiving element 13 for measuring the grain length of grains and a position detection sensor 17 for measuring the flow velocity of grains are installed on the input side of the crushed grain measuring section 14, respectively. At the same time, a display 15 is connected to the output side of the crushed grain measuring section 14 for displaying the crushed grain ratio, the total number of grains measured, etc. Further, inside the grain crushing measuring section 14, there is a total grain number detection device connected to the light receiving element 13, which detects the total number of rice grains to be measured according to the output from the light receiving element 13, and transmits the signal to the display 15. 20, a reference grain length setting device 21 connected to a setting device 19 for setting a standard grain length for grain size adjustment, a grain length connected to a light receiving element 13 and measuring the grain length of grains according to the output from the light receiving element 13; The rice grains are connected to the measuring device 22, the position detection sensor 17, and the light receiving element 13, and the falling velocity of the grains is detected according to the output from the position detection sensor 17 and the light receiving element 13, and the velocity change is measured. Grain speed correction device 2 for correcting the grain length of
3. A crushed particle number totaling device 24 that connects to the particle length measuring device 22 and totals the measured crushed particle number, and a crushed particle number integrating device 24 that connects to the total particle number detection device 20 and the crushed particle number totaling device 24 to calculate the crushed particle ratio and display the signal and display. It is equipped with a crushing ratio calculation device 25 that transmits data to the container 15, and a display device 15.
The crushed grain ratio, total number of grains measured, etc. are displayed respectively.

次に第3図は、前記透明部11を通過する各種
米粒(整粒、玄米、整粒籾、砕粒、胴割粒、未熟
粒、死米)の各粒面の透過光線(明暗影)をカウ
ント状に走査し、粒面各部位における明暗影状態
の変化をそれぞれ実線で表わした説明図である。
したがつて、砕粒と整粒とは、その透過光線によ
る明暗影の長さ(受光信号では、その継続時間の
長さ)を比較して簡単に判別することができる。
Next, FIG. 3 shows the transmitted light rays (light and dark shadows) on each grain surface of various rice grains (sized grains, brown rice, grained paddy, broken grains, split grains, immature grains, and dead rice) that pass through the transparent part 11. FIG. 3 is an explanatory diagram in which the grain surface is scanned in a count pattern and the changes in brightness and darkness in each part of the grain surface are represented by solid lines.
Therefore, crushing and grading can be easily determined by comparing the lengths of bright and dark shadows caused by the transmitted light (in the case of light reception signals, the length of their duration).

また、前記米粒は搗精度合等によつて粒面の摩
擦係数が変化し、また米粒は流下速度の変化によ
つて前記明暗影の長さが相違することになるが、
本発明の砕粒測定部14に設けた穀粒速度補正装
置23は、前記流下樋5面に設けた任意の所定距
離Aの通過時間を、位置検出用センサー17と受
光素子13とによつて測定すると共に、その測定
信号によつて前記明暗影の長さをそれぞれ補正す
るから、常に高精度の砕流の粒長測定を実施で
き、また必要により数段階の砕粒区分(たとえば
整粒の2/3から1/4まで)における各砕粒数を算出
してそれぞれ表示することができる。
In addition, the friction coefficient of the grain surface of the rice grain changes depending on the accuracy of pounding, etc., and the length of the light and dark shadows of the rice grain differs depending on the change in the flow rate.
The grain speed correction device 23 provided in the crushed grain measurement unit 14 of the present invention measures the passing time of an arbitrary predetermined distance A provided on the 5 surface of the downflow gutter using the position detection sensor 17 and the light receiving element 13. At the same time, the lengths of the bright and dark shadows are each corrected based on the measurement signal, so it is possible to always measure the grain length of the crushed flow with high precision. 3 to 1/4) can be calculated and displayed separately.

上述の構成にしたから、試料精米を供給ホツパ
ー9に投入すると共に、設定器19に整粒の基準
粒長(基準整粒の透過光線の受光信号継続時間)
を設定して装置を起動すると、前記設定器19の
設定値は砕粒測定部14の基準粒長設定装置21
に入力されると共に、供給ホツパー9の米粒は、
傾斜送穀樋6によつて上送されて振動送穀樋3の
送穀用条溝2に流入し、また、その米粒は流穀樋
5の流穀用条溝4を滑流して流速測定用透明窓1
6および穀粒検出用透明部11をそれぞれ通過す
る。そして、上部位置の透明窓16を通過する米
粒は、光源18よつて照射されてその透過光線を
位置検出用センサー17が受光し、また下部位置
の穀粒検出用透明部11を通過する米粒は、光源
12によつて照射されてその透過光線を受光素子
13が受光し、前記検出用センサー17と受光素
子13が受光した各信号は砕粒測定部14にそれ
ぞれ入力される。そして、砕粒測定部14内部の
穀粒速度補正装置23では、第3図の説明のよう
に、入力された各信号によつて穀粒の流下速度
(所定距離A間の通過時間)を測定すると共に、
その測定信号を粒長測定装置22に入力して受光
素子13からの受光信号(米粒の透過光線の明暗
影の長さ)を補正し、また補正された信号は基準
粒長設定装置21からの設定信号と比較して穀粒
の粒長を測定し、砕粒を検出した測定信号は砕粒
数積算装置24に入力されてその砕粒数が積算さ
れる。また前記受光素子13からの分岐信号は総
粒数検出装置20に入力されて測定した穀粒数を
検出して表示器15に穀粒総粒数を表示し、また
砕粒比率演算装置25では、砕粒数積算装置24
と総粒数検出装置20の各信号を入力して総粒数
と砕粒数との比を演算して表示器15に砕粒比率
を表示する。したがつて、任意の穀粒総粒数に対
する砕粒比率が簡単に認知されて精米機の負荷調
節を正確に実施することができる。
With the above configuration, the sample polished rice is put into the supply hopper 9, and the standard grain length for grading (reception signal duration of transmitted light for standard grading) is set in the setting device 19.
When the setting value of the setting device 19 is set and the device is started, the setting value of the setting device 19 is changed to the reference particle length setting device 21 of the crushed particle measuring section 14.
and the rice grains in the supply hopper 9 are
The rice grains are fed upward by the inclined grain feeding trough 6 and flow into the grain feeding groove 2 of the vibrating grain feeding trough 3, and the rice grains slide through the grain feeding groove 4 of the flowing grain trough 5 to measure the flow velocity. transparent window 1
6 and the grain detection transparent section 11, respectively. The rice grains passing through the transparent window 16 at the upper position are irradiated by the light source 18, and the transmitted light is received by the position detection sensor 17, and the rice grains passing through the grain detection transparent part 11 at the lower position are The light receiving element 13 receives the transmitted light emitted by the light source 12, and each signal received by the detection sensor 17 and the light receiving element 13 is inputted to the particle size measurement section 14, respectively. Then, the grain speed correction device 23 inside the crushed grain measurement unit 14 measures the grain flowing speed (passing time for a predetermined distance A) based on each input signal, as explained in FIG. With,
The measurement signal is input to the grain length measuring device 22 to correct the light reception signal from the light receiving element 13 (the length of the light and dark shadow of the light beam transmitted through the rice grain), and the corrected signal is inputted from the reference grain length setting device 21. The grain length of the grain is measured by comparing it with a set signal, and the measurement signal that detects crushed grains is input to the crushed grain number integrating device 24, where the number of crushed grains is integrated. Further, the branch signal from the light receiving element 13 is input to the total grain number detection device 20 to detect the measured number of grains and display the total number of grains on the display 15, and the crushing ratio calculation device 25 Crushed particle number integration device 24
and each signal of the total grain number detection device 20 are input, the ratio between the total number of grains and the number of crushed grains is calculated, and the crushed grain ratio is displayed on the display 15. Therefore, the ratio of crushed grains to a given total number of grains can be easily recognized, and the load adjustment of the rice milling machine can be carried out accurately.

このように本発明の砕粒測定装置は、米粒を流
下する流下樋に設けた穀粒検出用透明部の上下位
置に光源と受光素子をほぼ対向状に配置し、前記
透明部を通過する米粒の透過光線を受光する受光
素子を砕粒測定部を介して表示器に連絡し、前記
砕粒測定部は基準粒長設定装置および総粒数検出
装置を有すると共に、前記受光素子に連絡される
粒長測定装置および砕粒比率演算装置を有するの
で、試料米粒から砕粒を光学的に測定して高精度
な砕粒測定の自動化を達成でき、砕粒の測定作業
が簡易化されて測定した穀粒総粒数および砕粒比
率を短時間に表示でき、また精米機の負荷調節が
可及的早期に実施されて常に高品質の精白米を確
保できる等の効果を奏するものである。
In this way, the particle crushing measuring device of the present invention has a light source and a light receiving element arranged above and below a transparent part for detecting grains provided in a gutter through which rice grains flow down, in a substantially opposing manner. A light-receiving element that receives transmitted light is connected to a display via a particle size measurement section, and the particle size measurement section has a reference particle length setting device and a total particle number detection device, and a particle size measurement device that is connected to the light reception device. Since it is equipped with a device and a crushing ratio calculation device, it is possible to optically measure crushed grains from sample rice grains and achieve automation of highly accurate crushed grain measurement, simplifying the work of measuring crushed grains and increasing the total number of grains measured and crushed grains. The ratio can be displayed in a short time, and the load adjustment of the rice milling machine can be carried out as early as possible, so that high-quality polished rice can always be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例図である。第1図は本装
置の側断面図、第2図はその流穀樋の平面図、第
3図は米粒の透過光線の明暗影の説明図、第4図
はその砕粒測定部のブロツク図である。 1……箱形機枠、2……送穀用条溝、3……振
動送穀樋、4……流穀用条溝、5……流穀樋、6
……傾斜送穀樋、7……排出口、8……供給口、
9……供給ホツパー、10……振動装置、11…
…穀粒検出用透明部、12……光源、13……受
光素子、14……砕粒測定部、15……表示器、
16……流速測定用透明窓、17……位置検出用
センサー、18……光源、19……設定器、20
……総粒数検出装置、21……基準粒長設定装
置、22……粒長測定装置、23……穀粒速度補
正装置、24……砕粒数積算装置、25……砕粒
比率演算装置。
The drawings are illustrations of embodiments of the present invention. Figure 1 is a side sectional view of this device, Figure 2 is a plan view of its grain trough, Figure 3 is an illustration of the brightness and shade of the transmitted light beam through rice grains, and Figure 4 is a block diagram of its grain crushing measuring section. be. 1... Box-shaped machine frame, 2... Grain feed groove, 3... Vibrating grain feed gutter, 4... Grain flow groove, 5... Grain flow gutter, 6
... Inclined grain feeding trough, 7 ... Discharge port, 8 ... Supply port,
9... Supply hopper, 10... Vibration device, 11...
... Transparent part for grain detection, 12 ... Light source, 13 ... Light receiving element, 14 ... Grain measurement section, 15 ... Display device,
16... Transparent window for flow velocity measurement, 17... Sensor for position detection, 18... Light source, 19... Setting device, 20
. . . Total grain number detection device, 21 .

Claims (1)

【特許請求の範囲】 1 米粒を流下する流下樋に設けた穀粒検出用透
明部の上下位置に光源と受光素子をほぼ対向状に
配置し、前記透明部を通過する米粒の透過光線を
受光する受光素子を砕粒測定部を介して表示器に
連絡し、前記砕粒測定部は基準粒長設定装置およ
び総粒数検出装置を有すると共に、前記受光素子
に連絡される粒長測定装置および砕粒比率演算装
置を有することを特徴とする砕粒測定装置。 2 前記砕粒測定部が、測定した粒長を穀粒流下
速度によつて補正する穀粒速度補正装置を具備し
ている特許請求の範囲第1項記載の砕粒測定装
置。
[Scope of Claims] 1. A light source and a light-receiving element are arranged above and below a transparent part for detecting grains provided in a gutter through which rice grains flow down, so as to substantially face each other, and receive the transmitted light of the rice grains passing through the transparent part. A light-receiving element is connected to a display via a crushing measuring section, and the crushing measuring section has a reference grain length setting device and a total grain number detecting device, and also has a grain length measuring device and a crushing ratio connected to the light-receiving element. A particle crushing measuring device characterized by having a calculation device. 2. The crushed grain measuring device according to claim 1, wherein the crushed grain measuring section includes a grain speed correction device that corrects the measured grain length based on a grain flow velocity.
JP58089649A 1983-05-21 1983-05-21 Crashed-grain measuring apparatus Granted JPS59214742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089649A JPS59214742A (en) 1983-05-21 1983-05-21 Crashed-grain measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089649A JPS59214742A (en) 1983-05-21 1983-05-21 Crashed-grain measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59214742A JPS59214742A (en) 1984-12-04
JPH0310060B2 true JPH0310060B2 (en) 1991-02-12

Family

ID=13976610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089649A Granted JPS59214742A (en) 1983-05-21 1983-05-21 Crashed-grain measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59214742A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254807A (en) * 1985-05-07 1986-11-12 Satake Eng Co Ltd Analyzer for ground grain
JPH07921Y2 (en) * 1988-02-05 1995-01-11 株式会社ケット科学研究所 Rice grain condition detector

Also Published As

Publication number Publication date
JPS59214742A (en) 1984-12-04

Similar Documents

Publication Publication Date Title
US4513868A (en) Sorting machine
RU2092817C1 (en) Method of determination of composition of loose products and device for its realization
US6629010B2 (en) Control feedback system and method for bulk material industrial processes using automated object or particle analysis
US4540286A (en) Apparatus for continuously measuring the degree of milling of grains
JPS61107139A (en) Apparatus for measuring grade of grain of rice
GB2091416A (en) Sorting Objects
GB2091415A (en) Sorting Objects
JPS6243130B2 (en)
JPH0310060B2 (en)
US4407415A (en) Method of grade determination including compensation
CN112484788A (en) Image type ore flow detection method and device
Kent-Jones et al. A photo-electric method of determining the colour of flour as affected by grade, by measurements of reflecting power
CA1174749A (en) Displacement error correction in sorting systems
CN1940544B (en) High-precision on-line ash content measuring unit
US4207001A (en) Particle size analyzer
CN213956478U (en) Image type ore flow detection device
JPS5951357B2 (en) Automatic sorting device
US4445615A (en) Sorting system calibration
CN109060083A (en) A kind of double measuring belt scales
JPH0480432B2 (en)
JPS58115364A (en) Detector of split rice grain
JPS647334B2 (en)
JPH08228682A (en) Apparatus for grading raw green tea leaf
SU1500912A1 (en) Photoelectric granulometer
SU1141313A1 (en) Crushed ore lump size checking method