JPS61254807A - Analyzer for ground grain - Google Patents

Analyzer for ground grain

Info

Publication number
JPS61254807A
JPS61254807A JP9748985A JP9748985A JPS61254807A JP S61254807 A JPS61254807 A JP S61254807A JP 9748985 A JP9748985 A JP 9748985A JP 9748985 A JP9748985 A JP 9748985A JP S61254807 A JPS61254807 A JP S61254807A
Authority
JP
Japan
Prior art keywords
grain
grains
light
crushed
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9748985A
Other languages
Japanese (ja)
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP9748985A priority Critical patent/JPS61254807A/en
Publication of JPS61254807A publication Critical patent/JPS61254807A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/04Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
    • G01B11/043Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately discriminate the length of each grain, by providing plural photodetector which are oriented to grains passing through a detecting section and detecting the leading and tailing edges of each grain. CONSTITUTION:A transmissive window 9 is provided inside the groove 8a of a chute 8, through which grains are transported, and a light source 10 and plural photodetecting sections 12A-12E re respectively provided below and above the transmissive window 9. The photodetecting sections 12A-12E are oriented to an optional part of the length including the leading and tailing edges of a grain passing through the window 9. An arithmetic processing section connected with the photodetecting sections 12A-12E discriminates which photodetecting section detects the tailing edge of a grain when the photodetecting section 12A positioned to the first place detects the leading edge of the grain, and discriminates the length of the grain from the discriminated result. Numbers of length-wise grains of all grains and the ratio of each length-wise grains number to all grains are calculated and displayed in a display section.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は米麦等の穀粒中の砕粒を判別し、砕粒数およ
び砕粒率を演算して表示する穀物砕粒分析装置に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a grain particle analyzer that distinguishes crushed grains in grains such as rice, wheat, etc., and calculates and displays the number of crushed grains and the fraction of crushed grains.

従来の技術 従来、流下樋に設けた透明部の上下位置に光源と受光素
子とを対向状に配置し、前記透明部を通過する米粒の透
過光線を受光素子で検出し、この検出信号によって米粒
の粒長を判別する砕粒測定装置について特開昭59−2
14742号公報に示されている。
2. Description of the Related Art Conventionally, a light source and a light-receiving element are arranged oppositely above and below a transparent part provided in a flowing gutter, and the light-receiving element detects the transmitted light of the rice grains passing through the transparent part, and this detection signal is used to detect the rice grains. Japanese Patent Application Laid-open No. 59-2 regarding a crushing particle measuring device for determining the particle length of
This is shown in Japanese Patent No. 14742.

2号公報に開示された砕粒測定装置は「傾斜した流下樋
に沿って滑降する穀粒に光源から光を照射し、その透過
光mを受光素子によって検出するもの」であり、穀粒の
性状(搗精度合、含水率等)によって流下速度がそれぞ
れ異なるので、同じ長さの砕粒であっても検出波形に変
化を生じ、そのため、受光素子の検出信号を「穀粒速度
補正装置」によって補正しなければならなかった。
The particle crushing measuring device disclosed in Publication No. 2 is a device that ``irradiates light from a light source onto grains sliding down along an inclined downflow gutter, and detects the transmitted light m using a light receiving element'', which measures the properties of grains. Since the flow velocity differs depending on the grinding accuracy, moisture content, etc., the detected waveform will change even if the crushed grains are of the same length. Therefore, the detection signal of the light receiving element is corrected by the "grain speed correction device". I had to.

この発明は、検出部を通過する穀粒の速度が異なっても
誤動作がなく、しかも補正装置の不要な穀物砕粒分析装
置を提供することを技術的課題とする。
A technical object of the present invention is to provide a crushed grain analysis device that does not malfunction even if the speed of grain passing through a detection section differs, and does not require a correction device.

問題点を解決するための手段と作用 上記技術的課題を解決するために、本発明は穀粒をその
粒長方向に一定間隔に移送する搬送経路中に光源を備え
た検知部が設けられ、検知部には、検知部を通過する穀
粒の先端部と最後部とを含む粒長方向の任意の部位を指
向する受光器が並設され、穀粒の先端部を指向する受光
器が検知部を通過する穀粒の先端部を検出したとき、そ
の余の受光器から出力される信号によって穀粒の粒長を
判別し、粒長別の粒数および総粒数に対する比率を演算
して表示すべく、前記各受光器は演算制御装置を介して
表示器に連絡して形成されたものである。
Means and Effects for Solving the Problems In order to solve the above technical problems, the present invention provides a detection section equipped with a light source in a conveyance path that transports grains at regular intervals in the grain length direction, In the detection section, light receivers are arranged in parallel that point at any part in the grain length direction, including the tip and the rear end of the grain passing through the detection section, and the light receiver pointing at the tip of the grain detects. When the tip of a grain passing through the sensor is detected, the grain length of the grain is determined from the signal output from the remaining light receiver, and the number of grains by grain length and the ratio to the total number of grains are calculated. For display purposes, each of the light receivers is connected to a display via an arithmetic and control unit.

これにより、穀粒が検知部に至り、穀粒の最先端部に向
く受光器の受光量が変化した信号が演算υ制御装置に入
力されたとき、演算制御装置においては、その余の受光
器からの入力信号の有無により粒長を判別し、各粒数、
比率を表示器に表示する。
As a result, when the grain reaches the detection section and a signal indicating a change in the amount of light received by the light receiver facing the leading edge of the grain is input to the arithmetic control device, the arithmetic control device detects the remaining light receivers. The grain length is determined based on the presence or absence of an input signal from the
Display the ratio on the display.

実渦例 本発明の実施例を図面を参照しながら説明する。Actual vortex example Embodiments of the present invention will be described with reference to the drawings.

第1図は穀物砕粒分析装置の縦断側面図であり、1は穀
物砕粒分析装置の全体を示す。2はホッパー、3はホッ
パーの真下がやや低く傾斜するとともに床面の摩擦係数
を大に形成した貯留部、4は貯留部3に設けたガイド壁
、5は水平、あるいは穀粒進行方向に向けて僅かに傾斜
して設けられる供給樋であり、該供給樋5には穀粒の流
路となる満5!が設けられる。また、貯留部3と供給樋
5とは連絡口Tを介して穀粒が移動可能に設けられる。
FIG. 1 is a longitudinal sectional side view of the crushed grain analyzer, and 1 shows the entire crushed grain analyzer. 2 is a hopper, 3 is a storage part that is sloped slightly low below the hopper and has a large friction coefficient on the floor surface, 4 is a guide wall provided in storage part 3, and 5 is horizontal or oriented in the direction of grain progress. The feed gutter 5 is provided with a slight inclination, and the feed gutter 5 has a full height of 5 mm, which serves as a flow path for the grains. is provided. Moreover, the storage part 3 and the supply gutter 5 are provided so that grains can be moved through a communication port T.

6A、6Bは貯留部3、供給樋5に微振動を与える電磁
石、7A。
6A and 6B are electromagnets 7A that give slight vibrations to the storage section 3 and the supply gutter 5;

7Bは′FA磁石6A、6Bに付設される吸着板である
。8は供給6I5終端部に連絡して傾架したシュートで
あり、該シュート8には穀粒の流下路となる溝8aが設
けられる。9は溝8aの床面に設けた透光窓であり、該
透光窓9は分析する穀粒と略同じ長さ、例えば米粒であ
るなら6mI程度のスリット状に形成されるとともに(
第2図、第3図参照)、はこり等による目詰まりを防止
するためガラス板等の透明材が嵌着される。10は透光
窓9を下方から照射するよう設けられる光源である。
7B is an adsorption plate attached to the FA magnets 6A and 6B. Reference numeral 8 denotes a tilted chute connected to the terminal end of the supply 6I5, and the chute 8 is provided with a groove 8a that serves as a flow path for grains. Reference numeral 9 denotes a light-transmitting window provided on the floor surface of the groove 8a, and the light-transmitting window 9 is formed in the shape of a slit with approximately the same length as the grain to be analyzed, for example, about 6 mI for rice grains.
(See FIGS. 2 and 3), a transparent material such as a glass plate is fitted to prevent clogging due to lumps or the like. Reference numeral 10 denotes a light source provided to illuminate the transparent window 9 from below.

11は透光窓9上方に設けた検知ヘッドであり、該検知
ヘッド11にはファイバースコープ12A〜12Eの一
端(対物側)が、透光窓9上に流下した穀粒に対向する
ように、すなわち、ファイバースコープ12Aは穀粒の
進行方向先端部R1に、ファイバースコープ12Bは同
1/3の部位R2に、ファイバースコープ12Cは同1
/2の部位R3に、ファイバースコープ12Dは同2/
3の部位R4に、ファイバースコープ12Eは同最後部
R5に、それぞれ向くよう設けられる。13A〜13E
はファイバースコープ12A〜12Eの他端(接眼側)
に近接して設けられた、フォトトランジスター等の光セ
ンサーからなる受光器である。
11 is a detection head provided above the light-transmitting window 9, and the detection head 11 has one end (objective side) of the fiberscopes 12A to 12E facing the grains flowing down onto the light-transmitting window 9. In other words, the fiberscope 12A targets the leading end R1 of the grain in the traveling direction, the fiberscope 12B targets the 1/3 region R2, and the fiberscope 12C targets the leading end R1 of the grain.
/2 part R3, fiberscope 12D is the same 2/
The fiber scope 12E is provided at the rearmost portion R5 of the third section R4, respectively. 13A-13E
is the other end of fiberscope 12A to 12E (eyepiece side)
This is a light receiver consisting of a light sensor such as a phototransistor, which is installed in close proximity to the light source.

14は操作盤であり、操作盤14には砕粒数。14 is an operation panel, and the number of crushed grains is displayed on the operation panel 14.

砕粒率、総粒数等を表示するデジタルパネルメーター(
以下デジバネという)15A〜15Fからなる表示器1
5が備えられる。
Digital panel meter that displays the crushing rate, total number of grains, etc.
Display unit 1 consisting of 15A to 15F (hereinafter referred to as Digispring)
5 is provided.

第4図は本実施例における制御プロッタ図であり、16
はパラレルインターフェース、17はマイクロプロセッ
サ−118はROM、RAMからなるメモリーである。
FIG. 4 is a diagram of the control plotter in this embodiment.
1 is a parallel interface, 17 is a microprocessor, and 118 is a memory consisting of ROM and RAM.

19はパラレルインターフェース16と電磁石6との間
に設けた出力バッファ、20は操作!814とパラレル
インターフェース16との間に設けた入力バッファ、2
1は受光器13とパラレルインターフェース16との間
に設けた入力バッファ、22はパラレルインターフェー
ス16と表示器15との間に設けた出力バッファである
19 is an output buffer provided between the parallel interface 16 and the electromagnet 6, and 20 is an operation! an input buffer provided between the 814 and the parallel interface 16;
1 is an input buffer provided between the light receiver 13 and the parallel interface 16, and 22 is an output buffer provided between the parallel interface 16 and the display 15.

次に、上記実施例における作用を説明する。Next, the operation of the above embodiment will be explained.

ホッパー2内に穀粒、例えば精白米を投入し、操作盤1
4の電源ならびにカウント「入」スイッチをONすると
、ホッパー2内の精白米は電磁石6Aと吸着板7Aとに
よって振動する貯留部3の傾斜高位部に順次移送され、
ガイド壁3に案内されながら貯留部3と供給樋5との連
絡口Tに導かれ、ついには−粒ずつ、供給樋5に設けた
溝5a内に到達する。溝5aの幅は精白米の粒幅よりわ
ずかに大きく形成されることにより、精白米−粒(以下
粒子という)はそれぞれ長手方向を溝5a方向に向け、
電磁石6B。
Put grains, such as polished rice, into hopper 2, and
When the power supply and count "on" switch of 4 is turned on, the polished rice in the hopper 2 is sequentially transferred to the inclined high part of the storage section 3 where it vibrates by the electromagnet 6A and the suction plate 7A.
While being guided by the guide wall 3, the grains are led to the communication port T between the storage section 3 and the supply gutter 5, and finally reach the groove 5a provided in the supply gutter 5 one by one. The width of the groove 5a is formed to be slightly larger than the grain width of the polished rice, so that the polished rice grains (hereinafter referred to as particles) each have their longitudinal direction directed toward the groove 5a.
Electromagnet 6B.

吸着板7Bの振動作用によってシュート8側に搬送され
る。そして、急傾斜面Sに差し掛った粒子は加速されて
シュート8の溝8a上に流下し、溝8aに沿って略等間
隔に滑降する。満8aの形状も供給615の溝5aと同
じ形状であるので、各粒子は粒厚方向に回転して落下す
ることなく、第1図〜第3図に示すように粒子の長手方
向(粒長方向)を進行方向に向けて整列して流下し、透
光窓9を通過してシュート終端から落下して容器等に収
集される。
It is conveyed to the chute 8 side by the vibration action of the suction plate 7B. The particles approaching the steep slope S are accelerated and flow down onto the grooves 8a of the chute 8, and slide down the grooves 8a at approximately equal intervals. Since the shape of the groove 8a is the same as the groove 5a of the supply 615, each particle does not rotate in the grain thickness direction and fall, but instead rotates in the longitudinal direction (grain length) of the grain as shown in FIGS. The particles flow down in a line with the direction (direction) facing the direction of travel, pass through the light-transmitting window 9, fall from the end of the chute, and are collected in a container or the like.

一方、検知ヘッド11に並設されたファイバースコープ
12A〜12Eの端面は、透光窓9を透過する光源10
からの光線をキャッチするとともに、前記光線は減衰さ
れることなく各ファイバースコープの他端部から受光器
13A〜13Eへ向けて射出される。そこで、シュート
8の溝88を流下する粒子が透光窓9上に至り、ファイ
バースコープ12Aに入射する光線を遮ると受光器13
Aは光量を検出しなくなり、この光量の変化は電気信号
に変換されて演算制御装置、例えばマイクロプロセッサ
−17に入力されるとともにマイクロプロセッサ−17
は受光器13B〜13Eからの信号の有無を検出する作
業を行う。すなわち、受光器13Aから信号が入力され
た瞬間、その余の受光器138〜13E全てから信号が
入力されるとき(ファイバースコープ12A〜12Eの
いずれにも光源10からの光線が入射していない状!y
l>は、透光窓9を通過中の粒子を整粒(完全粒)であ
ると判別し、同様に、受光器13B〜13Dから信号が
入力されるときは2/3の砕粒であると判別し、受光器
138,130からの信号が入力されるときは1/2の
砕粒、受光器13Bのみの信号が入力されるときは1/
3の砕粒である、とそれぞれ判別し、メモリー18の所
定の番地に記憶されると同時に総粒数に対する砕粒率を
演算し、表示器15に総粒数および各砕粒毎の粒数、砕
粒率が逐一表示される。例えば、デジバネ15Aには2
/3の砕粒数と総粒数に対する砕粒率、デジバネ15B
には1/2の砕粒数とその砕粒率、デジバネ15Cには
1/3の砕粒数とその砕粒率、デジバネ15Dには1/
3未満の砕粒数とその砕粒率、デジバネ15Eには総粒
数、デジバネ15Fには判別した全ての砕粒の砕粒率が
、それぞれ表示される。
On the other hand, the end surfaces of the fiberscopes 12A to 12E arranged in parallel to the detection head 11 are connected to a light source 10 that passes through the light-transmitting window 9.
At the same time, the light beams are emitted from the other end of each fiberscope toward the light receivers 13A to 13E without being attenuated. Therefore, when the particles flowing down the groove 88 of the chute 8 reach the transparent window 9 and block the light beam entering the fiberscope 12A, the light receiver 13
A no longer detects the amount of light, and this change in the amount of light is converted into an electrical signal and input to an arithmetic and control unit, for example, the microprocessor-17.
performs the work of detecting the presence or absence of signals from the light receivers 13B to 13E. That is, at the moment when a signal is input from the light receiver 13A, when signals are input from all the remaining light receivers 138 to 13E (in a state where the light beam from the light source 10 is not incident on any of the fiber scopes 12A to 12E). !y
l> determines that the particles passing through the transparent window 9 are regular particles (perfect particles), and similarly, when signals are input from the light receivers 13B to 13D, it is determined that the particles are 2/3 crushed. When the signals from the light receivers 138 and 130 are input, the particles are crushed to 1/2, and when the signal from only the light receiver 13B is input, the particles are crushed to 1/2.
At the same time, the crushing ratio is calculated for the total number of grains, and the total number of grains, the number of grains for each crushed grain, and the crushing ratio are displayed on the display 15. are displayed one by one. For example, Digispring 15A has 2
/3 number of crushed grains and crushing ratio to total number of grains, Digispring 15B
For DigiSpring 15C, the number of crushed particles is 1/3 and the crushing rate is 1/2, and for DigiSpring 15D, it is 1/3.
The number of crushed particles less than 3 and their crushing rate, the total number of particles are displayed on the digital spring 15E, and the crushing rate of all the determined crushed particles are displayed on the digital spring 15F.

このようにして、検知ヘッド11を通過する粒子の粒長
を判別してそれぞれの砕粒数、砕粒率および総粒数をカ
ウント、演算して表示するのであるが、通過粒子が1,
000粒になった時点でカウントアツプし、総粒数1,
000粒に対するそれぞれの砕粒数、砕粒率ならびに全
ての砕粒の砕粒率が表示器15に表示されるものである
In this way, the particle length of the particles passing through the detection head 11 is determined, and the number of crushed particles, crushing rate, and total number of particles are counted, calculated, and displayed.
When it reaches 000 grains, the count is increased and the total number of grains is 1,
The number of crushed grains, the crushing rate of each crushed grain, and the crushing rate of all crushed grains for 000 grains are displayed on the display 15.

本実施例では透光窓の下方に光源を設け、光源からの光
線を穀粒が遮るとき各受光器から出力される信号をマイ
クロプロセッサ−で判別するように形成したが、第3図
の二点鎖線で示すように、移動する穀粒の上方に光源を
設け、穀粒が検知部を通過するとき、穀粒からの反射光
線を各受光器で検出するよう形成する場合もある。なお
、この場合は、透光窓9に相当する部分を精白米とは異
なる色、例えば黒色とする。
In this example, a light source was provided below the light-transmitting window, and a microprocessor was configured to determine the signal output from each light receiver when a grain intercepts the light rays from the light source. As shown by the dotted chain line, a light source may be provided above the moving grain, and when the grain passes through the detection section, each light receiver may detect the reflected light from the grain. In this case, the portion corresponding to the transparent window 9 is colored in a color different from that of polished rice, for example, black.

第5図で示すものは、粒長に応じて粒子を分別できるよ
うにした場合の実施例である。
What is shown in FIG. 5 is an example in which particles can be separated according to particle length.

5bは1/3以下の砕粒のみが通過するよう、供給樋5
の溝5a終端部を半円形状に切落した切欠きであり、切
欠き5b下方には上端を漏斗状に形成し・た流路23を
設けるとともに、流路23には流路23内を落下する穀
粒の有無を検出する投光器24(例えば発光ダイオード
)と受光器25(例えばフォトトランジスター)とが対
向して設けられる。受光器25は入力バッファ21.パ
ラレルインターフエース16を介してマイクロプロセッ
サ−17に連絡される。
5b is the supply gutter 5 so that only 1/3 or less of the crushed particles pass through.
This is a notch obtained by cutting off the end portion of the groove 5a in a semicircular shape, and a flow path 23 whose upper end is formed into a funnel shape is provided below the notch 5b, and the inside of the flow path 23 is provided in the flow path 23. A light projector 24 (for example, a light emitting diode) and a light receiver 25 (for example, a phototransistor) are provided facing each other to detect the presence or absence of falling grains. The photoreceiver 25 has an input buffer 21 . It is communicated via parallel interface 16 to microprocessor-17.

26は、透光窓9を通過する精白米が砕粒(2/3また
は1/2)である、と判別されてから一定時間後、すな
わち当該砕粒が透光窓9からシュート終端部に至る時間
、例えば0.5秒経過後にシュート終端部に延出する可
動樋、27は可動樋26を作動させるソレノイドである
。28は2/3と1/2の砕粒を振り分ける誘導板、2
9は誘導板28を作動させるソレノイド、30は可動樋
26と誘導板28との間に傾架される中継樋である。前
記ソレノイド27.29は出力バッファ(図示せず)、
パラレルインターフェース16を介してマイクロプロセ
ッサ−17に連絡される。また、本実施例の場合は2/
3.1/2の砕粒を分析しようとするもので、先端部、
最後部および2/3の部位に向くファイバースコープ1
2A、12E、120を設けるとともに該ファイバース
コープ12A、12E、12Dの接眼側端部に相対する
受光器がそれぞれ設けられる。31〜34は整粒、砕粒
を収集する引出し状の容器である。31は1/3以下の
砕粒用、32は整粒用、33は2/3の砕粒用、34は
1/2の砕粒用の容器である。
26 is a certain period of time after the polished rice passing through the transparent window 9 is determined to be crushed grains (2/3 or 1/2), that is, the time when the crushed rice reaches the end of the chute from the transparent window 9. A movable gutter 27 extends to the end of the chute after elapse of, for example, 0.5 seconds. Reference numeral 27 is a solenoid that operates the movable gutter 26. 28 is a guide plate that separates 2/3 and 1/2 crushed grains, 2
9 is a solenoid that operates the guide plate 28, and 30 is a relay gutter suspended between the movable gutter 26 and the guide plate 28. The solenoids 27 and 29 are output buffers (not shown);
It is communicated via parallel interface 16 to microprocessor-17. In addition, in the case of this example, 2/
This is intended to analyze 3.1/2 crushed grains, and the tip,
Fiberscope 1 facing the rearmost and 2/3rd part
2A, 12E, and 120 are provided, and light receivers facing the eyepiece side ends of the fiberscopes 12A, 12E, and 12D are provided, respectively. Reference numerals 31 to 34 are drawer-shaped containers for collecting sorted and crushed particles. 31 is a container for crushing 1/3 or less, 32 is for grading, 33 is a container for crushing 2/3, and 34 is for crushing 1/2.

その余の構成は先の実施例と大略同様であるので説明を
省く。
The rest of the configuration is roughly the same as that of the previous embodiment, so a description thereof will be omitted.

次に、本実施例の作用の概要を述べる。Next, an outline of the operation of this embodiment will be described.

振動する供給15の溝5a上を搬送される精白米中、1
/3以下の粒子は供給樋5終端部に設けた切欠き5b内
に落下し、流路23を経て容器31内に収集されるので
あるが、流路23内を落下する砕粒が投光器24から受
光器25に向けて照射される光線を遮ったときの受光器
25の受光器の変化は電気信号に変換され、入力バッフ
ァ21.パラレルインターフエース16を介してマイク
ロプロセッサー17に入力し、総粒数および1/3以下
の砕粒数の加算、砕粒率の演算が行われ、表示器15に
表示するとともにメモリー18に記憶される。前記切欠
き5bは振動部に設けたので、切欠き5bとシュート8
始端部との間に砕粒が目詰まりすることがない。
Polished rice being conveyed on the groove 5a of the vibrating supply 15, 1
Particles smaller than /3 fall into the notch 5b provided at the end of the supply gutter 5 and are collected in the container 31 through the flow path 23, but the crushed particles falling through the flow path 23 are Changes in the light receiving area of the light receiver 25 when the light beam irradiated toward the light receiver 25 is interrupted are converted into electrical signals, and the changes are converted into electrical signals and sent to the input buffer 21 . The information is input to the microprocessor 17 via the parallel interface 16, the total number of grains and the number of crushed grains of 1/3 or less are added, and the crushing rate is calculated, and the results are displayed on the display 15 and stored in the memory 18. Since the notch 5b is provided in the vibrating part, the notch 5b and the chute 8
There will be no clogging of crushed particles between the starting end and the starting end.

1/3以下の砕粒が除去された精白米は透光窓9を通過
する際、第1の実施例と同様に整粒。
When the polished rice from which 1/3 or less of the crushed grains have been removed passes through the transparent window 9, it is sized in the same manner as in the first embodiment.

2/3の砕粒、1/2の砕粒にそれぞれ判別し、処理さ
れる。そして、透光窓9を通過する粒子が整粒であれば
、マイクロプロセッサ−17の指令により、一定時間(
085秒)経過後、ソレノイド27が励磁して可動樋2
6を引き付けるので当該粒子は容器32内に落下し、ま
た、前記粒子が2/3の砕粒であると判別されたときは
一定時間(0,5秒)経過後、ソレノイド27への通電
が停止し、可動樋26が延出するとともにソレノイド2
9が励磁して透導板28を容器34側に傾斜させるので
、シュート8終端部から落下する2/3の砕粒は可動樋
26.中継樋30上を流下し、誘導板28に沿って容器
33内に収集される。さらに、次に透光部を通過した粒
子が1/2の砕粒であると判別されると、ソレノイド2
7は通電せず、可動橋26は延出したままの状態であり
、他方のソレノイド29は一定時間(約0.5秒)経過
後通電が停止され、誘導板28が容器33側へ傾斜して
前記1/2の砕粒を容器34内に導くものである。
They are classified into 2/3 crushed granules and 1/2 crushed granules and processed. If the particles passing through the transparent window 9 are of regular size, the microprocessor 17 commands the particles to
085 seconds), the solenoid 27 is energized and the movable gutter 2
6, the particles fall into the container 32, and when it is determined that the particles are 2/3 crushed, the energization to the solenoid 27 is stopped after a certain period of time (0.5 seconds) has elapsed. As the movable gutter 26 extends, the solenoid 2
9 is excited and tilts the transmission plate 28 toward the container 34, so that two-thirds of the crushed particles falling from the end of the chute 8 are transferred to the movable gutter 26. It flows down on the relay gutter 30 and is collected in the container 33 along the guide plate 28. Furthermore, if it is determined that the next particle that passed through the transparent part is 1/2 crushed, the solenoid 2
7 is not energized, the movable bridge 26 remains extended, and the other solenoid 29 is de-energized after a certain period of time (approximately 0.5 seconds), and the guide plate 28 is tilted toward the container 33. 1/2 of the crushed particles are introduced into the container 34.

なお、上記各実施例においては、振動供給樋の後行程に
傾架したシュートを設け、シュート上に検知ヘッドを配
置したが、前記シュートに代えて回転する無端ベルトを
設ける場合もある。
In each of the above embodiments, a tilted chute is provided in the rear stroke of the vibrating supply gutter, and the detection head is disposed on the chute, but a rotating endless belt may be provided in place of the chute.

また、分析する穀粒に応じて検知ヘッドにおけるファイ
バースコープの位置を適宜可変するよう設けてもよい。
Further, the position of the fiberscope in the detection head may be changed as appropriate depending on the grain to be analyzed.

加えて、本発明の砕粒分析装置は、穀粒以外の粒状物の
分析にも利用可能であることは言うまでもない。
In addition, it goes without saying that the crushed grain analyzer of the present invention can also be used to analyze particulate matter other than grains.

発明の効果 以上のように本発明は、穀粒を粒長方向に一定間隔に移
送する搬送経路中に、光源を備えた検知部を設けるとと
もに、検知部を通過する穀粒の先端部と最後部とを含む
粒長方向の任意の部位を指向する受光器を並設し、穀粒
の先端部を指向する受光器が検知部を通過する穀粒の先
端部を検出したとき、その余の受光器から出力される信
号によって当該穀粒の粒長を判別し、表示するようにし
たので、穀粒を透過する先回を受光器で捕え、受光器の
受光量の変化によって砕粒を判別するものに比べ、穀粒
の移動速度によって判別結果に誤差を生じることがなく
、各受光器からの出力信号の有無、つまり出力される信
号の個数によって瞬時に任意の粒長を判別でき、特別に
補正装置を設けなくても誤動作がない。
Effects of the Invention As described above, the present invention provides a detection unit equipped with a light source in a conveyance path that transports grains at regular intervals in the grain length direction, and detects the leading and end portions of grains passing through the detection unit. Light receivers pointing at any part in the grain length direction including the part are installed in parallel, and when the light receiver pointing at the tip of the grain detects the tip of the grain passing through the detection part, the remaining part is detected. Since the grain length of the grain is determined and displayed based on the signal output from the light receiver, the light transmitting through the grain can be captured by the light receiver, and broken grains can be determined by the change in the amount of light received by the light receiver. Compared to conventional methods, there is no error in the determination results depending on the speed of grain movement, and any grain length can be instantly determined based on the presence or absence of output signals from each receiver, that is, the number of output signals. No malfunction occurs even without a correction device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例を示す縦断面図、第2図は同一部
拡大の斜視図、第3図は第2図の縦断側面図、第4図は
同制御ブロック図、第5図は別の実施例を示す一部破断
の縦断側面図である。 1・・・穀物砕粒分析装置、2・・・ホッパー、3・・
・貯留部、4・・・ガイド壁、5・・・供給樋、a・・
・溝、5b・・・切欠き、6A、6B・・・電磁石、7
A、7B・・・吸着板、8・・・シュート、8a・・・
溝、9・・・透光窓、10・・・光源、11・・・検知
ヘッド、12A。 12E・・・ファイバースコープ、13A、13E・・
・受光器、14・・・操作盤、15・・・表示器、16
・・・パラレルインターフェース、17・・・マイクロ
プロセッサ−18・・・メモリー、19・・・出力バッ
ファ、20・・・入力バッファ、21・・・入力バッフ
ァ、22・・・出力バッフ7.23・・・流路、24・
・・投光器、25・・・受光器、26・・・可動樋、2
7・・・ソレノイド、28・・・誘導板、29・・・ソ
レノイド、30・・・中継樋、31〜34・・・容器。 、d 第3vA 第2図
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, Fig. 2 is an enlarged perspective view of the same part, Fig. 3 is a longitudinal cross-sectional side view of Fig. 2, Fig. 4 is a control block diagram of the same, Fig. 5 is a FIG. 7 is a partially cutaway longitudinal side view showing another embodiment. 1... Grain crushing analyzer, 2... Hopper, 3...
・Storage part, 4... Guide wall, 5... Supply gutter, a...
・Groove, 5b...notch, 6A, 6B...electromagnet, 7
A, 7B...Adsorption plate, 8...Chute, 8a...
Groove, 9...Transparent window, 10...Light source, 11...Detection head, 12A. 12E...Fiber scope, 13A, 13E...
・Receiver, 14... Operation panel, 15... Display, 16
...Parallel interface, 17...Microprocessor-18...Memory, 19...Output buffer, 20...Input buffer, 21...Input buffer, 22...Output buffer 7.23.・Flow path, 24・
... Emitter, 25 ... Light receiver, 26 ... Movable gutter, 2
7... Solenoid, 28... Guide plate, 29... Solenoid, 30... Relay gutter, 31-34... Container. , d 3vA Fig. 2

Claims (4)

【特許請求の範囲】[Claims] (1)、穀粒を粒長方向に一定間隔に移送する搬送経路
中に、光源を備えた検知部を設け、前記検知部には検知
部を通過する穀粒の先端部と最後部とを含む粒長方向の
任意の部位を指向する受光器を並設し、穀粒の先端部を
指向する受光器が検知部を通過する穀粒の先端部を検出
したとき、その余の受光器から出力される信号によつて
当該穀粒の粒長を判別し、粒長別の粒数および総粒数に
対する比率を演算して表示すべく、前記各受光器は演算
制御装置を介して表示器に連絡したことを特徴とする穀
物砕粒分析装置。
(1) A detection section equipped with a light source is provided in the conveyance path that transports the grains at regular intervals in the grain length direction, and the detection section detects the leading end and the rear end of the grain passing through the sensing section. Light receivers pointing at any part in the grain length direction including the grain are installed in parallel, and when the light receiver pointing at the tip of the grain detects the tip of the grain passing through the detection part, the remaining light receivers Each of the light receivers is connected to a display via an arithmetic and control device in order to determine the grain length of the grain based on the output signal, calculate and display the number of grains for each grain length and the ratio to the total number of grains. A grain crushing analyzer characterized in that it has been contacted with.
(2)、上記搬送経路は、振動供給樋と該供給樋に接続
して傾架したシュートとからなり、シュートには、透光
窓を設けるとともに該透光窓を下方から照射する光源を
設けてなる検知部を形成した特許請求の範囲第(1)項
記載の穀物砕粒分析装置。
(2) The conveyance path is composed of a vibrating supply gutter and a tilted chute connected to the supply gutter, and the chute is provided with a light-transmitting window and a light source that illuminates the light-transmitting window from below. The crushed grain analysis device according to claim (1), wherein the detection section is formed by:
(3)、上記透光窓と各受光器との間にはそれぞれファ
イバースコープを介在させてなる特許請求の範囲第(2
)項記載の穀物砕粒分析装置。
(3) A fiber scope is interposed between the light transmitting window and each light receiver.
) Grain crush analyzer described in section 2.
(4)、上記シュートの下端付近には、シュート上を滑
降する穀粒を、該穀粒が検知部通過時に判別された粒長
に応じて振り分ける分別手段を設けてなる特許請求の範
囲第(2)項または第3項記載の穀物砕粒分析装置。
(4) Near the lower end of the chute, there is provided sorting means for sorting the grains sliding down the chute according to the grain length determined when the grains pass through the detection section. The crushed grain analysis device according to item 2) or item 3.
JP9748985A 1985-05-07 1985-05-07 Analyzer for ground grain Pending JPS61254807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9748985A JPS61254807A (en) 1985-05-07 1985-05-07 Analyzer for ground grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9748985A JPS61254807A (en) 1985-05-07 1985-05-07 Analyzer for ground grain

Publications (1)

Publication Number Publication Date
JPS61254807A true JPS61254807A (en) 1986-11-12

Family

ID=14193683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9748985A Pending JPS61254807A (en) 1985-05-07 1985-05-07 Analyzer for ground grain

Country Status (1)

Country Link
JP (1) JPS61254807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513012A (en) * 2014-03-04 2017-05-25 レッチェ テクノロジー ゲーエムベーハー Apparatus for determining the particle size and / or particle shape of a particle mixture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214742A (en) * 1983-05-21 1984-12-04 Satake Eng Co Ltd Crashed-grain measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214742A (en) * 1983-05-21 1984-12-04 Satake Eng Co Ltd Crashed-grain measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017513012A (en) * 2014-03-04 2017-05-25 レッチェ テクノロジー ゲーエムベーハー Apparatus for determining the particle size and / or particle shape of a particle mixture

Similar Documents

Publication Publication Date Title
US5692621A (en) Sorting apparatus
US6369882B1 (en) System and method for sensing white paper
US4630736A (en) Sorting machine utilizing an improved light detection system
US5779058A (en) Color sorting apparatus for grains
US7292338B2 (en) Particle detection apparatus and particle detection method used therefor
US4962538A (en) Image analysis counting system
US11123772B2 (en) Concentrating rare earth elements from coal waste
EP0838274A2 (en) Optical systems for use in sorting apparatus
KR940703999A (en) Apparatus and method for inspecting fabric samples
US20180231454A1 (en) Particle-measuring apparatus and method of operating same
JPS61254807A (en) Analyzer for ground grain
JPH0360380B2 (en)
WO2017060164A1 (en) Optical sensor for particle detection
JP4615343B2 (en) Coin identification device
BE1026632B1 (en) SORTING DEVICE
JPH08271509A (en) Particle sorter
WO2021193483A1 (en) Identification device
AU618628B2 (en) Classifying objects
JP4883041B2 (en) Article measuring method and apparatus
JPH0743299A (en) Micropowder particle monitor
JP2821607B2 (en) Grain counting device
SU1036383A1 (en) Method of photometric separation of lumpy materials
JPH03140845A (en) Apparatus for discriminating grains of rice
JP2002098642A (en) Plastic bottle material sorter
SU1395392A1 (en) Method of sorting ore lumps