JPH03100295A - Processing of gas foam-mixed excavation slag - Google Patents

Processing of gas foam-mixed excavation slag

Info

Publication number
JPH03100295A
JPH03100295A JP1236906A JP23690689A JPH03100295A JP H03100295 A JPH03100295 A JP H03100295A JP 1236906 A JP1236906 A JP 1236906A JP 23690689 A JP23690689 A JP 23690689A JP H03100295 A JPH03100295 A JP H03100295A
Authority
JP
Japan
Prior art keywords
cationic organic
added
viscosity
polymer flocculant
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1236906A
Other languages
Japanese (ja)
Other versions
JPH0753280B2 (en
Inventor
Kiyoshi Aoyama
清 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoritsu Yuki Co Ltd
Original Assignee
Kyoritsu Yuki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoritsu Yuki Co Ltd filed Critical Kyoritsu Yuki Co Ltd
Priority to JP1236906A priority Critical patent/JPH0753280B2/en
Publication of JPH03100295A publication Critical patent/JPH03100295A/en
Publication of JPH0753280B2 publication Critical patent/JPH0753280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To facilitate storage, transport and execution by developing the foam suppressing effect by forming the cationic organic high polymeric coagulant having a specific cation equivalent value into liquid form having a specific viscosity and adding and kneading said coagulant in a specific rate into a gas foam mixed excavation slag. CONSTITUTION:A cationic organic high polymeric coagulant having a cation equivalent value of 2meg/g or more is added in a rate of 0.01-1kg for 1m<3> into the gas foam mixed excavation slag and kneaded. In the addition kneading, the viscosity of the liquid containing cationic organic high polymeric coagulant of 10,000cp or less is desirable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は土木工事において気泡を注入しながら掘削する
気泡シールド工法や気泡試錐工法より発生する気泡混入
掘削ずりの処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for disposing of excavation debris containing air bubbles generated by the air bubble shield method or air drilling method in which excavation is performed while injecting air bubbles in civil engineering work.

(従来の技術と問題点) 従来、シールド工法等においてはベントナイト泥を使用
し、残土処分が困難であった。
(Conventional technology and problems) Conventionally, shield construction methods used bentonite mud, making it difficult to dispose of the remaining soil.

これを解決する為、ベントナイトに替えて気泡を混入す
る事により掘削土の流動性と止水性を確保する気泡シー
ルド工法が提案されている。該気泡混入工法の一般的操
作条件は、発泡剤水溶液あたり3〜30倍の発泡倍率の
泡を掘削土の体積あたり10〜100%容量添加混練す
るものであり、この様にして得られた気泡混入掘削ずり
のスランプ値は3〜10cm程度を示す事が多い。気泡
シールド工法以外にポーリング等においてもビット部の
冷却と掘削ずりの飛出を目的として孔内に泡を注入する
工法も知られている。
To solve this problem, a bubble shield method has been proposed in which air bubbles are mixed in instead of bentonite to ensure the fluidity and water-tightness of excavated soil. The general operating conditions for this foaming method are to add and knead foam with a foaming ratio of 3 to 30 times per foaming agent aqueous solution in an amount of 10 to 100% per volume of excavated soil. The slump value of mixed excavation debris is often about 3 to 10 cm. In addition to the bubble shield method, there is also known a method in which foam is injected into the hole for the purpose of cooling the bit part and ejecting drilling debris in poling and the like.

これら気泡混入工法から発生する掘削ずりの処理方法と
して特公昭58−47560号公報には自然放置による
消泡が記載され、特公昭59−49999号公報には消
泡材の添加による消泡処理が記載されている。
As a method for disposing of excavation debris generated from these air-bubbly construction methods, Japanese Patent Publication No. 58-47560 describes defoaming by leaving it to stand naturally, and Japanese Patent Publication No. 59-49999 describes defoaming treatment by adding a defoaming agent. Are listed.

しかし、気泡混入掘削ずり中にはシルト・粘土分やセル
ロース系増粘剤を含む場合が多く、該成分の生成する強
固な泥膜は気泡の離脱を妨害するとともに、脱泡残留物
においてもなお流動性を付与する。この為、単なる消泡
処理では未だ十分な対処法とは言えない。一方特願昭6
3−259367、特願平1−13205及び特願平1
−13206には発泡剤を含まぬシールド工法匠削残土
に対し高分子凝集剤を添加混線する技術が記載されてい
る。
However, aerated excavation slurry often contains silt/clay and cellulose-based thickeners, and the strong mud film produced by these ingredients not only obstructs the release of air bubbles, but also prevents the removal of air bubbles. Provides liquidity. For this reason, mere defoaming treatment is still not a sufficient countermeasure. On the other hand, the special request
3-259367, Japanese Patent Application No. 1-13205 and Japanese Patent Application No. 1
13206 describes a technology in which a polymer flocculant is added to the remaining soil of the shield construction method, which does not contain a foaming agent.

(発明の課題) 本発明は、短時間で気泡混入掘削ずりを固化し、運搬を
容易にし埋土として使用可能な軟質土を得る事ができる
、簡便な処理方法を提供する事を目的とする。
(Problems to be solved by the invention) An object of the present invention is to provide a simple processing method that can solidify excavated debris mixed with air bubbles in a short time to obtain soft soil that can be easily transported and used as fill soil. .

また、本発明は気泡混入掘削ずりを改質固化するにあた
り、都市部の狭い敷地からなる施工現場においても、保
管、供給、混合等が容易な薬品及び薬注法を提供する事
を目的とする。
In addition, the present invention aims to provide chemicals and a chemical injection method that are easy to store, supply, mix, etc., even in construction sites with narrow urban areas, for reforming and solidifying excavated debris containing air bubbles. .

(課題を解決する為の手段) 本発明は気泡混入掘削ずりに、カチオン当量値が2me
q/g以上であるカチオン性有機高分子凝集剤を添加混
練する事により構成される。
(Means for Solving the Problems) The present invention provides that the cation equivalent value is 2 me
It is constructed by adding and kneading a cationic organic polymer flocculant having a ratio of q/g or more.

本発明に用いるカチオン性有機高分子凝集剤は公知のも
のであって、具体的にはエビへロヒドリン、アルキレン
シバライド、アルキレン多価エポキサイド等を連結剤と
してアミンまたはアンモニアを縮合させた反応物(特公
昭38−26794、特公昭41−17965、特公昭
51−22471、特公昭56−37844等)又はホ
ルムアルデヒドを連結剤としてジシアンジアミド、メラ
ミン、グアニジン等の縮合反応物あるいはポリエチレン
イミン、ポリジメチルジアリルアンモニウムクロライド
、ジアルキルアミノアルキルメタアクリレートあるいは
ジアルキルアミノアルキルアクリルアミドの塩及び又は
その四級化物の(共)重合体等を例示する事ができる。
The cationic organic polymer flocculant used in the present invention is a known one, and specifically, a reaction product in which amine or ammonia is condensed using shrimp herohydrin, alkylene civalide, alkylene polyepoxide, etc. as a linking agent ( Condensation reaction products of dicyandiamide, melamine, guanidine, etc. or polyethyleneimine, polydimethyldiallylammonium chloride using formaldehyde as a linking agent , a salt of dialkylaminoalkyl methacrylate or dialkylaminoalkylacrylamide, and/or a (co)polymer of a quaternized product thereof.

本発明に用いるカチオン性有機高分子凝集剤は、電荷の
中和を主たる作用機作とする為、そのカチオン当量値の
高い事が望まれ、少な(とも2meq/g以上のカチオ
ン当量値を有するものが良好な効果を発揮する。
Since the cationic organic polymer flocculant used in the present invention has a main action mechanism of charge neutralization, it is desired that the cation equivalent value is high, things have good effects.

カチオン当量値の測定方法は通常PH4゜0におけるコ
ロイド滴定により求められる。
The cation equivalent value is usually determined by colloid titration at pH 4.0.

本発明の実施においては、カチオン性有機高分子凝集剤
の架橋吸着作用も効果に寄与する為、カチオン当量値が
同等であれば、高分子量の凝集剤の方が少ない添加量で
効果を発揮する。気泡混入I掘削ずりとカチオン製有機
高分子凝集剤の混練法は特に限定されるものではなく、
連続ミキサー、強制撹拌ミキサー等の混練機を使用する
他、パワーショベル、バックホウ、スクリューコンベア
等の土木機械を用いて混練する事もできる。特にシール
ド機のスクリューコンベア部に注入する工法は、収設の
装置を利用する為、新規の処理用敷地等を必要とせず都
市部における実施は容易となる。
In carrying out the present invention, the crosslinking adsorption effect of the cationic organic polymer flocculant also contributes to the effect, so if the cation equivalent values are the same, a high molecular weight flocculant will be more effective with a smaller amount added. . The method of kneading the bubble-mixed I drilling slag and the cationic organic polymer flocculant is not particularly limited;
In addition to using kneading machines such as continuous mixers and forced stirring mixers, kneading can also be performed using civil engineering machinery such as power shovels, backhoes, and screw conveyors. In particular, the method of injecting into the screw conveyor section of a shielding machine uses existing equipment, so it does not require new processing sites and can be easily implemented in urban areas.

気泡混入掘削ずりと′1RP1!するカチオン性有機高
分子凝集剤の添加量は気泡混入掘削ずり1m3に対し、
ポリマー純分0.01〜1kgを使用する。該高分子凝
集剤を粉末状態で添加した場合はママ粉を生じ易く、高
性能の撹拌混練装置を必要とする。気泡混入掘削ずりと
簡易に混線する為には該高分子凝集剤を粘度10,0O
Ocp以下の低粘度液の状態で添加する事が望ましい。
Drilling shear mixed with air bubbles and '1RP1! The amount of cationic organic polymer flocculant added per 1 m3 of air-filled excavation shear is
Use 0.01 to 1 kg of pure polymer. When the polymer flocculant is added in the form of a powder, it tends to produce powder and requires a high-performance stirring and kneading device. In order to easily mix with air-filled excavation shear, the polymer flocculant should be used at a viscosity of 10.0O.
It is desirable to add it in the form of a low viscosity liquid of less than Ocp.

液状化する方法としては水に溶解し、濃度0゜5〜50
%程度の凝集剤水溶液として添加する方法が最も安価で
ある。しかし、高含水比のずりを処理する場合等水分増
加を忌避する場合はポリマー黴粒子を油または塩水溶液
中に分子Piさせて液状化した高分子凝集剤が望ましい
。また、本発明におけるカチオン性有機高分子凝集剤の
使用法は単独添加に限定されるものではなく、硫酸アル
ミニウム、ポリ塩化アルミニウム等の無機凝集剤との併
用添加あるいはカチオン性有機高分子凝集剤添加混線後
に高吸水性樹脂、アニオン系有機高分子凝集剤あるいは
石灰やセメント等の無機系固化剤を添加混練する事もで
きる。
The method of liquefaction is to dissolve it in water and to a concentration of 0.5 to 50.
The cheapest method is to add the coagulant as an aqueous solution of about 1.0%. However, when an increase in water content is to be avoided, such as when treating shear with a high water content, a polymer flocculant prepared by liquefying polymer mold particles by liquefying the molecules Pi in an oil or salt aqueous solution is desirable. In addition, the method of using the cationic organic polymer flocculant in the present invention is not limited to adding it alone, but also adding it in combination with an inorganic flocculant such as aluminum sulfate or polyaluminum chloride, or adding the cationic organic polymer flocculant. After mixing, a super absorbent resin, an anionic organic polymer flocculant, or an inorganic solidifying agent such as lime or cement may be added and kneaded.

(作用) 本発明は、カチオン性有機高分子凝集剤を気泡混入掘削
ずりに添加混練する事により、粘土粒子等の負電荷を中
和し、凝集させ流動性を除去する事を基本とする。
(Function) The present invention is based on the fact that a cationic organic polymer flocculant is added to and kneaded into the aerated excavation slurry to neutralize the negative charges of clay particles, etc., cause them to coagulate, and remove their fluidity.

気泡周囲の泥膜が(電荷の中和により親水性を失い、凝
集する事によって)破れると、気泡は混練によって容易
に集合し、ずりから放出される。気泡を失い、凝集した
改質上は流動性が無(、運搬や埋土が容易となる。
When the mud film around the bubbles is broken (by neutralizing the charge, losing hydrophilicity and coagulating), the bubbles are easily aggregated by kneading and released from the shear. After losing air bubbles and coagulating, it has no fluidity (and is easy to transport and bury).

この様な作用は泥中にCMC等のアニオン性増粘剤が存
在する場合でも有効であり、カチオン性有機高分子凝集
剤はこれらアニオン性高分子とイオンコンプレックスを
つくり、水不溶性とする事により、増粘作用を消失きせ
る。
This effect is effective even when anionic thickeners such as CMC are present in the mud, and cationic organic polymer flocculants form ionic complexes with these anionic polymers to make them water-insoluble. , the thickening effect disappears.

この様な効果は従来の消泡剤には全く期待する事のでき
ないものであり、本発明の優位性を立証するものである
Such effects cannot be expected from conventional antifoaming agents and prove the superiority of the present invention.

(実施例) 以下に実施例を用いて本発明を具体的に説明する。(Example) The present invention will be specifically described below using Examples.

合成例−1 撹拌器、温度計、還流冷却器、窒素導入管を備えたIQ
の五つロセバラブルフラスコに、アクリロイルオキシエ
チルトリメチルアンモニウムクロライドのホモポリマー
681無水硫酸ナトリウム42g、無水硫酸アルミニウ
ム98g1イオン交換水253g1アクリルアミド33
.5g、アクリルアミドプロピルジメチルベンジルアン
モニウムクロライド22.5gを仕込み、50℃に加温
して窒素置換をした。
Synthesis example-1 IQ equipped with a stirrer, thermometer, reflux condenser, and nitrogen introduction tube
Into five rosetteable flasks, add 681 homopolymer of acryloyloxyethyltrimethylammonium chloride, 42 g of anhydrous sodium sulfate, 98 g of anhydrous aluminum sulfate, 253 g of ion-exchanged water, 33 g of acrylamide.
.. 5 g of acrylamide propyldimethylbenzyl ammonium chloride and 22.5 g of acrylamide propyldimethylbenzyl ammonium chloride were charged, heated to 50° C., and replaced with nitrogen.

これに。2.2°−アゾビス(2−アミジノプロパン)
塩酸塩の10%水溶液1mQを加え、撹拌下50℃で1
0時間重合すると、ポリマー黴粒子の分散液が得られた
to this. 2.2°-azobis(2-amidinopropane)
Add 1 mQ of 10% aqueous solution of hydrochloride, and stir at 50°C.
After 0 hours of polymerization, a dispersion of polymer mold particles was obtained.

これを試料−1と呼ぶ。この製品の粘度は25℃で20
20cpであり、1規定硫酸ナトリウム水溶液にポリマ
ー濃度0.5%に溶解した液の粘度は25℃で10cp
であり、PH4,0におけるカチオン当、Fit値は2
.6meq/gであった。
This is called sample-1. The viscosity of this product is 20 at 25°C.
The viscosity of a solution dissolved in a 1N sodium sulfate aqueous solution with a polymer concentration of 0.5% is 10 cp at 25°C.
, and the Fit value for cation at pH 4.0 is 2
.. It was 6meq/g.

合成例−2 合成例−1に使用したと同様のセパラブルフラスコに中
油220gを仕込み、IC1社製ハイパーマーB−24
6を5g、ソルビタンモノオレートLogを溶解した。
Synthesis Example-2 A separable flask similar to that used in Synthesis Example-1 was charged with 220 g of medium oil, and Hypermer B-24 manufactured by IC1 was added.
6 and sorbitan monooleate Log were dissolved.

別にアクリルアミド102gとメタクリロイルオキシエ
チルトリメチルアンモニウムクロライド198gをイオ
ン交換水213gに溶解したモラマー溶液を調整後、前
述のセパラブルフラスコ内に注入し撹拌した。
Separately, a moramer solution was prepared by dissolving 102 g of acrylamide and 198 g of methacryloyloxyethyltrimethylammonium chloride in 213 g of ion-exchanged water, and then poured into the above-mentioned separable flask and stirred.

30分間窒素置換をした後、内温を45℃に調整後、ア
ブビスイソブチロニトリル50mgを含むアセトン溶液
を添加し重合を開始した。発熱を認めなくなってから昇
温し、5時間65℃に保持し重合を完結きせた。得られ
たエマルジョンにポリオキシエチレンノニルフェニルエ
ーテル20gとポリオキシエチレンソルビタントリオレ
ート20gを加えた液を試料−2と呼ぶ。試料−2の粘
度は25℃にて980cpであり、1規定食塩水にポリ
マー濃度0.5%に溶解した液の25℃における粘度は
25cpであり、PH4,0におけるカチオン当量値は
3.1meq/gであワた。
After purging with nitrogen for 30 minutes and adjusting the internal temperature to 45° C., an acetone solution containing 50 mg of abbisisobutyronitrile was added to initiate polymerization. After no heat generation was observed, the temperature was raised and maintained at 65° C. for 5 hours to complete polymerization. A liquid obtained by adding 20 g of polyoxyethylene nonylphenyl ether and 20 g of polyoxyethylene sorbitan triolate to the obtained emulsion is referred to as sample-2. The viscosity of sample-2 is 980 cp at 25°C, and the viscosity of a solution dissolved in 1N saline at a polymer concentration of 0.5% at 25°C is 25 cp, and the cation equivalent value at pH 4.0 is 3.1 meq. /g was hot.

合成例−3 撹拌装置、温度計、還流冷却器及び500m1の滴下漏
斗を備えたIQの四つロセパラブルフラスコにエピクロ
ルヒドリン370gを仕込み、撹拌下、内温を10〜4
5℃に調整しながらジメチルアミン40%水溶液400
gを滴下した。2時間を要して滴下終了後、ペンタエチ
レンへキサミン40gt−添加し、内温65〜70℃に
保持し縮合反応を行った。内容物の粘度が15゜000
cpに増粘した状態で25%硫酸水溶液を加え、PHを
3とじ縮合反応を停止きせた後、得られたポリカチオン
水溶液をポリマー濃度50%に稀釈した。これを試F4
−3と呼ぶ。
Synthesis Example-3 370 g of epichlorohydrin was charged into an IQ four-separable flask equipped with a stirrer, a thermometer, a reflux condenser, and a 500 ml dropping funnel, and while stirring, the internal temperature was brought to 10-4.
40% dimethylamine aqueous solution while adjusting to 5℃
g was added dropwise. After completion of the dropwise addition over a period of 2 hours, 40gt of xamine was added to pentaethylene, and the internal temperature was maintained at 65 to 70°C to carry out a condensation reaction. The viscosity of the contents is 15゜000
A 25% aqueous sulfuric acid solution was added to the cp in a thickened state, the pH was adjusted to 3 to stop the condensation reaction, and the resulting polycation aqueous solution was diluted to a polymer concentration of 50%. Try this F4
Call it -3.

25℃における試料−3の粘度は5300cpであり、
ポリマーのカチオン当量値は7.1meq/gであった
The viscosity of sample-3 at 25°C is 5300 cp,
The cation equivalent value of the polymer was 7.1 meq/g.

合成例−4 市販のメタクリロイルオキシエチルトリメチルアンモニ
ウムクロライドとアクリルアミドの(共)重合物である
粉末高分子凝集剤の2%水溶液を調整し試験に供した。
Synthesis Example 4 A 2% aqueous solution of a powdered polymer flocculant, which is a (co)polymer of commercially available methacryloyloxyethyltrimethylammonium chloride and acrylamide, was prepared and tested.

各試料名と物性値を下表に示す。但し、表中の0.5%
粘度とは1規定食塩水中にポリマー濃度0.5%に溶解
した液の25℃における粘度である。
The name of each sample and physical property values are shown in the table below. However, 0.5% in the table
Viscosity is the viscosity at 25° C. of a solution dissolved in 1N saline at a polymer concentration of 0.5%.

表−1 実施例−1 含水比41%、シルト粘上分80%の土20kgを強制
練りコンクリートミキサーに入れ、ポリオキシエチレン
アルキルスルフオン酸ナトリウムの0.3%水溶液の7
倍発泡物を7Q加え2分間混練した。
Table-1 Example-1 20 kg of soil with a moisture content of 41% and a silt content of 80% was placed in a forced mixing concrete mixer, and mixed with a 0.3% aqueous solution of sodium polyoxyethylene alkyl sulfonate.
7Q of double foamed material was added and kneaded for 2 minutes.

得られた気泡混入土のスランプ値は5.5amであった
。気泡混入土にカチオン性有機高分子凝集剤を添加し、
2分間R諌後、スランプ値を測定した結果を表−2に示
す。
The resulting aerated soil had a slump value of 5.5 am. Adding a cationic organic polymer flocculant to the aerated soil,
Table 2 shows the results of measuring the slump value after 2 minutes of R.

薬品の添加量は有姿表示である。The amount of chemicals added is indicated as is.

実施例−2 2%水溶液の粘度が5000cpであるカルボキシメチ
ルセルローズをポリマー濃度0.5%の水溶液としポリ
オキシエチレンアルキルスルホン酸ナトリウムを水に対
し、0.1重量%添加溶解した液を撹拌機により6.5
倍に発砲させた。強制練りコンクリートミキサーに含水
比12%、FM3゜11の市販砂18kg及び含水比5
2%、シルト粘土分48%の赤土2kgを仕込み、上記
発泡物6Qを加えて1分間混練した。
Example-2 Carboxymethylcellulose, whose viscosity is 5000 cp as a 2% aqueous solution, was made into an aqueous solution with a polymer concentration of 0.5%, and 0.1% by weight of sodium polyoxyethylene alkyl sulfonate was added and dissolved in water using a stirrer. by 6.5
Fired twice as much. 18 kg of commercially available sand with a water content of 12% and FM3°11 and a water content of 5 were placed in a forced mixing concrete mixer.
2 kg of red clay with a silt clay content of 48% was charged, and the foamed product 6Q was added thereto and kneaded for 1 minute.

得られた気泡混入土のスランプ値は6cmであった。気
泡混入土にカチオン性高分子凝集剤を添加し、2分間混
練後、スランプ値を測定した結果を表−3に示す。
The resulting aerated soil had a slump value of 6 cm. A cationic polymer flocculant was added to the aerated soil, and after kneading for 2 minutes, the slump value was measured and the results are shown in Table 3.

薬品の添加量は有姿表示である。The amount of chemicals added is indicated as is.

表−2 表−3Table-2 Table-3

Claims (1)

【特許請求の範囲】 1)カチオン当量値が2meg/g以上であるカチオン
性有機高分子凝集剤を、気泡混入 掘削ずり1m^3に対し0.01〜1kg添加混練する
事を特徴とする気泡混入掘削ずり の処理法。 2)カチオン性有機高分子凝集剤を粘度10,000c
p以下の液状で添加混練する事を 特徴とする請求項1に記載の気泡混入掘削 ずりの処理法。
[Claims] 1) A bubble characterized by adding and kneading a cationic organic polymer flocculant having a cation equivalent value of 2 meg/g or more in an amount of 0.01 to 1 kg per 1 m^3 of the bubble-containing excavation shear. How to deal with mixed excavation debris. 2) The cationic organic polymer flocculant has a viscosity of 10,000c.
2. The method for treating excavated debris containing air bubbles according to claim 1, characterized in that the additive is added and kneaded in a liquid state with a concentration of p or less.
JP1236906A 1989-09-14 1989-09-14 Treatment method of excavated shear mixed with air bubbles Expired - Lifetime JPH0753280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1236906A JPH0753280B2 (en) 1989-09-14 1989-09-14 Treatment method of excavated shear mixed with air bubbles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1236906A JPH0753280B2 (en) 1989-09-14 1989-09-14 Treatment method of excavated shear mixed with air bubbles

Publications (2)

Publication Number Publication Date
JPH03100295A true JPH03100295A (en) 1991-04-25
JPH0753280B2 JPH0753280B2 (en) 1995-06-07

Family

ID=17007507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1236906A Expired - Lifetime JPH0753280B2 (en) 1989-09-14 1989-09-14 Treatment method of excavated shear mixed with air bubbles

Country Status (1)

Country Link
JP (1) JPH0753280B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323335A (en) * 1998-05-14 1999-11-26 Nippon Shokubai Co Ltd Conditioning process for water-containing soil
JP2001220993A (en) * 2000-02-08 2001-08-17 Ohbayashi Corp Method of manufacturing for back filling soil
FR2937032A1 (en) * 2008-10-10 2010-04-16 Lafarge Sa COMPOSITION BASED ON HYDRAULIC AND / OR POUZZOLANIC MATERIAL OTHER THAN CLINKER
JP2011231590A (en) * 2010-04-30 2011-11-17 Maeda Corp Curved boring method and boring device used therefor
JP2012026116A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method for treating excavated soil in rheological foam shield tunneling work
JP2017064654A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Surplus soil treatment material and treatment method of surplus soil
JP2020037821A (en) * 2018-09-05 2020-03-12 テクニカ合同株式会社 Method for processing modification of air bubble mixed sediment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063863B2 (en) * 2005-03-23 2012-10-31 栗田工業株式会社 Treatment method of construction waste mud generated by bubble shield method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746400A (en) * 1980-09-05 1982-03-16 Toshiba Corp Memory device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746400A (en) * 1980-09-05 1982-03-16 Toshiba Corp Memory device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323335A (en) * 1998-05-14 1999-11-26 Nippon Shokubai Co Ltd Conditioning process for water-containing soil
JP2001220993A (en) * 2000-02-08 2001-08-17 Ohbayashi Corp Method of manufacturing for back filling soil
FR2937032A1 (en) * 2008-10-10 2010-04-16 Lafarge Sa COMPOSITION BASED ON HYDRAULIC AND / OR POUZZOLANIC MATERIAL OTHER THAN CLINKER
WO2010040915A3 (en) * 2008-10-10 2010-06-03 Lafarge Composition containing a hydraulic and/or pozzolan material
US8466224B2 (en) 2008-10-10 2013-06-18 Lafarge Composition with a base of hydraulic and/or pozzolanic material
JP2011231590A (en) * 2010-04-30 2011-11-17 Maeda Corp Curved boring method and boring device used therefor
JP2012026116A (en) * 2010-07-21 2012-02-09 Ohbayashi Corp Method for treating excavated soil in rheological foam shield tunneling work
JP2017064654A (en) * 2015-09-30 2017-04-06 太平洋セメント株式会社 Surplus soil treatment material and treatment method of surplus soil
JP2020037821A (en) * 2018-09-05 2020-03-12 テクニカ合同株式会社 Method for processing modification of air bubble mixed sediment

Also Published As

Publication number Publication date
JPH0753280B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JPH03100295A (en) Processing of gas foam-mixed excavation slag
JP4588512B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JP5063863B2 (en) Treatment method of construction waste mud generated by bubble shield method
JP6529821B2 (en) Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same
JP5246177B2 (en) Soil-improving injection material and method for insolubilizing soil contaminants using the injection material
JPH02194891A (en) Treatment of water containing surplus excavation soil
JP4182011B2 (en) Method for modifying and solidifying mud water and using modified solidified soil
JP2004083339A (en) Powdery foaming agent for cellular mortar
JP2002038152A (en) Water-reducing agent for soil
JP4438301B2 (en) Manufacturing method and filling method of plastic light weight injection material
JP6619193B2 (en) Residual soil processing material and processing method of residual soil
JP6679030B1 (en) Method for modifying mud soil such as soil mixed with drilling additives
JP7245678B2 (en) SOIL IMPROVEMENT MATERIAL, CEMENT MILK, AND SOIL IMPROVEMENT METHOD
JPH0649200B2 (en) Treatment method for wet excavated soil
JP2003305497A (en) Alkaline muddy soil treating method and alkaline muddy soil modifying agent
JP2715017B2 (en) Coagulant for civil engineering
JP2742173B2 (en) Preparation of chemical solution
JP4411469B2 (en) Boron-containing solidified body and preparation method thereof
JP2002371279A (en) Soil conditioner
JPH06145664A (en) Solidifying agent for hydrous soil
KR100335961B1 (en) High effective polymeric coagulant and manufacturing method of same
JP2003292359A (en) Dust reduction agent
JP4094285B2 (en) Silicate-based soil stabilization chemicals
JPS61183158A (en) Manufacture of concrete
JP4030075B2 (en) Hydrous soil improving agent and hydrous soil improving method