JPH03100111A - Operating method of fluidized reduction furnace for powder ore - Google Patents

Operating method of fluidized reduction furnace for powder ore

Info

Publication number
JPH03100111A
JPH03100111A JP23963889A JP23963889A JPH03100111A JP H03100111 A JPH03100111 A JP H03100111A JP 23963889 A JP23963889 A JP 23963889A JP 23963889 A JP23963889 A JP 23963889A JP H03100111 A JPH03100111 A JP H03100111A
Authority
JP
Japan
Prior art keywords
fluidized bed
reduction furnace
ore
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23963889A
Other languages
Japanese (ja)
Other versions
JPH0637653B2 (en
Inventor
Kazuya Kunitomo
和也 国友
Yoichi Hayashi
洋一 林
Satoru Suzuki
悟 鈴木
Tatsuhiko Egashira
江頭 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23963889A priority Critical patent/JPH0637653B2/en
Publication of JPH03100111A publication Critical patent/JPH03100111A/en
Publication of JPH0637653B2 publication Critical patent/JPH0637653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the reduction efficiency and also to stabilize the condition in a fluidized bed reduction furnace by adjusting gas flowing velocity and circulating flow rate of powdery iron in the fluidized bed and keeping grain vol. fraction ratio in the furnace to a specific value at the time of pre-reducing the powdery iron ore in the fluidized bed reduction furnace. CONSTITUTION:When producing a molten iron from powdery iron ore, with the combination of a pre-reduction furnace and a smelting reduction furnace and without using a blast furnace, a fluidized bed reduction furnace is used as the pre-reduction furnace. The powdery iron ore 4 is charged from lower inlet 3 of an uptake cylinder 1 in the fluidized bed reduction furnace 10, and reducing gas 5 is blown from the bottom part to form the fluidized bed of powder iron ore, and the powdery iron ore is pre- reduced in the solid phase and the ore accompanied with the gas 5 by a cyclone 6 is descended in the downtake tube 2, and the reduced ore is again ascended in the uptake cylinder 1 after taking out a part of the reduced ore from an outlet 7 to form the fluidized bed, and unreducing iron ore is pre-reduced. In this case, by keeping the grain vol. fraction in the furnace within a range of 4-15% in the shown equatation, the reduction efficiency in the fluidized bed reduction furnace is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鉱石、とくに鉄鉱石の流動層還元炉の高効率
操業を維持するための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for maintaining highly efficient operation of a fluidized bed reduction furnace for ores, particularly iron ore.

〔従来の技術〕[Conventional technology]

近年、従前の高炉による製鉄法が設備投資額が大きく、
また、良質の塊成鉱やコークスを必要とする原料選択上
の制約等の問題点を解消した溶融還元製鉄法が出現した
。溶融還元製鉄プロセスは、溶融還元炉と予備還元炉と
の2つの大きなユニットにより構成され、予備還元炉に
は粒子循環装置を有する流動層を応用する方法が一般的
である。
In recent years, the conventional method of making iron using a blast furnace requires large capital investment,
In addition, a smelting reduction ironmaking process has emerged that eliminates problems such as restrictions on raw material selection, which require high-quality agglomerate ore and coke. The smelting reduction ironmaking process is comprised of two large units: a smelting reduction furnace and a pre-reduction furnace, and a method in which a fluidized bed with a particle circulation device is generally applied to the pre-reduction furnace is generally used.

この流動還元炉は基本的には、鉄鉱石、還元ガスを装入
する流動層反応塔と、反応塔からガスと共に排出された
鉱石を、気体一固体分離のためのサイクロンで捕集し、
反応塔の下部に再度装入する下降連結管とからなる構造
を有する。
This fluidized bed reduction furnace basically consists of a fluidized bed reaction tower into which iron ore and reducing gas are charged, and a cyclone to collect the ore discharged from the reaction tower together with the gas, and to separate the gas from solids.
It has a structure consisting of a descending connecting pipe that is reinjected into the lower part of the reaction tower.

しかしながら、かかる流動還元炉は、粉鉱石を浮遊せし
めた希薄な流動層において反応させるために、還元ガス
の利用効率が悪く反応塔の容積当たりの生産性が低く、
また安定した還元率を有する成品を得るのが困難である
という欠点がある。
However, in such a fluidized-bed reduction furnace, since the reaction is carried out in a dilute fluidized bed in which fine ore is suspended, the efficiency of reducing gas utilization is poor, and the productivity per volume of the reaction tower is low.
Another drawback is that it is difficult to obtain a product with a stable reduction rate.

そのため、上記流動還元炉において生産性を確保すると
共に安定した還元率の成品を得るための操業法が種々提
案されている。
Therefore, various operating methods have been proposed to ensure productivity in the fluidized bed reduction furnace and to obtain products with a stable reduction rate.

例えば、特開昭63−57709号公報には、製品抽出
速度、鉱石循環流量、還元ガス供給量、還元ガス入口酸
化度を変更することによって還元率を制御する方法が開
示されている。
For example, Japanese Patent Application Laid-Open No. 63-57709 discloses a method of controlling the reduction rate by changing the product extraction rate, ore circulation flow rate, reducing gas supply amount, and reducing gas inlet oxidation degree.

また、特開平1−115447号公報には、循環ガスの
流速あるいは粒子循環速度を制御することによって、操
業条件の変動や変更に対して流動状態を安定的に維持す
る方法が開示されている。
Furthermore, Japanese Patent Laid-Open No. 1-115447 discloses a method of stably maintaining a fluid state against fluctuations or changes in operating conditions by controlling the flow rate of circulating gas or particle circulation rate.

これら開示された操業法によって、装入鉱石の還元率や
流動状態に大きな変化を与えないように操業状態を維持
することは可能となる。
These disclosed operating methods make it possible to maintain operating conditions without causing major changes in the reduction rate or fluidity of charged ore.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、かかる制御方法は、単に炉の安定操業を目的
とするだけで、還元炉の処理容量をフルに用いた効率の
高い操業状態を得ることは考慮されておらず、結果的に
操業効率の劣る操作が継続されることになる。
However, such control methods are only aimed at stable operation of the furnace, and do not take into consideration obtaining a highly efficient operating state that fully utilizes the processing capacity of the reduction furnace, resulting in a reduction in operational efficiency. Inferior operations will continue.

本発明において解決すべき課題は、安定操業は勿論、そ
の容量と導入還元ガスの還元機能を最大に利用できる循
環流動還元炉の高効率操業法を確立することにある。
The problem to be solved by the present invention is to establish a highly efficient operating method for a circulating fluidized reduction furnace that not only allows stable operation but also makes maximum use of its capacity and the reducing function of the introduced reducing gas.

〔課題を解決するための手段〕 本発明は、流動還元炉の流動層における粒子体積分率を
特定範囲に維持することによって、流動層に導入される
還元ガスを鉱石の還元に最も有効に利用することができ
、生産性が向上するという知見に基づいて完成したもの
で、流動還元炉のガス流速、粒子循環流量の何れか、も
しくは両方を制御して粒子体積分率を略4〜15%の範
囲内に保持するものである。
[Means for Solving the Problems] The present invention makes the most effective use of the reducing gas introduced into the fluidized bed for reducing ore by maintaining the particle volume fraction in the fluidized bed of a fluidized bed reduction furnace within a specific range. This was completed based on the knowledge that productivity can be improved by controlling the gas flow rate of the fluidized bed reduction furnace, the particle circulation flow rate, or both to reduce the particle volume fraction to approximately 4 to 15%. It shall be kept within the range of .

〔作用〕[Effect]

流動層内に導入される還元ガスの利用率によって表わさ
れる還元炉の操業効率は、反応流動層内の鉱石粒子体積
分率が特定範囲内にあるとき、高い値を示す。
The operational efficiency of the reduction furnace, which is expressed by the utilization rate of the reducing gas introduced into the fluidized bed, exhibits a high value when the volume fraction of ore particles in the reactive fluidized bed is within a specific range.

鉱石粒子体積分率が小さい場合には、還元ガスと反応す
る粒子が流動層内に少ないためにガスが充分に反応せず
に炉外へ排出され、効率が急激に低下する。その許容限
界は略4%である。
When the ore particle volume fraction is small, there are few particles in the fluidized bed that react with the reducing gas, so the gas does not react sufficiently and is discharged outside the furnace, resulting in a sharp drop in efficiency. The permissible limit is approximately 4%.

また、流動層内の粒子体積分率が大きい場合は、流動層
内の粒子量は多いが、粒子の分散が悪くなって粒子集合
体が偏在することになり、その間をガスが吹き抜けて固
気接触が不十分となるため、ガスが充分に鉄粒子と反応
せずに炉外へ排出され効率が急激に低下する。その許容
限界は略15%である。
In addition, when the particle volume fraction in the fluidized bed is large, the amount of particles in the fluidized bed is large, but the dispersion of particles becomes poor and particle aggregates are unevenly distributed, and gas blows between them, resulting in solid gas. Due to insufficient contact, the gas is discharged outside the furnace without sufficiently reacting with the iron particles, resulting in a sharp drop in efficiency. The permissible limit is approximately 15%.

そして、かかる鉱石粒子体積分率のその範囲内での維持
は、流動還元炉のガス流速、粒子循環流量の何れか、も
しくは両方を調整することによって可能となる。
The ore particle volume fraction can be maintained within this range by adjusting either the gas flow rate of the fluidized bed reduction furnace, the particle circulation flow rate, or both.

〔実施例〕〔Example〕

第1図は本発明の操業形態を構図的に示す図である。流
動還元炉10は反応層を形成する上昇管1と部分還元粒
子を再度上昇管1に戻すルートを形成する下降管2とか
らなる。
FIG. 1 is a diagram schematically showing the operation mode of the present invention. The fluidized-bed reduction furnace 10 is composed of an ascending pipe 1 that forms a reaction layer and a descending pipe 2 that forms a route for returning the partially reduced particles to the rising pipe 1 again.

同図を参照して、原料供給口3より供給された粉鉱石4
は上昇管1の下方から供給される還元ガス5により流動
層を形成して還元される。反応後の還元ガス5はサイク
ロン6に入り、ガスに同伴された粒子は下降管2を介し
て上昇管1に戻る。
Referring to the same figure, powder ore 4 supplied from raw material supply port 3
is reduced by forming a fluidized bed by the reducing gas 5 supplied from below the riser 1. The reducing gas 5 after the reaction enters the cyclone 6, and the particles entrained in the gas return to the riser pipe 1 via the downcomer pipe 2.

その過程で一部は成品として下降管2の取り出しロア、
もしくは流動層下部の成品取り出し口8から回収される
。操業に際しての上昇管lの下部と上部の圧力はそれぞ
れの箇所に取付けられた圧力検出器9a、9bによって
検出される。
In the process, some of the products are the lower part of the downcomer pipe 2,
Alternatively, it is collected from the product outlet 8 at the bottom of the fluidized bed. The pressures at the lower and upper portions of the riser pipe 1 during operation are detected by pressure detectors 9a and 9b attached to the respective locations.

かかる流動還元炉における流動層内の粒子体積分率は次
式によって推定される。
The particle volume fraction in the fluidized bed in such a fluidized bed reduction reactor is estimated by the following equation.

粒子体積分率(%)  =100 (PL−P2)/L
/ρsただし、Pl: 上昇管下部圧力(kg/ m″
)P2: 上昇管上部圧力(kg/ m″)L:圧力検
出端9aと9bとの距離(m)ρS:流動層内粒子密度
(kg/m’)である。
Particle volume fraction (%) = 100 (PL-P2)/L
/ρs However, Pl: Lower pressure of riser pipe (kg/m″
) P2: Riser upper pressure (kg/m'') L: Distance between pressure detection ends 9a and 9b (m) ρS: Particle density in the fluidized bed (kg/m').

第2図は第1図に示す流動還元炉の流動層内における鉱
石粒子の体積分率とガス利用率との関係を示す図である
FIG. 2 is a diagram showing the relationship between the volume fraction of ore particles in the fluidized bed of the fluidized reduction furnace shown in FIG. 1 and the gas utilization rate.

同図に示すガス利用率は流動層人口と出口の還元ガスの
酸化度すなわち、 ((COI +H10)/ (CO+CO2+H* +
LO) ]の差として示されるもので、還元ガスが還元
に有効に利用された効率の指標とすることができる。
The gas utilization rate shown in the figure is determined by the fluidized bed population and the oxidation degree of the reducing gas at the outlet, that is, ((COI + H10) / (CO + CO2 + H* +
LO) ], and can be used as an index of the efficiency with which the reducing gas is effectively used for reduction.

このときの主要な操業条件は、流動層内の温度820〜
860℃、入口ガスの酸化度12〜18%、製品還元率
40〜50%、粒子循環速度50〜250 kg/m’
/ s 、ガス流速5〜9m/Sである。
The main operating conditions at this time are the temperature in the fluidized bed of 820~
860℃, oxidation degree of inlet gas 12-18%, product reduction rate 40-50%, particle circulation rate 50-250 kg/m'
/s, gas flow rate 5-9 m/s.

流動層内の粒子体積分率が特定範囲A内においては、ガ
ス利用率は13〜18%、生産速度は5〜9 t−F 
e/m’/ hが得られた。これらの値はいずれも特定
範囲A外の1.5倍以上であった。
When the particle volume fraction in the fluidized bed is within a specific range A, the gas utilization rate is 13 to 18% and the production rate is 5 to 9 t-F.
e/m'/h was obtained. All of these values were 1.5 times or more outside the specific range A.

高いガス利用率や生産速度を得る粒子体積分率の範囲は
、いかなるデイメンジョンの炉、あるいはいかなる条件
の下での操業においても、略4%と略15%の範囲内に
ある。すなわち、粒子体積分率の特定範囲A内にあると
きのガス利用率は、特定範囲A外にあるときに比べてい
ずれの場合も1.5倍以上であり、生産速度も2t−F
e/m’/h以上が得られる。
The range of particle volume fractions that yield high gas utilization and production rates is within the range of approximately 4% and approximately 15% for any dimension furnace or operation under any conditions. That is, the gas utilization rate when the particle volume fraction is within the specific range A is 1.5 times or more than when it is outside the specific range A, and the production rate is also 2t-F.
e/m'/h or more can be obtained.

他方、流動還元炉における流動層内の鉱石粒子の体積分
率は流動層内のガス流速と鉱石の循環流量とそれぞれ一
義的な関係を有する。第3図は粒子体積分率と流動層内
のガス流速、それに鉱石の循環流量の関係を示す。同図
に示すように、ガス流速の低下により流動層内の粒子体
積分率は増加し、逆の場合は減少する。また、粒子循環
流量が増大すれば粒子体積分率は増大する。
On the other hand, the volume fraction of ore particles in the fluidized bed in a fluidized bed reduction furnace has a unique relationship with the gas flow rate in the fluidized bed and the circulating flow rate of ore, respectively. FIG. 3 shows the relationship between the particle volume fraction, the gas flow rate in the fluidized bed, and the ore circulation flow rate. As shown in the figure, the particle volume fraction in the fluidized bed increases as the gas flow rate decreases, and vice versa. Furthermore, as the particle circulation flow rate increases, the particle volume fraction increases.

したがって、第2図と第3図の関係から、流動層内のガ
ス流速と鉱石の循環流量あるいは両方の因子を、上記の
高い操業効率を得るための粒子体積分率の特定範囲A内
に維持するための制御因子とすることができる。
Therefore, from the relationship shown in Figures 2 and 3, the gas flow rate in the fluidized bed and the circulating flow rate of ore, or both factors, are maintained within the specified range A of the particle volume fraction in order to obtain the above-mentioned high operational efficiency. It can be used as a control factor for

第4図は第1図に示す構造を有する流動還元炉の操業例
を示すもので、鉱石粒子の循環流量とガス流速、それに
よる粒子体積分率と鉱石還元率と生産速度との関連を示
す。
Figure 4 shows an example of the operation of a fluidized bed reduction furnace having the structure shown in Figure 1, and shows the relationship between the circulation flow rate of ore particles, the gas flow rate, the resulting particle volume fraction, ore reduction rate, and production rate. .

同図に示すように、ガス流速と粒子循環流量により流動
層内の粒子体積分率の制御が可能であり、ひいてはガス
流速と粒子循環流量により流動層の操業効率の制御が可
能であることが判る。
As shown in the figure, it is possible to control the particle volume fraction in the fluidized bed by controlling the gas flow rate and the particle circulation flow rate, and in turn, it is possible to control the operating efficiency of the fluidized bed by changing the gas flow rate and particle circulation flow rate. I understand.

〔発明の効果〕〔Effect of the invention〕

本発明の流動還元炉の操業法によって以下の効果を奏す
ることができる。
The operating method of the fluidized-bed reduction furnace of the present invention can provide the following effects.

(1)還元ガスと鉱石の接触が良好な領域での反応が可
能となる。その結果、還元炉の効率を最大限に活かした
操業が可能となる。
(1) Reactions can occur in a region where there is good contact between the reducing gas and the ore. As a result, it becomes possible to operate the reduction furnace by making the most of its efficiency.

(2)  効率の良い状態の操業が維持でき、還元炉の
高効率操業が可能となる。
(2) Efficient operation can be maintained, making it possible to operate the reduction furnace with high efficiency.

(3)円滑に還元が進行し生産性が向上する。(3) Reduction progresses smoothly and productivity improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の操業形態を構図的に示す図である。第
2図は鉱石粒子の体積分率と還元ガス利用率との関連を
示し、第3図は鉱石粒子の体積分率とガス流速と粒子循
環流速との関係を示す図である。第4図は第1図に示す
流動還元炉の操業状態を示す図である。 1:上昇管     2:下降管 3:[籾供給口   4:粉鉱石 5:還元ガス    6:サイクロン 7.8:成品取り出し口
FIG. 1 is a diagram schematically showing the operation mode of the present invention. FIG. 2 shows the relationship between the volume fraction of ore particles and the reducing gas utilization rate, and FIG. 3 shows the relationship between the volume fraction of ore particles, gas flow rate, and particle circulation flow rate. FIG. 4 is a diagram showing the operating state of the fluidized bed reduction furnace shown in FIG. 1. 1: Ascending pipe 2: Descending pipe 3: [Paddy supply port 4: Powder ore 5: Reducing gas 6: Cyclone 7.8: Product outlet

Claims (1)

【特許請求の範囲】[Claims] 1、流動還元炉流動層内のガス流速と鉱石の循環流量あ
るいは両方を調整して流動還元炉内の粒子体積分率を4
〜15%の範囲内に維持する粉鉱石の流動還元炉の操業
方法。
1. Adjust the gas flow rate and ore circulation flow rate in the fluidized bed, or both, to increase the particle volume fraction in the fluidized bed reduction furnace.
A method of operating a fluidized bed reduction furnace for fine ore to maintain the concentration within the range of ~15%.
JP23963889A 1989-09-14 1989-09-14 Operation method of fluidized-ore reduction furnace for fine ore Expired - Lifetime JPH0637653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23963889A JPH0637653B2 (en) 1989-09-14 1989-09-14 Operation method of fluidized-ore reduction furnace for fine ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23963889A JPH0637653B2 (en) 1989-09-14 1989-09-14 Operation method of fluidized-ore reduction furnace for fine ore

Publications (2)

Publication Number Publication Date
JPH03100111A true JPH03100111A (en) 1991-04-25
JPH0637653B2 JPH0637653B2 (en) 1994-05-18

Family

ID=17047692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23963889A Expired - Lifetime JPH0637653B2 (en) 1989-09-14 1989-09-14 Operation method of fluidized-ore reduction furnace for fine ore

Country Status (1)

Country Link
JP (1) JPH0637653B2 (en)

Also Published As

Publication number Publication date
JPH0637653B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
EP0022098A1 (en) Apparatus for reducing finely divided iron oxide material
RU2158769C2 (en) Three-stage gear for reduction of fine-grain iron ore in fluidized layer
US3135598A (en) Rapid direct reduction method of iron oxide
FI62273B (en) FOERFARANDE FOER FRAMSTAELLNING AV TITANIUMTETRAKLORID
JPH03100111A (en) Operating method of fluidized reduction furnace for powder ore
JP2947616B2 (en) Two-stage fluidized bed furnace for pre-reduction of fine iron ore and method for pre-reduction of fine iron ore using the furnace
US2943929A (en) Process for roasting sulfides
US6235079B1 (en) Two step twin-single fluidized bed pre-reduction apparatus for pre-reducing fine iron ore, and method therefor
JPS6357709A (en) Circulating flow reduction method for ores
WO1998038129A1 (en) Production method of iron carbide
JPS6357710A (en) Method and apparatus for circulating flow reduction of ores
JPS62230912A (en) Vertical type fluidized reduction method
JPH06145749A (en) Method for reducing ore by circulating fluidized bed
US3759697A (en) Iron ore reduction process
JPH03215621A (en) Circulating fluidized bed prereduction for powdery iron ore
JPH03100112A (en) Method for operating circulating fluidized reduction furnace of powdery ore and reduction furnace
JPH03138309A (en) Apparatus for reducing ore
JPH04314832A (en) Method for reducing pulverized ore by circulating fluidized bed
JPH0689389B2 (en) Fluidized bed reduction method for ores
JPH03197610A (en) Method for operating circulating fluidized bed reduction apparatus
JPH0328307A (en) Fluidized bed type pre-reduction furnace for iron or nonferrous ore
JPH0637654B2 (en) Preliminary reduction method in circulating fluidized bed of powdered ore
JPH0637656B2 (en) A method for suppressing sticking during reduction of fine ore by a circulating fluidized bed.
JPH04301023A (en) Operation method for circulating fluidized bed reduction apparatus
JPH0331412A (en) Fluidized bed type prereduction furnace for iron or non-ferrous ore