JPH0310004B2 - - Google Patents

Info

Publication number
JPH0310004B2
JPH0310004B2 JP58139923A JP13992383A JPH0310004B2 JP H0310004 B2 JPH0310004 B2 JP H0310004B2 JP 58139923 A JP58139923 A JP 58139923A JP 13992383 A JP13992383 A JP 13992383A JP H0310004 B2 JPH0310004 B2 JP H0310004B2
Authority
JP
Japan
Prior art keywords
metal
chamber
sintered body
insulator
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58139923A
Other languages
Japanese (ja)
Other versions
JPS6030421A (en
Inventor
Mitsuyoshi Kawamura
Noboru Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP58139923A priority Critical patent/JPS6030421A/en
Publication of JPS6030421A publication Critical patent/JPS6030421A/en
Publication of JPH0310004B2 publication Critical patent/JPH0310004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/16Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
    • F02B19/165The shape or construction of the pre-combustion chambers is specially adapted to be formed, at least in part, of ceramic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 本発明は内燃機関の副室に用いる断熱体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat insulator used in a subchamber of an internal combustion engine.

部分安定化ジルコニア焼結体(以下「PSZ焼結
体」と略称)は準安定相である正方晶ジルコニア
を焼結体中に残留させることによつて高強度かつ
高靭性を有する材料となることが知られており、
構造材料として注目されている。加えてPSZ焼結
体は、これと同程度の強度及び靭性を有する窒化
珪素焼結体と比べて格段に優れた断熱性を備えて
いる。そこで、これをデイーゼルエンジンの副室
に断熱材として用いることによつてエンジンの燃
焼効率を高めようとする試みがなされている。
Partially stabilized zirconia sintered bodies (hereinafter abbreviated as "PSZ sintered bodies") are materials with high strength and high toughness by allowing the metastable phase of tetragonal zirconia to remain in the sintered bodies. is known,
It is attracting attention as a structural material. In addition, the PSZ sintered body has much better heat insulation properties than the silicon nitride sintered body, which has comparable strength and toughness. Therefore, attempts have been made to increase the combustion efficiency of the diesel engine by using it as a heat insulating material in the pre-chamber of the diesel engine.

しかしながらPSZ焼結体は200℃乃至300℃の温
度範囲で前記正方晶が単斜晶に転移する性質を有
しており、この転移現象によつて強度劣化を起こ
し、耐久性を損なつているので、未だデイーゼル
エンジンの燃焼室等のエンジン部品としては実用
化されるに至つていない。
However, PSZ sintered bodies have the property that the tetragonal crystal transforms into monoclinic crystal in the temperature range of 200°C to 300°C, and this transition phenomenon causes strength deterioration and impairs durability. Therefore, it has not yet been put into practical use as engine parts such as combustion chambers of diesel engines.

一般に容器の内容を加熱又は保温することによ
つて容器の内外に温度差が生じると、内壁側に圧
縮応力、外壁側に引張り応力が働くことは周知で
あるが、発明者等は鋭意検討の結果、焼結体中の
温度分布の中で上記転移現象が生じる危険温度領
域を圧縮応力場の中に存在せしめるように断熱条
件を設定することによつて、外壁側に働く引張り
応力が弱まり、PSZ焼結体の断熱材としての耐久
性が向上することを見出した。
It is generally known that when a temperature difference occurs between the inside and outside of a container by heating or keeping the contents of the container warm, compressive stress acts on the inner wall and tensile stress acts on the outer wall. As a result, by setting adiabatic conditions such that the critical temperature region where the above transition phenomenon occurs in the temperature distribution in the sintered body exists in the compressive stress field, the tensile stress acting on the outer wall is weakened. We have found that the durability of PSZ sintered bodies as a heat insulating material is improved.

発明者等は上記の知見にもとづいて、特願昭58
−93213号発明「部分安定化ジルコニア焼結体を
用いた断熱構造」において 「部分安定化ジルコニア焼結体からなる略円筒
又は球殻形状の中空容器の内容を加熱又は保温す
る構造において、該中空容器の温度が200℃以上
である部分に働く円周応力が1Kg/mm2以上400
Kg/mm2以下の圧縮応力となつていることを特徴と
する部分安定化ジルコニア焼結体を用いた断熱構
造。」 を提案し、更に昭和58年6月10日付で、PSZ焼結
体の外周に金属を鋳造成形することによつて、
PSZ焼結体からなる断熱体の内燃機関等機械部品
への利用を可能にする発明「セラミツクスと金属
との複合体」を出願した。
Based on the above knowledge, the inventors filed a patent application in 1983.
- Invention No. 93213 “Insulating structure using partially stabilized zirconia sintered body” “In a structure for heating or keeping warm the contents of a substantially cylindrical or spherical hollow container made of partially stabilized zirconia sintered body” The circumferential stress acting on the part of the container where the temperature is 200℃ or higher is 1Kg/ mm2 or higher400
A heat insulating structure using partially stabilized zirconia sintered body characterized by compressive stress of Kg/mm2 or less . ”, and furthermore, on June 10, 1981, by casting metal around the outer periphery of the PSZ sintered body,
An application has been filed for an invention, ``Ceramics-metal composite,'' which enables the use of heat insulators made of PSZ sintered bodies in mechanical parts such as internal combustion engines.

本発明は上記各発明の技術思想を応用し、前記
エンジンの燃焼効率の改善と副室口金の耐熔損性
の向上とを目的とするもので、その要旨とすると
ころは部分安定化ジルコニア焼結体からなる釣鐘
状中空体の外周に常温以上700℃以下の温度範囲
で常に該部分安定化ジルコニア焼結体の熱膨脹係
数より大きく17×10-6/℃より小さい熱膨腸係数
を有する金属を鋳造成形してなる副室内壁断熱体
と該副室内壁断熱体の噴孔側開口端面にロウ付け
固着されている耐熱合金からなる副室口金とで構
成される内燃機関の副室断熱体に存する。
The present invention applies the technical ideas of the above-mentioned inventions, and aims to improve the combustion efficiency of the engine and the corrosion resistance of the pre-chamber mouthpiece. A metal having a thermal expansion coefficient larger than the coefficient of thermal expansion of the partially stabilized zirconia sintered body and smaller than 17×10 -6 /°C in the temperature range from room temperature to 700°C is placed on the outer periphery of the bell-shaped hollow body made of the solid body. A pre-chamber insulator for an internal combustion engine, comprising a pre-chamber wall insulator made by casting and molding, and a sub-chamber cap made of a heat-resistant alloy that is brazed and fixed to the opening end face of the pre-interior wall insulator on the nozzle hole side. exists in

以下図面にもとづいて説明する。 The following will be explained based on the drawings.

第1図は本発明副室断熱体の一実施例を示す断
面図である。PSZ焼結体からなる釣鐘状中空体1
の外周に金属2が鋳造成形され、頭部にはグロー
プラグ及び燃焼噴射ノズルを挿入する孔3が形成
され、副室内壁断熱体4とし、副室内壁断熱体4
の開口端面5には噴孔6を有する副室口金7がロ
ウ付け固着されている。
FIG. 1 is a sectional view showing one embodiment of the subchamber heat insulator of the present invention. Bell-shaped hollow body 1 made of PSZ sintered body
A metal 2 is cast on the outer periphery of the auxiliary interior wall insulator 4, and a hole 3 for inserting a glow plug and a combustion injection nozzle is formed in the head of the auxiliary interior wall insulator 4.
A sub-chamber mouthpiece 7 having a nozzle hole 6 is fixedly soldered to the opening end face 5 of the nozzle.

本発明副室断熱体を製造するに際し、常温〜
700℃の温度範囲で前記範囲の熱膨腸係数を有す
る鋳造合金を使用する理由を述べる。
When manufacturing the subchamber heat insulator of the present invention, room temperature to
The reason for using a cast alloy having a thermal expansion coefficient in the above range in a temperature range of 700°C will be described.

すなわち、本発明副室断熱体は、金属とセラミ
ツクスとの複合体からなるものであるが、単に複
合体と称するものであつても焼バメによつて製造
する場合は本発明における鋳造成形と異なり、通
常加熱膨脹した金属部品の中に室温のセラミツク
部品を嵌合するので、セラミツクスと金属との熱
膨腸係数の差が大きくなくてもセラミツクスに圧
縮応力を加えることは容易である。これに対し、
鋳造成形によつて複合体を鋳造する場合は、金属
注湯後瞬時に金属とセラミツクスとが同温度にな
るので、上記温度範囲でセラミツクスの熱膨腸係
数より小さい熱膨腸係数を有する金属で鋳造する
と圧縮応力が加わらない。他方、本発明は内燃機
関の副室断熱体を対象としているので、その肉厚
は釣鐘状中空体の内径の1/10〜3/10としなければ
ならないが、17×10-6/℃を超える熱膨腸係数を
有する金属を用いてPSZ焼結体を鋳ぐるむと上記
の肉厚においては冷却時に生じる過大な圧縮によ
る剪断力によりPSZ焼結体が破壊するので、上記
温度範囲でPSZ焼結体のそれより大きく17×
10-6/℃以下の鋳造合金を使用しなければならな
い。
That is, the pre-chamber heat insulator of the present invention is made of a composite of metal and ceramics, but even if it is simply called a composite, manufacturing by shrink fitting is different from casting molding in the present invention. Since a ceramic part at room temperature is usually fitted into a heated and expanded metal part, it is easy to apply compressive stress to the ceramic even if the difference in thermal expansion coefficient between the ceramic and the metal is not large. In contrast,
When casting a composite by casting molding, the metal and ceramics instantly reach the same temperature after pouring the metal, so it is necessary to use a metal that has a thermal expansion coefficient smaller than that of ceramics in the above temperature range. When cast, compressive stress is not applied. On the other hand, since the present invention is intended for the pre-chamber insulation of an internal combustion engine, its wall thickness must be 1/10 to 3/10 of the inner diameter of the bell-shaped hollow body, but the thickness must be 17×10 -6 /℃. If the PSZ sintered body is cast using a metal with a thermal expansion coefficient exceeding 17× larger than that of the body
Cast alloys below 10 -6 /°C shall be used.

但し、従来の副室断熱体のようにグロープラグ
と燃料噴射ノズルとをそれぞれ相異なる二つの孔
に挿入するような形状の場合は、孔間部の強度が
特に弱くなるので、上記範囲内であつても比較的
大きい熱膨腸係数を有する金属を用いて鋳造する
場合は、第1図に示す如くグロープラグと燃料噴
射ノズルとを一つの孔の挿入する形状に副室内壁
断熱体を製造するのが望ましい。
However, if the glow plug and fuel injection nozzle are inserted into two different holes, as in the case of conventional pre-chamber insulation, the strength of the area between the holes will be particularly weak, so it should be kept within the above range. If a metal with a relatively large coefficient of thermal expansion is used for casting, the pre-interior wall insulation is manufactured in a shape that allows the glow plug and fuel injection nozzle to be inserted into one hole, as shown in Figure 1. It is desirable to do so.

本発明副室断熱体において、副室内壁断熱体4
の開口端面5に鋳造金属と異なる金属からなる副
室口金7をロウ付け固着する理由は、鋳造成形に
使用する金属の場合は前述の如く熱膨腸係数を考
慮しなければならないうえに湯流れ、濡れ性等の
鋳造性をも考慮して選定しなければならないが、
副金口金7に使用する金属の場合に特に考慮しな
ければならないのは口金部分が高温状態にある主
燃焼室と連接している故に耐熱性であるからであ
る。使用する耐熱合金としては、オーステナイト
系SUH31鋼、同SUH310鋼、Ni基合金
Nimonic80A、12Cr系TAF鋼などがある。
In the sub-chamber insulator of the present invention, the sub-chamber wall insulator 4
The reason for brazing and fixing the auxiliary chamber cap 7 made of a metal different from the cast metal to the opening end face 5 of the metal is that, in the case of metal used for casting, the coefficient of thermal expansion must be taken into account as described above, and the flow rate of the molten metal must be considered. The selection must also take into account castability such as wettability.
Particular consideration must be given to the metal used for the auxiliary metal cap 7, since the metal cap portion is connected to the main combustion chamber, which is in a high temperature state, and therefore has heat resistance. The heat-resistant alloys used include austenitic SUH31 steel, SUH310 steel, and Ni-based alloys.
Examples include Nimonic 80A and 12Cr TAF steel.

そして開口端面5と副室口金7とをロウ付けに
より固着していることから、エンジン運転時にも
釣鐘状中空体1に鉛直方向に加わる圧縮応力が低
下するおそれがなく、PSZ焼結体の相転移に起因
する釣鐘状中空体1の耐久性劣化を防止すること
ができる。
Since the opening end face 5 and the auxiliary chamber mouthpiece 7 are fixed by brazing, there is no fear that the compressive stress applied to the bell-shaped hollow body 1 in the vertical direction will decrease even during engine operation. It is possible to prevent durability deterioration of the bell-shaped hollow body 1 due to transfer.

本発明副室断熱体に用いるPSZ焼結体の具体的
組成については特に限定する必要はないが、安定
化剤としてのY2O3の含有量が3.5mol%を超える
ものは強度劣化の最大原因である転移現象を生じ
る正方晶が圧縮応力の大小にかかわらず比較的安
定に存在するので、本発明はY2O3含有量3.5mol
%以下の主として正方晶からなるPSZ焼結体を用
いた場合に最も効果的である。
There is no need to specifically limit the specific composition of the PSZ sintered body used in the pre-chamber heat insulator of the present invention, but those containing more than 3.5 mol% of Y 2 O 3 as a stabilizer will cause maximum strength deterioration. Since the tetragonal crystal that causes the transition phenomenon, which is the cause, exists relatively stably regardless of the magnitude of compressive stress, the present invention can be applied to a Y 2 O 3 content of 3.5 mol.
% or less is most effective when using a PSZ sintered body mainly consisting of tetragonal crystals.

次に第1図に示した副室断熱体の製作工程の一
例を述べる。
Next, an example of the manufacturing process of the pre-chamber heat insulator shown in FIG. 1 will be described.

先ず、ラバープレス成形後に焼成して得られた
Y2O3含有量3mol%のPSZ焼結体からなる釣鐘状
中空体1の内部8、孔3及び開口部に水ガラスを
粘結剤として含有するジルコン砂を詰め込んで中
子形状とし、釣鐘状中空体1の外周にワツクスを
金属2と同一形状となるように溶着させ、更にそ
の外周のワツクス溶出口且つ金属注湯口となる一
部分を除く全面にシルコン砂とエチルシリケート
の混合溶液をコーテイングした後、80メツシユの
粗い砂をサンデイングした。このコーテイングと
サンテイングを5回繰返した後、100℃の大気中
でワツクスを溶かし出し、次いで1200℃の大気中
で焼成することによつて鋳型を製作した。前記注
湯口より鋳型の中に温度1450℃の溶融モネル合金
を流し込み、放冷後、鋳型を取り除き、中子を
150℃のNaOH溶液で溶かし出すことによつて副
室内壁断熱体4を製作した。
First, the rubber press was molded and then fired.
A bell-shaped hollow body 1 made of a PSZ sintered body with a Y 2 O 3 content of 3 mol % is filled with zircon sand containing water glass as a binder into the interior 8, hole 3 and opening of the bell-shaped hollow body 1 to form a core shape. Wax was welded to the outer periphery of the shaped hollow body 1 so as to have the same shape as the metal 2, and further, the entire surface of the outer periphery except for a part that would become the wax elution port and the metal pouring port was coated with a mixed solution of silicon sand and ethyl silicate. After that, 80 mesh of coarse sand was sanded. After repeating this coating and suntanning process five times, the wax was melted in an atmosphere of 100°C and then fired in an atmosphere of 1200°C to produce a mold. Molten Monel alloy at a temperature of 1450℃ is poured into the mold from the pouring port, and after cooling, the mold is removed and the core is removed.
The sub-interior wall insulator 4 was manufactured by dissolving it with a NaOH solution at 150°C.

別途、上記ワツクスを副室口金7と同一形状と
なるように成形し、噴孔部にジルコン砂を詰め込
み、副室内壁断熱体4を製作した場合と同様にコ
ーテイングとサンデイングを繰り返した後、ワツ
クスを溶かし出し、大気中1200℃で焼成すること
によつて鋳型を製作し、注湯口より温度1550℃の
溶融Nimonic80A合金を流し込み、放冷後、鋳型
及び中子を除去することによつて副室口金7を製
作した。得られた副室口金7を上記副室内壁断熱
体4の開口端面5に800℃水素雰囲気連続炉中で
共晶銀ローにてロウ付け固着することによつて第
1図に示す副室断熱体を得ることができた。この
様にして得られた副室断熱体を口金部外周を圧入
する形でデイーゼルエンジンのシリンダヘツドに
装着した後、耐久試験をおこなつた。耐久試験
は、最大負荷で3分間運転した後、エンジン停止
し、冷却水を常温の水に入れ替えて3分間冷却す
るサイクルを3000回繰り返すことによつておこな
つた。試験後、副室内壁断熱体4、副室口金7及
びロウ付け固着部を調べた処、何等異状無かつ
た。
Separately, the wax is molded to have the same shape as the sub-chamber cap 7, the nozzle hole is filled with zircon sand, coating and sanding are repeated in the same manner as in the case of manufacturing the sub-chamber wall insulator 4, and then the wax is Molten Nimonic 80A alloy at a temperature of 1550°C is poured into the pouring spout, and after cooling, the mold and core are removed to form a mold. I made the cap 7. By brazing and fixing the obtained sub-chamber cap 7 to the opening end face 5 of the above-mentioned sub-interior wall insulator 4 with eutectic silver solder in a hydrogen atmosphere continuous furnace at 800°C, the sub-chamber insulation shown in FIG. 1 is achieved. I was able to get a body. After the pre-chamber insulator thus obtained was attached to the cylinder head of a diesel engine by press-fitting the outer periphery of the mouthpiece, a durability test was conducted. The durability test was conducted by repeating a cycle of 3,000 times in which the engine was operated at maximum load for 3 minutes, then the engine was stopped, the cooling water was replaced with water at room temperature, and the engine was cooled for 3 minutes. After the test, the sub-chamber wall insulator 4, sub-chamber cap 7, and brazed fixing parts were examined and no abnormalities were found.

以上のように本発明副室断熱体は、PSZ焼結体
からなる釣鐘状中空体の外周に金属を鋳造成形し
たものに、耐熱合金からなる副室口金をロウ付け
固着したものであることから、機械的強度、断熱
性、耐熱性及び耐久性に優れており、低温始動時
のエンジンの吹上がり時間の迅速化やアイドル時
の騒音低減等の断熱効果が顕著である。
As described above, the pre-chamber insulator of the present invention is made by casting metal around the outer periphery of a bell-shaped hollow body made of a PSZ sintered body, and brazing and fixing the pre-chamber cap made of a heat-resistant alloy. It has excellent mechanical strength, heat insulation, heat resistance, and durability, and has remarkable heat insulation effects such as speeding up the engine start-up time when starting at low temperatures and reducing noise when idling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明副室断熱体の一実施例を示す断
面図である。 1……釣鐘状中空体、2……金属、4……副室
内壁断熱体、5……開口端面、6……噴孔、7…
…口金。
FIG. 1 is a sectional view showing one embodiment of the subchamber heat insulator of the present invention. DESCRIPTION OF SYMBOLS 1... Bell-shaped hollow body, 2... Metal, 4... Sub-interior wall insulator, 5... Opening end surface, 6... Nozzle hole, 7...
...cap.

Claims (1)

【特許請求の範囲】[Claims] 1 部分安定化ジルコニア焼結体からなる釣鐘状
中空体の外周に常温以上700℃以下の温度範囲で
常に該部分安定化ジルコニア焼結体の熱膨脹係数
より大きく17×10-6/℃より小さい熱膨脹係数を
有する金属を鋳造成形してなる副室内壁断熱体と
該副室内壁断熱体の噴孔側開口端面にロウ付け固
着されている耐熱合金からなる副室口金とで構成
される内燃機関の副室断熱体。
1 The outer periphery of a bell-shaped hollow body made of a partially stabilized zirconia sintered body has a thermal expansion coefficient that is always larger than the thermal expansion coefficient of the partially stabilized zirconia sintered body and smaller than 17×10 -6 /℃ in the temperature range from room temperature to 700°C. An internal combustion engine comprising a sub-chamber wall insulator formed by casting a metal having a coefficient of Subchamber insulation.
JP58139923A 1983-07-29 1983-07-29 Heat insulating body for subsiduary chamber of internal- combustion engine Granted JPS6030421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58139923A JPS6030421A (en) 1983-07-29 1983-07-29 Heat insulating body for subsiduary chamber of internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58139923A JPS6030421A (en) 1983-07-29 1983-07-29 Heat insulating body for subsiduary chamber of internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS6030421A JPS6030421A (en) 1985-02-16
JPH0310004B2 true JPH0310004B2 (en) 1991-02-12

Family

ID=15256803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58139923A Granted JPS6030421A (en) 1983-07-29 1983-07-29 Heat insulating body for subsiduary chamber of internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS6030421A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357818A (en) * 1989-07-27 1991-03-13 Isuzu Motors Ltd Heat insulating structure of subchamber
JPH0357817A (en) * 1989-07-27 1991-03-13 Isuzu Motors Ltd Heat insulating structure of subchamber
JPH0650054B2 (en) * 1989-08-10 1994-06-29 いすゞ自動車株式会社 Insulation structure of sub-chamber and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768515A (en) * 1980-10-17 1982-04-26 Toyota Motor Corp Whirl chamber port unit for whirl chamber type diesel engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477802U (en) * 1977-11-14 1979-06-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768515A (en) * 1980-10-17 1982-04-26 Toyota Motor Corp Whirl chamber port unit for whirl chamber type diesel engine

Also Published As

Publication number Publication date
JPS6030421A (en) 1985-02-16

Similar Documents

Publication Publication Date Title
US4676207A (en) Auxiliary combustion chamber
US6884967B1 (en) Multi-layer ceramic heater element and method of making same
US6084212A (en) Multi-layer ceramic heater element and method of making same
US6184497B1 (en) Multi-layer ceramic heater element and method of making same
JP3658770B2 (en) Ceramic glow plug
US4522171A (en) Pre-combustion or turbulence chamber for internal combustion engines
JPH0310004B2 (en)
JPS6027725A (en) Heat-insulating member for subsidiary combustion chamber of internal-combustion engine
JPS6014901B2 (en) Piston manufacturing method
CN109622894B (en) Manufacturing method of ceramic core with quartz glass rod
JPS59232978A (en) Ceramic-metal composite body
JPH09245940A (en) Ceramic heat generation body, and manufacture thereof
JPH0154152B2 (en)
JPH0436062B2 (en)
JPH0243563Y2 (en)
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JPS6123822A (en) Joint body of metal and ceramic
KR0148449B1 (en) Ceramic glow plug with spiral heating tip
JPS621093B2 (en)
JPH04259781A (en) Ceramic heater
KR100213823B1 (en) Method for manufacturing ceramic gate using in al moulding
JPS62140386A (en) Ceramic heater
JPS6251718A (en) Auxiliary chamber structure of engine
JPH0316566B2 (en)
JPS62263915A (en) Gas blowing lance for treating molten metal