JPH0154152B2 - - Google Patents

Info

Publication number
JPH0154152B2
JPH0154152B2 JP7901684A JP7901684A JPH0154152B2 JP H0154152 B2 JPH0154152 B2 JP H0154152B2 JP 7901684 A JP7901684 A JP 7901684A JP 7901684 A JP7901684 A JP 7901684A JP H0154152 B2 JPH0154152 B2 JP H0154152B2
Authority
JP
Japan
Prior art keywords
psz
sintered body
compressive stress
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7901684A
Other languages
Japanese (ja)
Other versions
JPS60223653A (en
Inventor
Katsuji Kusaka
Michiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nippon Tokushu Togyo KK
Original Assignee
Daido Steel Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Tokushu Togyo KK filed Critical Daido Steel Co Ltd
Priority to JP7901684A priority Critical patent/JPS60223653A/en
Publication of JPS60223653A publication Critical patent/JPS60223653A/en
Publication of JPH0154152B2 publication Critical patent/JPH0154152B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は内燃機関のシリンダー、副燃焼室、ピ
ストン等の材料として有用なセラミクス−金属複
合体に関するものである。 部分安定化ジルコニア(以下PSZと言う)は立
方晶マトリツクス中に準安定相である正方晶を残
留させたものであり、その焼結体は高強度かつ高
靭性を有する材料として知られており、構造用セ
ラミクス材料として今後期待されている。しかし
PSZは200〜300℃の温度範囲において残留する正
方晶が安定な単斜晶へ転移する性質を有してお
り、該転移が生ずると焼結体の強度および耐久性
が低下してしまう。該転移を抑制するにはPSZを
上記温度範囲において1〜400Kg/mm2程度の圧縮
応力場におくことが必要である。PSZを上記圧縮
応力場におくために、PSZ焼結体の外周に鋳造に
よつて金属層を形成する方法(鋳ぐるみ法)が提
供されている。即ち一般の金属はPSZよりも熱膨
脹係数が大きく、したがつて金属とPSZとの熱膨
脹係数の差によつてPSZ焼結体には金属層による
圧縮応力が及ぼされるのである。しかしPSZ焼結
体を金属層で鋳ぐるんだ場合、該金属層によつて
PSZ焼結体に過度の圧縮応力が及ぼされるとPSZ
焼結体が破壊される場合がある。このような過度
の圧縮応力が発生する原因としては下記のものが
考えられる。 即ち中空なPSZ焼結体の内側から加熱が始まつ
た場合にPSZ焼結体の温度は金属層に比して高く
なり、その結果PSZ焼結体に及ぼされる圧縮応力
は過度となつてPSZ焼結体が破壊される。 この破壊の原因を解消するためには耐力の低い
金属を用いて200℃以下におけるPSZ焼結体層に
及ぼされる圧縮応力を低下させることが考えられ
るが、このような金属では200〜300℃で耐力が更
に低下してPSZの転移を抑制するに充分な圧縮応
力が発生しない。 上記したようにして破壊の原因を解消すると共
に200〜300℃の温度でも充分な圧縮応力を生ずる
ような金属は従来提供されておらずPSZ実用化に
際しての大きな障害となつていた。 本発明は上記従来の問題を解消することを目的
とし、PSZ焼結体を鋳ぐるむ金属材料としてAf
点が常温以上120℃以下のNi−Ti系合金を用いる
ことを骨子とするものである。 本発明に用いられるNi−Ti系合金とはNi−Ti
の合金、あるいは該合金に更にCu、Al、Zr、
Co、Cr、Ta、V、Mo、Nb、Pd、Pt、Mn、Fe
等の他の金属の一種もしくは二種以上を含有せし
めた合金を言い、形状記憶合金としても使用され
ている。そしてNi:Tiの重量比は凡そ44:56〜
47:53であるが、本発明では更にこの合金のAf
点が常温以上120℃以下になるように、成分調整
をおこなう。 該Ni−Ti系合金(以下単に本合金と言う)は、
Af点以上のオーステナイト相では20〜60Kgt/
mm2の高い降伏強さ(耐力)を示し、かつAf点近
傍では温度が高くなるにつれて降伏強さは増大
し、一方Af点以下のマルテンサイト相では降伏
強さ(耐力)が5〜20Kgt/mm2であり極めて低
い。したがつてAf点以下の温度では破壊原因は
解消される。更に詳しく述べれば、この破壊原因
を解消しかつPSZの転移を阻止するためには本合
金のうち120℃下でかつ常温以上のAf点を有する
ものを選択する。第1図はPSZ焼結体の内側から
加熱した場合のPSZ焼結体の温度と圧縮応力の関
係を示すグラフであり、一点鎖線で示す。従来の
金属材料ではPSZ焼結体の加熱開始後A点(100
℃)迄はPSZ焼結体と金属との温度差が大きくて
PSZ焼結体の選択的熱膨脹により金属層からPSZ
焼結体に及ぼされる圧縮応力は増大し、A点に至
ると金属層もPSZ焼結体を介して加熱され始め
PSZ焼結体よりも大きな熱膨脹係数で熱膨脹し始
めるから圧縮応力は漸減する。しかし200〜300℃
でPSZの転移を抑制するに充分な圧縮応力を確保
した場合、A点では既に圧縮応力が斜線域に入つ
て過度となりPSZ焼結体は破壊されてしまう。 一方本合金においては実線で示すようにAf点
以下のマルテンサイト相域では上記したように降
伏強さ(耐力)が極めて低い。そのため本合金層
とPSZ焼結体との温度差が大きくてPSZ焼結体が
選択的に熱膨脹しても合金層の温度は常温付近で
あつてマルテンサイト相であるため圧縮応力は殆
んど増大しない。しかしPSZ焼結体の温度が100
℃以上になつて本合金が加熱され始めAf点以上
になるとオーステナイト相域に入つて上記したよ
うに降伏強さ(耐力)が高くなりB点に至るまで
PSZ焼結体に及ぼされる圧縮応力は増大する。し
かしB点以後は本合金とPSZとの熱膨脹係数も略
同一となるから圧縮応力もオーステナイト相の降
伏強さ(耐力)のレベルで安定する。そしてPSZ
焼結体の200〜300℃の間で転移を阻止するに充分
な圧縮応力が発生し、かつ斜線域に入らずPSZ焼
結体は破壊されない。 実施例 第2図はPSZ焼結体をデイーゼルエンジンの副
燃焼室に応用した例であり、該PSZ焼結体1は金
属層2で鋳ぐるまれている。該PSZ焼結体1は
Y2O33mol%含有ZrO2粉末をラバープレスによつ
て成形した後に焼成して得られた。該PSZ焼結体
の外周にワツクスパターンを形成した後、ジルコ
ン砂を主体とするセラミツクシエルモールドを製
作した。本シエルモールドを1150℃に予熱した上
で、下記に示す2種の組成の本合金を鋳込温度
1300℃で鋳造した。 (A):Ni−44.5%Ti Af=20℃ (B):Ni−46.4%Ti Af=110℃ 材料は各10個作成された。比較のため従来の金
属材料としてインコネル713C(鋳込温度420℃)、
およびSUS430(鋳込温度1480℃)で鋳造し同様
な試料を各10個作成した。その結果、鋳造時には
熱膨脹係数が高いインコネル713Cを用いた試料
4個のPSZ焼結体に割れが認められた。次いで試
料各1個について歪ゲージ法により、PSZ焼結体
に加わつている圧縮応力を測定した。
The present invention relates to a ceramic-metal composite useful as a material for cylinders, auxiliary combustion chambers, pistons, etc. of internal combustion engines. Partially stabilized zirconia (hereinafter referred to as PSZ) is a material in which a metastable tetragonal phase remains in a cubic matrix, and its sintered body is known as a material with high strength and high toughness. It is expected to be used as a structural ceramic material in the future. but
PSZ has the property that the remaining tetragonal crystals transform into stable monoclinic crystals in the temperature range of 200 to 300°C, and when this transformation occurs, the strength and durability of the sintered body decrease. In order to suppress this transition, it is necessary to subject PSZ to a compressive stress field of about 1 to 400 Kg/mm 2 in the above temperature range. In order to subject PSZ to the above-mentioned compressive stress field, a method has been proposed in which a metal layer is formed by casting on the outer periphery of a PSZ sintered body (casting method). That is, general metals have a larger coefficient of thermal expansion than PSZ, and therefore, compressive stress due to the metal layer is exerted on the PSZ sintered body due to the difference in coefficient of thermal expansion between the metal and PSZ. However, when a PSZ sintered body is cast with a metal layer, the metal layer
If excessive compressive stress is applied to the PSZ sintered body, PSZ
The sintered body may be destroyed. Possible causes of such excessive compressive stress are as follows. That is, when heating starts from the inside of the hollow PSZ sintered body, the temperature of the PSZ sintered body becomes higher than that of the metal layer, and as a result, the compressive stress exerted on the PSZ sintered body becomes excessive and the PSZ The sintered body is destroyed. In order to eliminate this cause of destruction, it is possible to reduce the compressive stress exerted on the PSZ sintered body layer at temperatures below 200℃ by using metals with low yield strength. The yield strength further decreases and sufficient compressive stress is not generated to suppress PSZ transition. No metal has hitherto been available that eliminates the causes of fracture as described above and generates sufficient compressive stress even at temperatures of 200 to 300°C, which has been a major obstacle in the practical application of PSZ. The present invention aims to solve the above-mentioned conventional problems, and uses Af as a metal material for casting PSZ sintered bodies.
The main idea is to use a Ni-Ti alloy whose temperature is above room temperature and below 120°C. The Ni-Ti alloy used in the present invention is Ni-Ti
alloy, or the alloy further contains Cu, Al, Zr,
Co, Cr, Ta, V, Mo, Nb, Pd, Pt, Mn, Fe
An alloy containing one or more other metals such as metals, etc., and is also used as a shape memory alloy. And the weight ratio of Ni:Ti is approximately 44:56 ~
47:53, but in the present invention, the Af
Adjust the ingredients so that the temperature is above room temperature and below 120℃. The Ni-Ti alloy (hereinafter simply referred to as the present alloy) is
20-60Kgt/ for austenite phase above Af point
mm2 , and the yield strength increases as the temperature increases near the Af point, while the martensitic phase below the Af point has a yield strength of 5 to 20 Kgt/ mm 2 , which is extremely low. Therefore, the cause of destruction is eliminated at temperatures below the Af point. More specifically, in order to eliminate this cause of destruction and prevent the transition of PSZ, one of the present alloys that has an Af point below 120° C. and above room temperature is selected. FIG. 1 is a graph showing the relationship between the temperature and compressive stress of the PSZ sintered body when the PSZ sintered body is heated from the inside, and is indicated by a chain line. With conventional metal materials, the point A (100
℃), there is a large temperature difference between the PSZ sintered body and the metal.
PSZ is removed from the metal layer by selective thermal expansion of the PSZ sintered body.
The compressive stress applied to the sintered body increases, and when it reaches point A, the metal layer also begins to be heated through the PSZ sintered body.
Since it begins to thermally expand with a larger coefficient of thermal expansion than the PSZ sintered body, the compressive stress gradually decreases. But 200~300℃
If sufficient compressive stress is secured to suppress the transition of PSZ at point A, the compressive stress will already enter the shaded area and become excessive, and the PSZ sintered body will be destroyed. On the other hand, in this alloy, the yield strength (yield strength) is extremely low in the martensitic phase region below the Af point, as shown by the solid line. Therefore, even if the temperature difference between this alloy layer and the PSZ sintered body is large and the PSZ sintered body selectively expands thermally, the temperature of the alloy layer is around room temperature and it is in the martensitic phase, so there is almost no compressive stress. Does not increase. However, the temperature of PSZ sintered body is 100
When the temperature reaches above ℃ and the alloy begins to heat up, it enters the austenite phase region and, as mentioned above, the yield strength (yield strength) increases until it reaches point B.
The compressive stress exerted on the PSZ sintered body increases. However, after point B, the coefficients of thermal expansion of this alloy and PSZ become approximately the same, so the compressive stress also stabilizes at the level of the yield strength (yield strength) of the austenite phase. and P.S.Z.
Sufficient compressive stress is generated in the sintered body between 200 and 300°C to prevent transition, and the PSZ sintered body is not destroyed because it does not fall within the shaded area. Embodiment FIG. 2 shows an example in which a PSZ sintered body is applied to a sub-combustion chamber of a diesel engine, and the PSZ sintered body 1 is surrounded by a metal layer 2. The PSZ sintered body 1 is
It was obtained by molding ZrO 2 powder containing 3 mol % of Y 2 O 3 using a rubber press and then firing it. After forming a wax pattern on the outer periphery of the PSZ sintered body, a ceramic shell mold mainly made of zircon sand was manufactured. After preheating this shell mold to 1150℃, this alloy with the following two compositions is poured at the casting temperature.
Cast at 1300℃. (A): Ni-44.5%Ti Af=20℃ (B): Ni-46.4%Ti Af=110℃ Ten pieces of each material were created. For comparison, Inconel 713C (casting temperature 420℃) is used as a conventional metal material.
and SUS430 (casting temperature 1480°C) to create 10 similar samples. As a result, cracks were observed in four samples of PSZ sintered bodies made of Inconel 713C, which has a high coefficient of thermal expansion, during casting. Next, the compressive stress applied to the PSZ sintered body was measured for each sample using the strain gauge method.

【表】 インコネル713Cの圧縮応力はかなり高くなつ
ており、PSZ焼結体の過度の応力が及ぼされてい
ることが認められる。 ついで各試料の次の2つの方法で熱サイクルを
与えた。 () 400℃に加熱した炉に5分間装入10分間放
冷 () 第4図に示すように内孔部へ都市ガスバー
ナー炎をあて3分間加熱し10分間放冷 上記熱サイクルを与えてPSZ焼結体に割れが発
生するまでの回数を調べた。
[Table] The compressive stress of Inconel 713C is quite high, indicating that excessive stress is being applied to the PSZ sintered body. Each sample was then thermally cycled in two ways. () Charged into a furnace heated to 400℃ for 5 minutes and left to cool for 10 minutes. () As shown in Figure 4, apply a city gas burner flame to the inner hole and heat for 3 minutes, then let it cool for 10 minutes. Apply the above heat cycle. The number of times it takes for cracks to occur in the PSZ sintered body was investigated.

【表】 インコネル713C、SUS430を用いた試料は過度
の圧縮応力が発生しPSZ焼結体に早期に割れが発
生するのに対し、本合金を用いた試料ではPSZ焼
結体の割れの発生が充分防止出来ることが認めら
れる。
[Table] In the samples using Inconel 713C and SUS430, excessive compressive stress occurs and cracks occur early in the PSZ sintered body, whereas in the sample using this alloy, cracks do not occur in the PSZ sintered body. It is recognized that this can be sufficiently prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はPSZ焼結体の内側から加熱した場合の
PSZ焼結体の温度と圧縮応力の関係を示すグラフ
であり、縦軸は圧縮応力、横軸は温度(℃)を示
し、金属層として一点鎖線は従来の金属材料、実
線は本合金を用いた場合である。第2図は実施例
で用いた試料の断面図、第3図は実施例の説明図
である。 図中、1……PSZ焼結体、2……金属層、3…
…バーナー。
Figure 1 shows the situation when heating the PSZ sintered body from the inside.
This is a graph showing the relationship between temperature and compressive stress of a PSZ sintered body, where the vertical axis shows compressive stress and the horizontal axis shows temperature (°C). As the metal layer, the dashed line shows conventional metal material, and the solid line shows this alloy. This is the case. FIG. 2 is a sectional view of the sample used in the example, and FIG. 3 is an explanatory diagram of the example. In the figure, 1...PSZ sintered body, 2...metal layer, 3...
…burner.

Claims (1)

【特許請求の範囲】[Claims] 1 部分安定化ジルコニア焼結体からなる中空体
の外周に鋳造によつてAf点が常温以上120℃以下
のNi−Ti系合金層を形成したことを特徴とする
セラミクス−金属複合体。
1. A ceramic-metal composite, characterized in that a Ni-Ti alloy layer with an Af point of above room temperature and below 120° C. is formed by casting on the outer periphery of a hollow body made of a partially stabilized zirconia sintered body.
JP7901684A 1984-04-19 1984-04-19 Composite ceramic-metallic body Granted JPS60223653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7901684A JPS60223653A (en) 1984-04-19 1984-04-19 Composite ceramic-metallic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7901684A JPS60223653A (en) 1984-04-19 1984-04-19 Composite ceramic-metallic body

Publications (2)

Publication Number Publication Date
JPS60223653A JPS60223653A (en) 1985-11-08
JPH0154152B2 true JPH0154152B2 (en) 1989-11-16

Family

ID=13678145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7901684A Granted JPS60223653A (en) 1984-04-19 1984-04-19 Composite ceramic-metallic body

Country Status (1)

Country Link
JP (1) JPS60223653A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250220B1 (en) * 2002-10-03 2007-07-31 Tosoh Set, Inc. Bond strength of coatings to ceramic components
CN112439889B (en) * 2020-11-23 2021-12-28 西北有色金属研究院 Preparation method of titanium or titanium alloy composite cutter coated with nickel-rich nickel-titanium alloy

Also Published As

Publication number Publication date
JPS60223653A (en) 1985-11-08

Similar Documents

Publication Publication Date Title
US5137789A (en) Composite ceramic and metal article
US4264660A (en) Thermally insulated composite article
JPH0154152B2 (en)
EP0388348A1 (en) A method of producing selfsupporting aluminum titanate composites and products relating thereto
US5139979A (en) Method of producing self-supporting aluminum titanate composites and products relating thereto
JPS6014901B2 (en) Piston manufacturing method
JPH0310004B2 (en)
JPH0436062B2 (en)
JPH0560011A (en) Silicon nitride inserted piston
JPS59232978A (en) Ceramic-metal composite body
JPS60216967A (en) Composite ceramic-iron-base alloy body
JPS60216966A (en) Composite ceramic-iron-base alloy body
JPS6014890Y2 (en) Pre-chamber of multi-cylinder internal combustion engine
JPH0243563Y2 (en)
JPS621093B2 (en)
JPS5851214A (en) Exhaust gas system device for internal-combustion engine
JPS60247550A (en) Ceramics composite body
JPS6123822A (en) Joint body of metal and ceramic
JPS6027725A (en) Heat-insulating member for subsidiary combustion chamber of internal-combustion engine
JPS61201869A (en) Cylinder head and manufacture thereof
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JPH0448617B2 (en)
JPH0152107B2 (en)
JPS59217671A (en) Heat insulating mechanism using pratially stabilized zirconia sintered body
JP3142224B2 (en) Ferritic heat-resistant cast steel and diesel engine pre-combustion chamber member using the same