JPH0152107B2 - - Google Patents

Info

Publication number
JPH0152107B2
JPH0152107B2 JP1255584A JP1255584A JPH0152107B2 JP H0152107 B2 JPH0152107 B2 JP H0152107B2 JP 1255584 A JP1255584 A JP 1255584A JP 1255584 A JP1255584 A JP 1255584A JP H0152107 B2 JPH0152107 B2 JP H0152107B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
stress
metal composite
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1255584A
Other languages
Japanese (ja)
Other versions
JPS60154862A (en
Inventor
Shoichi Fukui
Michiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nippon Tokushu Togyo KK
Original Assignee
Daido Steel Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Nippon Tokushu Togyo KK filed Critical Daido Steel Co Ltd
Priority to JP1255584A priority Critical patent/JPS60154862A/en
Publication of JPS60154862A publication Critical patent/JPS60154862A/en
Publication of JPH0152107B2 publication Critical patent/JPH0152107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミクス層と金属層とからなるセラ
ミクス―金属複合体およびその製造法に関するも
のである。 セラミクスはその優れた耐蝕性、耐久性、耐熱
性、および断熱性等を生かして種々な方面で構造
部材として賞用されている。そして最近では該セ
ラミクスに更に加工容易性を与えて装置に組み込
み易くしたり、実効強度を向上させたりするため
にセラミクス層に対して金属層を接合したセラミ
クス―金属複合体が脚光を浴びている。このよう
なセラミクス―金属複合体は通常鋳型内に所定の
形状のセラミクス材料を挿入し、その後金属溶融
物を注入固化せしめることによるいわゆる鋳ぐる
み法により製造されるが、現在ではシリンダー、
副燃焼室等のエンジン部品関係、溶湯ポンプ等の
溶融金属処理関係、金属加工関係等に実用化され
つつある。 上記用途においては繰返し熱応力や外部応力が
該セラミクス―金属複合体に及ぼされるものであ
り、該複合体はこのような熱応力や外部応力によ
つて亀裂が層間剥離等が生ずるようなものであつ
てはならない。 該セラミクス―金属複合体は上記したように通
常ぐるみ法により製造されるが、鋳ぐるみ法によ
る冷却固化の際、セラミクスと金属との熱膨張係
数の差により両者に応力が及ぼされる。通常セラ
ミクスは金属つも小さな熱膨張係数を有し、した
がつて例えば筒状のセラミクス材料の外周に金属
層を被覆したような場合には内部応力としてセラ
ミクス材料には圧縮応力が発生し、金属層には引
張り応力が発生する。セラミクスは通常引張り強
度は小さく圧縮強度は大きいものであり、上記圧
縮応力がセラミクスに及ぼされると実効強度が向
上し、これが前記したようにセラミクス―金属複
合体の利点になるのであるが、上記圧縮応力や引
張り応力がセラミクスが金属の圧縮強度や引張り
強度よりも過大になればセラミクス―金属複合体
に変形、亀裂、層間剥離等の致命的な欠陥が生ず
ることになる。また逆にセラミクス材料に加わつ
ている鋳ぐるみ法による冷却固化の際の圧縮応力
が小さすぎる場合は、シリンダーの様な内部によ
り、セラミクス層に引張り応力が加わり破壊を生
ずることになる。セラミクス―金属複合体を構成
するセラミクス材料が金属層に及ぼされる応力は
セラミクス材料や金属層の強度に対して適当なも
のであることが望ましい。換言すればセラミクス
―金属複合体の用途によつてセラミクス材料や金
属層に及ぼされる内部応力を調節することが必要
である。しかしこのような選択をセラミクスや金
属の材質のみに求めれば使用条件、製法、経済性
等の点で問題を生ずることにもなる。そこでセラ
ミクスや金属の同一材質について鋳ぐるみ法によ
る冷却固化の際発生する内部応力を調節すること
が可能になるようにすれば上記諸問題は解消して
セラミクス―金属複合体の実用性は更に向上する
ことなるであろう。 本発明は上記従来の問題点に着目してセラミク
ス―金属複合体において、金属を同一材質におい
てその力学特性を所定のものに調節することによ
り、セラミクス―金属複合体に発生する内部応力
を調節することを目的とし、金属として折出硬化
型合金を用い、該合金の折出物含量および/また
は折出物形態を調節することよつて該合金の機械
的強度を所定のものに調節することを骨子とす
る。 本発明を以下に詳細に説明する。 本発明に用いる折出硬化型合金は折出物含量お
よび/または折出物形態によつて強度が大巾に変
化するものであり、例えばSUS630,SUS631等
折出硬化型ステンレス鋼、A286等のFe基超合金、
Mar、M200、IN100、インコネル713C等のNi基
合金等の公知の折出硬化型合金がすべて含まれ
る。そして該折出硬化型合金の折出物含量およ
び/または折出物形態は鋳造後の熱処理あるいは
鋳造の際の冷却速度によつて変化し、したがつて
強度が調節される。 本発明に用いるセラミクスには例えばアルミ
ナ、ジルコニア、ジルコン、酸化クロム、スピネ
ル、窒化珪素、炭化珪素等の公知のセラミクスが
すべて含まれる。 本発明のセラミクス―金属複合体を製造するに
は一般的には前記した鋳ぐるみ法が適用される。
即ち鋳ぐるみ法においては上記のセラミクスの粉
末に所望なれば結着剤を添加してラバープレス法
等で所定形状に成形した後焼成することによつて
製造した所定形状のセラミクス材料を鋳型内に挿
入し、その後上記折出硬化型合金の溶融物を鋳型
内に注入し冷却固化する。かくしてセラミクス―
金属複合体を得るが、該セラミクス―金属複合体
を構成するセラミクスの熱膨張係数は例えば窒化
珪素、炭化珪素では3〜4×10-6/℃、アルミナ
では8×10-6/℃、ジルコニアでは11×10-6/℃
であり、インコネル713C、SUS630等の10〜20×
10-6/℃に比して小さい。そこで鋳ぐるみ法にお
ける冷却固化工程では上記セラミクスと金属と熱
膨張係数の差よりセラミクス―金属複合体を構成
するセラミクス材料および金属層に前記したよう
に応力が及ぼされる。しかし高温では金属の耐力
が低いため上記応力が及ぼされても金属層は該応
力に追従して塑性変形して応力は短時間に緩和さ
れてしまう。即ち高温での金属の応力緩和時間は
短かい。冷却が進むにつれて金属の耐力は高くな
り金属層は該応力に追従して塑性変形しなくな
る。かくして応力緩和時間は長くなり金属層、更
にはセラミクス材料に残留応力が及ぼされるよう
になる。この残留応力は前記したようにセラミク
スと金属との熱膨張係数の差に由来するものであ
る。即ちセラミクス材料および金属層にこのよう
な応力が及ぼされるのは金属の耐力が高くなり応
力に金属の塑性変形が追従出来なくなつた温度、
換言すれば金属の耐力と応力とが均衝した温度以
下の温度になつた場合である。そこで金属の耐力
を調節することが出来れば上記応力が及ぼされる
温度を調節することが出来、セラミクス―金属複
合体の変性、亀裂、層間剥離等の欠陥は防止出来
ることになる。そこで本発明ではセラミクス―金
属複合体を構成する金属として上記折出硬化型合
金を用いるのである。折出硬化型合金は前記した
ように鋳造後の熱処理あるいは鋳造の際の冷却速
度によつて折出物含量および/または折出物形態
が変化、耐力を大巾に調節することが出来るので
ある。例えばFe基超合金であるA286は第1図に
示すように固溶化温度によつてそれ以後のかたさ
HBが種々に変化する。第1図は縦軸にかたさ
HB、横軸には時効時間(hr)をとつたグラフで
あるが、時効処理温度高くなるにつれてかたさ
HBは低下し、耐力が低くなることが示され。 以下に本発明を更に具体的に説明するための実
施例を述べる。 実施例 外径30mm、内径25mm、高さ30mmの筒状の部分安
定化ジルコニウム成形物の表面にジルコニウムを
0.3mm厚で溶射してセラミクス材料とした。該セ
ラミクス材料を包んでロストワツクス法により鋳
型を作成し、該鋳型を1200℃に加熱してからイン
コネル713Cの溶融物(1420℃)を注入して該セ
ラミクス材料の外周のみに厚さ(t)3mmのイン
コネル713C層を鋳造する。該溶融物注入後常温
まで冷却しその後第1表に示すように熱処理を施
す。熱処理温度が高くなるにつれてインコネル
713C層においてNi3Alを基本形とするγ′相をおも
な折出相とする折出物の状態は微細折出状態か次
第の粗大化して塑性が大きくなり、第1表に示す
ようにセラミクス材料の周方向応力は小さくな
る。
The present invention relates to a ceramic-metal composite comprising a ceramic layer and a metal layer, and a method for manufacturing the same. Ceramics are used as structural members in various fields due to their excellent corrosion resistance, durability, heat resistance, and heat insulation properties. Recently, ceramic-metal composites, in which a metal layer is bonded to a ceramic layer, have been attracting attention in order to make the ceramic easier to process and incorporate into equipment, and to improve its effective strength. . Such ceramic-metal composites are usually manufactured by the so-called casting method, which involves inserting a ceramic material in a predetermined shape into a mold and then injecting and solidifying a molten metal.
It is being put to practical use in engine parts such as sub-combustion chambers, molten metal processing such as molten metal pumps, and metal processing. In the above applications, repeated thermal stress and external stress are applied to the ceramic-metal composite, and the composite is one in which cracks and delamination occur due to such thermal stress and external stress. Must not be. As described above, the ceramic-metal composite is usually manufactured by the casting method, but when the ceramic-metal composite is cooled and solidified by the casting method, stress is applied to both the ceramic and the metal due to the difference in coefficient of thermal expansion. Normally, ceramics have a smaller coefficient of thermal expansion than metals. Therefore, when a metal layer is coated on the outer periphery of a cylindrical ceramic material, compressive stress is generated in the ceramic material as internal stress, and the metal layer tensile stress occurs. Ceramics usually have low tensile strength and high compressive strength, and when the above compressive stress is applied to ceramics, the effective strength increases, which is an advantage of ceramic-metal composites as described above. If the stress or tensile stress of the ceramic exceeds the compressive or tensile strength of the metal, fatal defects such as deformation, cracking, and delamination will occur in the ceramic-metal composite. On the other hand, if the compressive stress applied to the ceramic material during cooling and solidification by the casting method is too small, tensile stress will be applied to the ceramic layer due to the cylinder-like interior, resulting in breakage. It is desirable that the stress exerted on the metal layer by the ceramic material constituting the ceramic-metal composite is appropriate for the strength of the ceramic material and the metal layer. In other words, it is necessary to adjust the internal stress exerted on the ceramic material and the metal layer depending on the use of the ceramic-metal composite. However, if such selection is required only for ceramics or metal materials, problems will arise in terms of usage conditions, manufacturing methods, economic efficiency, etc. Therefore, if it were possible to adjust the internal stress that occurs when cooling and solidifying the same material, ceramics or metal, by the casting method, the above problems would be solved and the practicality of ceramic-metal composites would be further improved. It will be done. The present invention focuses on the above conventional problems and adjusts the internal stress generated in the ceramic-metal composite by adjusting the mechanical properties of the metal to a predetermined value using the same metal material. For this purpose, an precipitation hardening alloy is used as the metal, and the mechanical strength of the alloy is adjusted to a predetermined value by adjusting the content and/or morphology of the precipitates in the alloy. Make it the gist. The present invention will be explained in detail below. The strength of the precipitation-hardening alloy used in the present invention varies widely depending on the content of precipitates and/or the morphology of the precipitates. Fe-based superalloy,
All known precipitation hardening alloys such as Ni-based alloys such as Mar, M200, IN100, and Inconel 713C are included. The precipitate content and/or the precipitate morphology of the precipitation hardening type alloy changes depending on the post-casting heat treatment or the cooling rate during casting, and therefore the strength is adjusted. The ceramics used in the present invention include all known ceramics such as alumina, zirconia, zircon, chromium oxide, spinel, silicon nitride, and silicon carbide. The above-mentioned casting method is generally applied to produce the ceramic-metal composite of the present invention.
That is, in the casting method, if desired, a binder is added to the above-mentioned ceramic powder, and the ceramic material in a predetermined shape is manufactured by molding it into a predetermined shape using a rubber press method or the like and then firing it, and then placing the ceramic material in a predetermined shape in a mold. After that, the molten material of the injection hardening type alloy is poured into the mold and cooled and solidified. Thus, ceramics
A metal composite is obtained, and the thermal expansion coefficient of the ceramics constituting the ceramic-metal composite is, for example, 3 to 4 × 10 -6 / °C for silicon nitride and silicon carbide, 8 × 10 -6 / °C for alumina, and 8 × 10 -6 / °C for zirconia. Then 11×10 -6 /℃
10~20× of Inconel 713C, SUS630, etc.
It is small compared to 10 -6 /℃. Therefore, in the cooling solidification step in the casting method, stress is applied to the ceramic material and the metal layer constituting the ceramic-metal composite due to the difference in thermal expansion coefficient between the ceramic and the metal, as described above. However, at high temperatures, the yield strength of metal is low, so even if the above-mentioned stress is applied, the metal layer follows the stress and deforms plastically, so that the stress is relieved in a short time. That is, the stress relaxation time of metals at high temperatures is short. As cooling progresses, the yield strength of the metal increases, and the metal layer no longer follows the stress and undergoes plastic deformation. Thus, the stress relaxation time becomes longer and residual stress is exerted on the metal layer and furthermore on the ceramic material. This residual stress originates from the difference in thermal expansion coefficient between ceramics and metal, as described above. In other words, such stress is applied to the ceramic material and the metal layer at a temperature at which the proof stress of the metal becomes high and the plastic deformation of the metal can no longer follow the stress.
In other words, this is the case when the temperature reaches a temperature below which the yield strength and stress of the metal are balanced. Therefore, if the yield strength of the metal can be adjusted, the temperature at which the stress is applied can be adjusted, and defects such as degeneration, cracking, and delamination of the ceramic-metal composite can be prevented. Therefore, in the present invention, the above precipitation hardening type alloy is used as the metal constituting the ceramic-metal composite. As mentioned above, in precipitation hardening alloys, the content and/or morphology of precipitates can be changed by heat treatment after casting or cooling rate during casting, and yield strength can be adjusted to a large extent. . For example, the hardness of A286, an Fe-based superalloy, depends on the solution temperature as shown in Figure 1.
H B changes in various ways. Figure 1 shows hardness on the vertical axis.
H B is a graph with aging time (hr) on the horizontal axis, and the hardness increases as the aging temperature increases.
It is shown that H B decreases and yield strength decreases. Examples will be described below to further specifically explain the present invention. Example: Zirconium was applied to the surface of a cylindrical partially stabilized zirconium molding with an outer diameter of 30 mm, an inner diameter of 25 mm, and a height of 30 mm.
It was thermally sprayed to a thickness of 0.3mm and made into a ceramic material. A mold is made by wrapping the ceramic material by the lost wax method, and the mold is heated to 1200°C, and then a melt of Inconel 713C (1420°C) is injected to a thickness (t) of 3 mm only around the outer periphery of the ceramic material. Casting a layer of Inconel 713C. After injecting the melt, it is cooled to room temperature and then heat treated as shown in Table 1. Inconel as the heat treatment temperature increases
In the 713C layer, the state of the precipitates with Ni 3 Al as the basic form and the γ' phase as the main precipitated phase is a fine precipitated state, but gradually becomes coarser and becomes more plastic, as shown in Table 1. The circumferential stress of the ceramic material becomes smaller.

【表】 第1表においてセラミクス材料の周方向応力は
歪ゲージを用いて測定した。 第1表によれば本実施例の筒状のセラミクス―
金属複合体の内部に圧力が及ぼされるような用途
に該セラミクス―金属複合体を用いる場合には該
内部圧力と拮抗するためにセラミクス材料に及ぼ
される周方向応力は大きい方が望ましく、この場
合は熱処理は不要であり、また内部圧力がかから
ない場合は該応力は小さい方望ましく、例えば
900℃×4時間の熱処理が適当である。 性能試験 上記実施例によつて製造したセラミクス―金属
複合体の性能を試験した。 (a) 上記筒状のセラミクス―金属複合体の両端を
シールして内部に油を充填して2分間2t/cm2
油圧を及ぼし、後3分間除去するサイクルで疲
労試験を行つた。上記疲労試験によりセラミク
ス―金属複合体を構成するセラミクスが破壊す
るまでのサイクル回数を第2表に示す
[Table] In Table 1, the circumferential stress of the ceramic material was measured using a strain gauge. According to Table 1, the cylindrical ceramics of this example
When using the ceramic-metal composite in applications where pressure is applied to the interior of the metal composite, it is desirable that the circumferential stress applied to the ceramic material be large in order to counteract the internal pressure. Heat treatment is not required, and if no internal pressure is applied, it is preferable that the stress be small; for example,
Heat treatment at 900°C for 4 hours is appropriate. Performance Test The performance of the ceramic-metal composite produced according to the above example was tested. (a) A fatigue test was conducted by sealing both ends of the cylindrical ceramic-metal composite, filling the interior with oil, applying a hydraulic pressure of 2 t/cm 2 for 2 minutes, and then removing it for 3 minutes. Table 2 shows the number of cycles until the ceramics that make up the ceramic-metal composite break down in the above fatigue test.

【表】 (b) 上記セラミクス―金属複合体を400℃に保持
した炉内に5分間装入しその後5分間放冷する
サイクルを行つた。上記熱サイクル試験により
セラミクス―金属複合体を構成するセラミクス
が破壊するまでのサイクル回数を第3表に示
す。
[Table] (b) A cycle was performed in which the above ceramic-metal composite was placed in a furnace maintained at 400°C for 5 minutes and then allowed to cool for 5 minutes. Table 3 shows the number of cycles until the ceramics constituting the ceramic-metal composite were destroyed in the above heat cycle test.

【表】 第2表をみれば熱処理温度が高いとセラミクス
―金属複合体を構成するセラミクス材料に及ぼさ
れる周方向の応力が小さくなり、セラミクスは内
部圧力によつて短時間に破壊し、一方第3表をみ
れば逆に熱処理温度が低いとセラミクス―金属複
合体を構成するセラミクス材料に及ぼされる周方
向の応力は大となりセラミクスは該応力によつて
短時間に破壊することが認められる。
[Table] Table 2 shows that when the heat treatment temperature is high, the stress in the circumferential direction applied to the ceramic material constituting the ceramic-metal composite becomes smaller, and the ceramic breaks down in a short time due to internal pressure. Table 3 shows that, on the other hand, when the heat treatment temperature is low, the circumferential stress exerted on the ceramic material constituting the ceramic-metal composite becomes large, and the ceramic breaks down in a short period of time due to the stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はA286のかたさHBと固溶化処理後の時
効時間(hr)との関係を各固溶化処理温度に対し
てプロツトしたグラフである。 図中、〓―〓 時効処理温度 816℃ ●―● 〃 760℃ 〓―〓 〃 704℃ ○―○ 〃 649℃
FIG. 1 is a graph plotting the relationship between the hardness H B of A286 and the aging time (hr) after solution treatment for each solution treatment temperature. In the figure, 〓―〓 Aging treatment temperature 816℃ ●―● 〃 760℃ 〓―〓 〃 704℃ ○―○ 〃 649℃

Claims (1)

【特許請求の範囲】 1 セラミクス層と金属層とからなるセラミクス
―金属複合体において、該金属として折出硬化型
合金を用い、該合金は折出物含量および/または
折出物形態により機械的強度を調節することによ
つて鋳ぐるみにより発生する内部応力が所定のも
のに調節されていることを特徴とするセラミクス
―金属複合体。 2 鋳型内に所定形状のセラミクス材料を挿入す
る工程1 該鋳型内に折出硬化型合金の溶融物を注入する
工程2 該溶融物を冷却固化せしめてから熱処理を行う
かもしくは該溶融物の冷却速度を制御することに
より該合金の折出物含量および/または折出物形
態により機械的強度を調節することによつて鋳ぐ
るみにより発生する内部応力を所定のものに調節
する工程3 以上の工程1、2、3からなるセラミクス―金
属複合体の製造法。
[Scope of Claims] 1. In a ceramic-metal composite consisting of a ceramic layer and a metal layer, a precipitation-hardening alloy is used as the metal, and the alloy is mechanically hardened depending on the content and/or morphology of the precipitates. A ceramic-metal composite characterized in that the internal stress generated by the casting is adjusted to a predetermined value by adjusting the strength. 2. Step 1 of inserting a ceramic material of a predetermined shape into the mold. Step 2 of pouring the molten material of the injection hardening type alloy into the mold. 2. Heat treatment is performed after the molten material is cooled and solidified, or cooling of the molten material is performed. Step 3 of adjusting the internal stress generated by the casting to a predetermined value by adjusting the mechanical strength according to the precipitate content and/or the precipitate morphology of the alloy by controlling the speed. A method for producing a ceramic-metal composite consisting of 1, 2, and 3.
JP1255584A 1984-01-25 1984-01-25 Ceramics-metal composite body and its production Granted JPS60154862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255584A JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255584A JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Publications (2)

Publication Number Publication Date
JPS60154862A JPS60154862A (en) 1985-08-14
JPH0152107B2 true JPH0152107B2 (en) 1989-11-07

Family

ID=11808583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255584A Granted JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Country Status (1)

Country Link
JP (1) JPS60154862A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017542B (en) * 2011-09-26 2014-10-29 铜陵佳茂新材料科技有限责任公司 Composite ceramic water-cooled copper bush of flash furnace and production method thereof

Also Published As

Publication number Publication date
JPS60154862A (en) 1985-08-14

Similar Documents

Publication Publication Date Title
US5527403A (en) Method for producing crack-resistant high strength superalloy articles
KR101745999B1 (en) Fatigue resistant cast titanium alloy articles
RU2299111C2 (en) Method (variants) and apparatus for making casting mold for casting with use of investment patterns and method for casting with use of investment patterns (variants)
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
Rakoczy et al. Effect of cobalt aluminate content and pouring temperature on macrostructure, tensile strength and creep rupture of Inconel 713C castings
JPH0152107B2 (en)
JPH1034280A (en) Mold for precision molding of single crystal
KR19980029588A (en) Turbine Blade Manufacturing Method for Turbocharger Using Vacuum Precision Casting Method
JPH01298139A (en) Manufacture of aluminum alloy castings
RU2763359C1 (en) Foundry multilayer shell mold
CA1079935A (en) Method of making a duo-density silicon nitride article
JPS60216966A (en) Composite ceramic-iron-base alloy body
JPH0436062B2 (en)
JPS60223653A (en) Composite ceramic-metallic body
JPS60216967A (en) Composite ceramic-iron-base alloy body
JPS6123822A (en) Joint body of metal and ceramic
JPH0237814B2 (en)
GB2307483A (en) Crack-resistant high strength super alloy articles
JP3145541B2 (en) Cast-in method of aluminum matrix composite
JPH0448617B2 (en)
JPS5988385A (en) Ceramic reinforcement process
JPS61189864A (en) Production of ceramic-metal composite body
JPH02160163A (en) Method for casting aluminum alloy member
JPS6111908B2 (en)