JPS60154862A - Ceramics-metal composite body and its production - Google Patents

Ceramics-metal composite body and its production

Info

Publication number
JPS60154862A
JPS60154862A JP1255584A JP1255584A JPS60154862A JP S60154862 A JPS60154862 A JP S60154862A JP 1255584 A JP1255584 A JP 1255584A JP 1255584 A JP1255584 A JP 1255584A JP S60154862 A JPS60154862 A JP S60154862A
Authority
JP
Japan
Prior art keywords
ceramic
metal
alloy
stress
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1255584A
Other languages
Japanese (ja)
Other versions
JPH0152107B2 (en
Inventor
Shoichi Fukui
福井 彰一
Michiro Kato
加藤 倫朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
Daido Steel Co Ltd
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical Daido Steel Co Ltd
Priority to JP1255584A priority Critical patent/JPS60154862A/en
Publication of JPS60154862A publication Critical patent/JPS60154862A/en
Publication of JPH0152107B2 publication Critical patent/JPH0152107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To control the internal stress to be generated by insert casting by using a precipitation hardening alloy as a metal and controlling the content and form of the precipitate of the alloy thereby controlling the mechanical strength thereof to prescribed strength. CONSTITUTION:A ceramic material having a prescribed shape is inserted into a casting mold then the melt of a precipitation hardening alloy is poured into the mold in the stage of producing a ceramics-metal composite body consisting of a ceramic layer and a metallic layer. After such melt is cooled to solidify, the alloy is subjected to a heat treatment or the cooling rate of the melt is controlled by which the content or form of the precipitate of the above-mentioned alloy is controlled and the mechanical strength thereof is controlled. The control of the internal stress to be generated in the ceramics-metal composite body is thus made possible.

Description

【発明の詳細な説明】 本発明はセラミクス層と金属層とからなるセラミクス−
金属複合体およびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a ceramic material comprising a ceramic layer and a metal layer.
This invention relates to a metal composite and its manufacturing method.

セラミクスはその優れた耐蝕性、耐久性、耐熱性、およ
び断熱性等を生かtl、て種々な方面で構造部材として
賞ルされている。そして最近では該セラミクスに更に加
工容易性を与えて装置に組み込み易くしたし、実効強度
を向上させたりするだめにセラミクス層に対して金属層
を接合したセラミクス−金属複合体が脚光を浴びている
。このようなセラミクス−金属複合体は通常鋳型内に所
定の形状のセラミクス材料を挿入し、その後金属溶融物
を注入固化せしめることによるいわゆる鋳ぐるみ法によ
り製造されるが、現在ではシリンダー。
Ceramics are prized as structural members in various fields due to their excellent corrosion resistance, durability, heat resistance, and heat insulation properties. Recently, ceramic-metal composites in which a metal layer is bonded to a ceramic layer have been attracting attention in order to make ceramics easier to process and incorporate into equipment, and to improve effective strength. . Such ceramic-metal composites are usually manufactured by the so-called casting method, which involves inserting a ceramic material in a predetermined shape into a mold, and then injecting and solidifying a molten metal.

副燃焼室等のエンジン部品関係、溶湯ポンプ等の溶融金
属処理関係、金属加工関係等に実用化されつつある。
It is being put to practical use in engine parts such as sub-combustion chambers, molten metal processing such as molten metal pumps, and metal processing.

上記用途においては繰返し熱応力や外部応力が該セラミ
クス−金属複合体に及はされるものであシ、該複合体は
このような熱応力や外部応力によって亀裂や層間剥離等
が生ずるようなものであってはならない。
In the above applications, repeated thermal stress and external stress are applied to the ceramic-metal composite, and the composite is one in which cracks, delamination, etc. occur due to such thermal stress and external stress. Must not be.

該セラミクス−金属複合体は上記したように通常鋳ぐる
み法により製造されるが、鋳ぐるみ法による冷却同化の
際、セラミクスと金属との熱膨張係数の丼により両者に
応力が及はされる。通常セラミクスは金属よりも小さな
熱膨張係数を有し、したがって例えば筒状のセラミクス
材料の外周に金属層を被覆したような場合には内部応力
としてセラミクス材料には圧縮応力が発生し、金属層に
は引張り応力が発生する。セラミクスは通常引張り強度
は小さく圧縮強度は大きいものであり、上記圧縮応力が
セラミクスに及ぼされると実効強度が向上し、これが前
記したようにセラミクス−金属複合体の利点になるので
あるが、上記圧縮応力や引張り応力がセラミクスや金属
の圧縮強度や引張り強度よりも過大になればセラミクス
−金属複合体に変形、亀裂9層間剥離等の致命的な欠陥
が生ずることになる。また逆にセラミクス材料に加わっ
ている鋳ぐるみ法による冷却固化の際の圧縮応力が小さ
すぎる場合は、シリンダーの様な内部から圧力が加わる
ような用途では、使用中の応力により、セラミクス層に
引張り応力が加わり破壊を生ずることになる。セラミク
ス−金属複合体を構成するセラミクス材料や金属層に及
ぼされる応力はセラミクス材料や金属層の強度に対して
適当なものであることが望ましい。換言すればセラミク
ス−金属複合体の用途によってセラミクス材料や金属層
に及ぼされる内部応力を調節することが必要である。し
かしこのような選択をセラミクスや金属の材質のみにめ
れば使用条件、製法、経済性等の点で問題を生ずること
にもなる。そこでセラミクスや金属の同一材質について
鋳ぐるみ法による冷却固化の際発生する内部応力を調節
することが可能になるようにすれば上記諸問題は解消し
てセラミクス−金属複合体の実用性は史に向上すること
になるであろう。
As mentioned above, the ceramic-metal composite is usually manufactured by the casting method, but during cooling and assimilation by the casting method, stress is applied to both the ceramic and the metal due to their different coefficients of thermal expansion. Ceramics usually have a smaller coefficient of thermal expansion than metals, so when a metal layer is coated around the outer periphery of a cylindrical ceramic material, compressive stress is generated in the ceramic material as internal stress, and the metal layer is coated with compressive stress. generates tensile stress. Ceramics usually have low tensile strength and high compressive strength, and when the above compressive stress is applied to ceramics, the effective strength improves, which is an advantage of ceramic-metal composites as described above. If the stress or tensile stress exceeds the compressive strength or tensile strength of the ceramic or metal, fatal defects such as deformation, cracks, and delamination will occur in the ceramic-metal composite. Conversely, if the compressive stress applied to the ceramic material during cooling and solidification by the casting method is too small, in applications where pressure is applied from the inside, such as in cylinders, the stress during use may cause tensile stress on the ceramic layer. Stress will be applied and breakage will occur. It is desirable that the stress applied to the ceramic material and metal layer constituting the ceramic-metal composite be appropriate for the strength of the ceramic material and metal layer. In other words, it is necessary to adjust the internal stress exerted on the ceramic material and the metal layer depending on the use of the ceramic-metal composite. However, if such selection is based only on ceramics or metal materials, problems will arise in terms of usage conditions, manufacturing methods, economic efficiency, etc. Therefore, if it were possible to adjust the internal stress that occurs when cooling and solidifying the same material, ceramics or metal, by the casting method, the above problems would be solved and the practicality of ceramic-metal composites would be history. It will probably improve.

本発明は上記従来の問題点に着目してセラミクス−金属
複合体において、金属を同一材質においてその力学特性
を所定のものに調節することにより、セラミクス−金属
複合体に発生する内部応力を調節することを目的とし、
金属として析出硬化型合金を用い、該合金の析出物含量
および/または析出物形態を調節することによって該合
金の機械的強度を所定のものに調節することを骨子とす
る。
The present invention focuses on the above conventional problems and adjusts the internal stress generated in the ceramic-metal composite by adjusting the mechanical properties of the metal to a predetermined value using the same metal material. The purpose is to
The main idea is to use a precipitation hardening alloy as the metal, and adjust the mechanical strength of the alloy to a predetermined value by adjusting the precipitate content and/or morphology of the alloy.

本発明を以下に詳細に説明する。The invention will be explained in detail below.

本発明に用いる析出硬化型合金は析出物含量および/ま
たは析出物形態によって強度が大d】に変化するもので
あり、例えば5U8630,8USfi31等の析出硬
化型ステンレス鋼、A286等のFi史金合金Mar6
M、200.lN100.インコネ、lL’7130等
のNi基合金等の公知の析出硬化型合金がすべて含まれ
る。そ1−で該析出硬化型合金の析出物含量およtド/
または析出物形)!lは鋳造後の熱処理あるいは鋳造の
1際の冷ラミ1速度によって変化し、しだがって強度が
調節される。
The strength of the precipitation hardening alloy used in the present invention varies greatly depending on the precipitate content and/or the form of the precipitates. Mar6
M, 200. lN100. All known precipitation hardening alloys such as Ni-based alloys such as Incone and 1L'7130 are included. In part 1-, the precipitate content and t/d of the precipitation hardening type alloy are determined.
or precipitate form)! l changes depending on the heat treatment after casting or the speed of cold lamination during casting, and the strength is adjusted accordingly.

本発明に用いるセラミクスには例えばアルミナ。Examples of ceramics used in the present invention include alumina.

ジルコニア、ジルコン、酸化クロム、スピネル。Zirconia, zircon, chromium oxide, spinel.

窒化珪素、炭化珪素等の公知のセラミクスがすべて含ま
れる。
All known ceramics such as silicon nitride and silicon carbide are included.

本発明のセラミクス−金属複合体を製造するには一般的
には前記した鋳ぐるみ法が適用される。
The above-mentioned casting method is generally applied to produce the ceramic-metal composite of the present invention.

即ち鋳ぐるみ法においては上記セラミクスの粉末に所望
なれば結着剤を添加してラバープレス法等で所定形状に
成形した後焼成すること((よって製造した所定形状の
セラミクス材料を鋳型内に挿入し、その後上記析出硬化
パリ合金の溶M’hI物を鋳型内に注入し冷却固化する
。か< 1.てセラミクス−金属複合体を得るが、該セ
ラミクス−金属複合体を構成するセラミクスの熱膨張係
数は例えば窒化珪素、炭化珪素では3〜4X10=/’
C、アルミナでけ8X 10−6/ ”C,ジルコニア
では11 Xl0−6/’Cであり、インコネ/L’7
13C,8US630等(7) 10〜20XlO’−
/’CvC比して小さい。そこで鋳ぐるみ法における冷
即問化工程では上記セラミクスと金属との熱膨張係数の
差によりセラミクス−金属複合体を構成するセラミクス
材料および金属層に前記したように応力が及はされる。
In other words, in the casting method, if desired, a binder is added to the ceramic powder, which is molded into a predetermined shape using a rubber press method, etc., and then fired. Then, the molten M'hI of the precipitation hardened Paris alloy is poured into a mold and cooled and solidified. For example, the expansion coefficient for silicon nitride and silicon carbide is 3 to 4X10=/'
C, alumina is 8X 10-6/'C, zirconia is 11 Xl0-6/'C, incone/L'7
13C, 8US630 etc. (7) 10~20XlO'-
/'Small compared to CvC. Therefore, in the cold casting process of the casting method, stress is applied to the ceramic material and the metal layer constituting the ceramic-metal composite due to the difference in thermal expansion coefficient between the ceramic and the metal, as described above.

しかし高温では金属の耐力が低いため上記応力が及ぼさ
れても金属層は該応力に追従して塑性変形17て応力は
短時間に緩和されてしまう。即ち高温での金属の応力緩
和時間は短かい。冷却が進むにつわて金団の耐力は高く
なシ金属層は該応力に追従し7て塑性変形しなくなる。
However, since the yield strength of metal is low at high temperatures, even if the above-mentioned stress is applied, the metal layer follows the stress and is plastically deformed 17, thereby relaxing the stress in a short time. That is, the stress relaxation time of metals at high temperatures is short. As the cooling progresses, the metal layer, which has a high yield strength, follows the stress and no longer undergoes plastic deformation.

かくして応力緩和時間は長く々り金属層、更にはセラミ
クス材料に残留応力が及はされるようになる。との残留
応力は前記1.たよりにセラミクスと金属との熱膨張係
数の差に由来するものである。
As a result, the stress relaxation time is long, and residual stress is exerted on the metal layer and furthermore on the ceramic material. The residual stress with 1. This is mainly due to the difference in thermal expansion coefficient between ceramics and metals.

即ちセラミクス材料および金属層にこのような応力が及
ぼされるのけ金属の耐力が高くなり応力に金属の塑性変
形が追従出来力くなった温度、l負言すれば金属の耐力
と応力とが均術した温度以下の温度になった場合である
。そとで金属の耐力を調節することが出来ればH記応力
が及はされる温度を調節することが出来、セラミクス−
金属複合体の変性、電装1層間剥離等の欠陥は防止出来
ることになる。そこで本発明ではセラミクス−金属複合
体を構成する金属として上記析出硬化型合金を用いるの
である。析出硬化型合金は前記したように鋳造後の熱処
理あるいは鋳造の際の冷却速攻によって析出物含量およ
び/゛または析出物形態が変化し、耐力を大巾に調節す
るととが出来るのである。
In other words, when such stress is applied to the ceramic material and metal layer, the yield strength of the metal increases and the plastic deformation of the metal can follow the stress. This is the case when the temperature drops below the operating temperature. If we can adjust the yield strength of metals, we can adjust the temperature at which stress is applied, and ceramics
Defects such as denaturation of metal composites and delamination of one layer of electrical equipment can be prevented. Therefore, in the present invention, the above precipitation hardening alloy is used as the metal constituting the ceramic-metal composite. As mentioned above, in precipitation hardening alloys, the content and/or morphology of precipitates can be changed by heat treatment after casting or rapid cooling during casting, and the yield strength can be adjusted to a large extent.

例えばFe基超超合金あるA286は第1図に示すよう
に固溶化温度によってそれ以後のかださHBが種々に変
化する。第1図は縦軸にがたさHB、横軸には時効時間
(hr)をとったグラフであるが、時効処理温度が高く
なるにつれてかたさ川は低下し、1耐力が低くなること
が示される。
For example, the height HB of Fe-based superalloy A286 varies depending on the solution temperature as shown in FIG. 1. Figure 1 is a graph with stiffness HB on the vertical axis and aging time (hr) on the horizontal axis, which shows that as the aging temperature increases, the hardness decreases and the 1 yield strength decreases. It will be done.

以下に本発明を更に具体的に説明するだめの実施例を述
べる。
Examples will be described below to further specifically explain the present invention.

実施例 外径30B1内径25闘、高さ30闘の筒状の部分安定
化ジルコニウム成形物の表面にジルコニラムラO−3m
m厚で溶射してセラミクス材料とした。
Zirconium irregularity O-3m on the surface of a cylindrical partially stabilized zirconium molding with an exception diameter of 30B1, an inner diameter of 25 mm, and a height of 30 mm.
It was thermally sprayed to a thickness of m to form a ceramic material.

該セラミック材料を包んでロストワックス法によりν1
型を作成し、該鋳型を】200°Cに加熱してからイン
コネル713cの溶融物(1420’C)を注入して該
セラミクス材料の外周のみに厚さくt)3朋のインコネ
/L’7]3C層を鋳造する。該溶融物注入後常温まで
冷却しその後第1表に示すように熱処理を施す。熱処理
温度が高くなるにつれてインコネ/’7]3C層におい
てNiBAgを基本形とするr′相をおもな析出相とす
る析出物の状部は微細析出状態から次第に粗大化して塑
性が大きくなシ、第1表に示すようt(二七うミクス材
料の周方向応力は小さくなる。
ν1 by wrapping the ceramic material and using the lost wax method.
A mold is made, and the mold is heated to 200°C, and then a melt of Inconel 713c (1420'C) is injected to a thickness of 3mm Inconel/L'7 only on the outer periphery of the ceramic material. ] Cast the 3C layer. After injecting the melt, it is cooled to room temperature and then heat treated as shown in Table 1. As the heat treatment temperature increases, the shape of the precipitates in the Incone/'7]3C layer, whose main precipitated phase is the r' phase with NiBAg as its basic form, gradually becomes coarser from a fine precipitated state and becomes more plastic. As shown in Table 1, the stress in the circumferential direction of t(27 Umix material becomes smaller).

第1表 第1表においてセラミクス材料の周方向応力は歪ゲージ
を用いて測定した。
Table 1 In Table 1, the circumferential stress of the ceramic material was measured using a strain gauge.

第1表によれば本実施例の筒状のセラミクス−金属複合
体の内部に圧力が及はされるような用途に該セラミクス
−金属複合体を用いる場合には該内部圧力と拮抗するだ
めにセラミクス材料に及ぼされる周方向応力は大きい方
が望ましく、この場合は熱処理は不要であり、また内部
圧力がかからない場合は該応力は小さい方が望ましく、
例えば900°CX4時間の熱処理が適当である。
According to Table 1, when the cylindrical ceramic-metal composite of this example is used for applications where pressure is applied to the inside, it is necessary to counteract the internal pressure. It is desirable that the circumferential stress exerted on the ceramic material is large, in which case heat treatment is not required, and if no internal pressure is applied, it is desirable that the stress be small;
For example, heat treatment at 900°C for 4 hours is appropriate.

性能試験 上記実施例によって製造したセラミクス−金属複合体の
性能を試験した。
Performance Test The performance of the ceramic-metal composite produced according to the above example was tested.

(a)上記筒状のセラミクヌー金属複合体の両端をシー
)vして内部に油を充填して2分間2t/(7)2の油
圧を及ぼし、後3分間除去するサイクルで疲労試験を行
った。ト記疲労試験によりセラミクヌー金属複合体を構
成するセラミクスが破壊するまでのサイクル回数を第2
表に示す。
(a) A fatigue test was conducted by sealing both ends of the cylindrical ceramic metal composite and filling the inside with oil, applying a hydraulic pressure of 2t/(7)2 for 2 minutes, and then removing it for 3 minutes. Ta. The number of cycles until the ceramics constituting the Ceramic Nut Metal Composite breaks down in the fatigue test is determined by the second
Shown in the table.

第2表 (b)上記セラミクス−金属複合体を400°Cに保持
した炉内に5分間装入しその後5分間放冷するサイクル
を行った。上記熱サイクル試験によりセラミクス−金属
複合体を構成するセラミクスが破壊する1でのザイクル
回数を第3表に示す。
Table 2 (b) A cycle was performed in which the above ceramic-metal composite was placed in a furnace maintained at 400°C for 5 minutes and then allowed to cool for 5 minutes. Table 3 shows the number of cycles in 1 at which the ceramics constituting the ceramic-metal composite were destroyed in the above thermal cycle test.

第3表 第2表をみれば熱処理温度が高いと七うミクスー金属複
合体を構成するセラミクス材料に及はされる周方向の応
力が小さくなり、セラミクスは内部圧力によって短時間
に破壊し、−力筒3表をみれば逆に熱処理温度が低いと
十うミクスー金属複合体を構成するセラミクヌ利料に及
はされる周方向の応力は大となりセラミクスは該応力に
よって短時間に破壊することが認めらi]る。
Table 3 Table 2 shows that when the heat treatment temperature is high, the stress in the circumferential direction exerted on the ceramic material constituting the seven-metal composite becomes smaller, and the ceramic breaks down in a short time due to internal pressure. Table 3 shows that, conversely, when the heat treatment temperature is low, the stress in the circumferential direction that is applied to the ceramic material constituting the metal composite becomes large, and the ceramic can be destroyed in a short period of time due to this stress. be recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第り図はA286のかたさH−Bと固ン谷化処理後の時
効時間(hr)との関係を各固溶化処理温度に対してプ
ロットし2’(グラフである。 図中、Q−Q 時効処理温度 816°C・−・ 77
60°C ()−() // 704°C ○−○ 〃649°C 特許出願人 大同特殊鋼株式会社 日本特殊陶業株式会社
Figure 2 is a graph plotting the relationship between the hardness H-B of A286 and the aging time (hr) after hardening treatment for each solution treatment temperature. In the figure, Q-Q Aging treatment temperature 816°C・-・77
60°C ()-() // 704°C ○-○ 〃649°C Patent applicant Daido Steel Co., Ltd. Nippon Spark Plug Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)セラミクス層と金属層とからなるセラミクス−金
属複合体において、該金属として析出硬化型合金を用い
、該合金は析出物含量および/または析出物形態により
機械的強度を調節することによって鋳ぐるみにより発生
する内部応力が所定のものに調節されていることを特徴
とするセラミクス−金属複合体
(1) In a ceramic-metal composite consisting of a ceramic layer and a metal layer, a precipitation hardening alloy is used as the metal, and the alloy is castable by controlling the mechanical strength by adjusting the precipitate content and/or the form of the precipitate. A ceramic-metal composite characterized in that the internal stress generated by the wrapping is adjusted to a predetermined value.
(2)鋳型内に所定形状のセラミクス材料を挿入する工
程1゜ 該鋳型内に析出硬化型合金の溶融物を注入する工程2゜ 該溶融物を冷却固化せしめてから熱処理を行うかもしく
は該溶融物の冷却速度を制御することにより該合金の析
出物含量および/または析出物形態により機械的強度を
調節するととによっで鋳ぐる与により発生する内部応力
を所定のものに調節する工程3゜ 以上の工程1.2.3からなるセラミクス−金属複合体
の製造法
(2) Step 1: Inserting a ceramic material of a predetermined shape into the mold; Step 2: Injecting a molten precipitation hardening alloy into the mold; 2: The molten material is cooled and solidified, and then heat treatment is performed, or the molten material is Step 3: Adjusting the mechanical strength of the alloy by controlling the cooling rate of the alloy and/or the morphology of the precipitates, thereby adjusting the internal stress generated by casting to a predetermined value. Method for manufacturing a ceramic-metal composite consisting of the above steps 1.2.3
JP1255584A 1984-01-25 1984-01-25 Ceramics-metal composite body and its production Granted JPS60154862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1255584A JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1255584A JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Publications (2)

Publication Number Publication Date
JPS60154862A true JPS60154862A (en) 1985-08-14
JPH0152107B2 JPH0152107B2 (en) 1989-11-07

Family

ID=11808583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1255584A Granted JPS60154862A (en) 1984-01-25 1984-01-25 Ceramics-metal composite body and its production

Country Status (1)

Country Link
JP (1) JPS60154862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017542A (en) * 2011-09-26 2013-04-03 铜陵佳茂雕塑铸造加工有限责任公司 Composite ceramic water-cooled copper bush of flash furnace and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017542A (en) * 2011-09-26 2013-04-03 铜陵佳茂雕塑铸造加工有限责任公司 Composite ceramic water-cooled copper bush of flash furnace and production method thereof

Also Published As

Publication number Publication date
JPH0152107B2 (en) 1989-11-07

Similar Documents

Publication Publication Date Title
KR101745999B1 (en) Fatigue resistant cast titanium alloy articles
US5527403A (en) Method for producing crack-resistant high strength superalloy articles
US4482398A (en) Method for refining microstructures of cast titanium articles
US5527020A (en) Differentially heat treated article, and apparatus and process for the manufacture thereof
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
CA1240595A (en) Metal-ceramics composite article and a process for manufacturing the same
JPS60154862A (en) Ceramics-metal composite body and its production
JPH01298139A (en) Manufacture of aluminum alloy castings
JP2597032B2 (en) Local softening method of casting
KR20010109311A (en) Method for manufacturing internal combustion engine pistons
Dour Thermal stresses and distortion in dies of die casting processes: a new normalized approach
US10351940B2 (en) Method of manufacturing a component from a nickel-based superalloy
JPH0429817A (en) Cylinder for molding machine and manufacture thereof
JPH04351241A (en) Method for plastic-working hard to-work material
JPS60216966A (en) Composite ceramic-iron-base alloy body
JPS60216967A (en) Composite ceramic-iron-base alloy body
JPS60116753A (en) Manufacture of heat-resistant aluminum alloy member
JP2500062B2 (en) Manufacturing method of casting mold
JPS62170488A (en) Cast iron piston internal combustion engine and its production
JPS6260967A (en) Piston with ceramic ring and manufacture thereof
JPH0241736A (en) Metallic mold for molding shell mold
JPH0666116A (en) Intake/exhaust valve for internal combustion engine and manufacture thereof
CN117488034A (en) Heat treatment method for manufacturing low alloy steel/duplex stainless steel structural member by additive
JPH03140413A (en) Production of cylinder head made of cast iron
JP2000334554A (en) Plunger sleeve for die casting machine