JPS62140386A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPS62140386A
JPS62140386A JP60280279A JP28027985A JPS62140386A JP S62140386 A JPS62140386 A JP S62140386A JP 60280279 A JP60280279 A JP 60280279A JP 28027985 A JP28027985 A JP 28027985A JP S62140386 A JPS62140386 A JP S62140386A
Authority
JP
Japan
Prior art keywords
heater
temperature
tin
resistance
sialon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60280279A
Other languages
Japanese (ja)
Inventor
博久 諏訪部
丸田 賢二
裕 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60280279A priority Critical patent/JPS62140386A/en
Publication of JPS62140386A publication Critical patent/JPS62140386A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、セラミックヒータに係り、特にディーゼルエ
ンジンのシリング内を予熱づるための、グロープラグに
使用するのに好適なレラミツクヒータに係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic heater, and particularly to a ceramic heater suitable for use in a glow plug for preheating the inside of a diesel engine cylinder.

[従来の技術] 一般に、ディーゼルエンジンは、予熱燃焼室内にグロー
プラグを備え、始動時には、まずグロー。
[Prior Art] Generally, diesel engines are equipped with a glow plug in the preheating combustion chamber, and when started, the engine first glows.

プラグを1000℃前後に予熱して燃料の着火を助tづ
Preheat the plug to around 1000℃ to help ignite the fuel.

る方式が一般に行われている。従来、グロープラグとし
て耐熱金属製のシース中に、発熱コイル及びその周囲に
1VHI02i:どの耐熱絶縁粉末を充填し!0た、い
わゆるシースヒータが使用され−でいる。し・かじなが
ら、このようなシースヒータでは、予熱・を開始してか
らシース表面温度が始動可能な湿度・に達するまでに5
秒以上かかり、急速加熱性に欠。
This method is generally used. Conventionally, in a heat-resistant metal sheath used as a glow plug, 1VHI02i: Which heat-resistant insulating powder was filled in the heating coil and its surroundings? In addition, so-called sheath heaters are used. However, with such a sheath heater, it takes about 50 minutes from the start of preheating to the time when the sheath surface temperature reaches the humidity level at which it can be started.
It takes more than a second and lacks rapid heating properties.

ける。まIご、加熱速度を望めるために通電電流を1゜
増加すると、発熱コ・rルの溶断あるいは、高熱に。
Let's go. However, if you increase the current by 1° to increase the heating speed, the heating coil will melt or become overheated.

よるシースの破損などが生じ易くなり、耐久性が著しく
低下する。このため、急速始動性を有し、高温耐久性に
優れたグロープラグヒータの出現が強く望まれている。
As a result, the sheath is more likely to be damaged, and its durability is significantly reduced. Therefore, there is a strong desire for a glow plug heater that has quick startability and excellent high-temperature durability.

また従来、セラミックスを用い!〔発熱体として、窒化
珪素や酸化アルミニウムのセラミック体内に、タングス
テン、モリブデンなどを用いた金属線状発熱抵抗体を埋
設したものがある。
Also, traditionally, ceramics are used! [As a heating element, there is one in which a metal wire heating resistor made of tungsten, molybdenum, etc. is embedded in a ceramic body of silicon nitride or aluminum oxide.

これらの発熱体は、金属とセラミックスという特性の異
なるものを組み合せているため、焼成が勤しく、かつ、
構造が複雑であり、さらに発熱体として用いる場合も、
急速加熱による熱衝撃や繰り返し通電による熱サイクル
での特性変化が問題゛どなり、使用温度がこれによって
制限されるとい1゜う欠点があった。
These heating elements are a combination of metals and ceramics, which have different characteristics, so they are hard to fire and
The structure is complicated, and when used as a heating element,
Thermal shock caused by rapid heating and changes in properties due to thermal cycles caused by repeated energization become a problem, and the disadvantage is that the temperature at which it can be used is limited by this problem.

[発明が解決しようとする問題点] 本発明は、従来のシースヒータあるいは、セラ。[Problem to be solved by the invention] The present invention is directed to a conventional sheath heater or cella.

ミックスを用いたヒータの加熱特性、高温耐久性・の問
題点を解決し、急速加熱性及び高温耐久性に15優れ、
しかも従来のヒータに比べて構造が簡単で。
Solved the problems with the heating characteristics and high temperature durability of heaters using mixes, and has excellent rapid heating performance and high temperature durability.
Moreover, the structure is simpler than conventional heaters.

かつ小型軽量化が可能どなる直熱型のセラミック。Direct heating type ceramic that can also be made smaller and lighter.

ヒータを提供するものである。It provides a heater.

[問題点を解決するための手段] 本発明の主要な目的である急速加熱性を達成す2.。[Means for solving problems] 2. To achieve rapid heating, which is the main objective of the present invention. .

るには、ヒータの抵抗値を小さくして瞬間的に大電流を
通電さければ良く、高温耐久性を得るにはヒータ材の組
成物に高FAl!点でしかも耐酸化性に優れたものを使
用Jれば良い。;1゛た、ヒータ材は、 ゛ヒータ発熱
■)におりる電流の暴走による溶断を防 □゛ぎ、かつ
、その温度抵抗係数を利用して、ヒータ 。
In order to achieve this, it is sufficient to reduce the resistance value of the heater and instantaneously apply a large current, and in order to obtain high-temperature durability, the composition of the heater material must have a high FAl! It is sufficient to use a material that has excellent oxidation resistance. ;1) The heater material prevents fusing due to runaway current that occurs in (Heater heat generation) □゛, and uses its temperature resistance coefficient to heat the heater.

材を一定に保持りる電dト制御がし易いため、正の ゛
抵抗温度係数を右することが望ましい。このよう ”な
特性を持つヒータ材を秤々検関した結果、本発明者は、
焼結助剤を含有Jろリーイアロン焼結体中11)に、導
電性を右JるTiN粉末を分散させた実質。
It is desirable to have a positive temperature coefficient of resistance because it is easier to control the current to keep the material constant. As a result of a thorough inspection of heater materials with these characteristics, the inventors found that
TiN powder, which improves conductivity, is dispersed in a sintered iron sintered body containing a sintering aid.

的には(サイアロン−Ti N)から/iる複合焼結。Specifically, composite sintering from (Sialon-TiN).

体が、室温時の電気抵抗率が1Ω・cm以下で、正。The electrical resistivity of the body at room temperature is 1Ω・cm or less, which is positive.

の抵抗温度係数を有し、かつグロープラグヒータ。and glow plug heaters with a temperature coefficient of resistance of .

の動作湿度領域で温度耐久性のあることを見出し1、た
We found that it has temperature durability in the operating humidity range of 1.

すなわち本発明は、Si3N4に対して5〜10wt%
のY20a、2〜12wt%のAlNポリタイプ。
That is, in the present invention, 5 to 10 wt% of Si3N4
Y20a, 2-12 wt% AlN polytype.

1〜5wt%のA120aを加え、これらSi3N4.
Y20a 、ΔINポリタイプ、Al2O3、!0 、  〒3− の合泪に対し、30vo 1%を越え70vo 1%未
満のTiNを添加し、混合、成形、常圧焼結を行うこと
により、サイアロンとTiNの複合焼結体よりなるセラ
ミックヒータ材を得ることにある。
Adding 1-5 wt% of A120a, these Si3N4.
Y20a, ΔIN polytype, Al2O3,! By adding more than 30vo 1% and less than 70vo 1% of TiN to the mixture of 0 and 3-, mixing, molding, and pressureless sintering, a ceramic made of a composite sintered body of SiAlON and TiN is produced. The goal is to obtain heater material.

ここで、5〜10wt%のY2O3を添加するのは、常
圧焼結を可能にするためであり、Y 20 aが5゜w
t%未満では、焼結体が緻密化せず、Y20aが。
Here, the reason for adding 5 to 10 wt% of Y2O3 is to enable pressureless sintering, and Y20a is 5°w.
If it is less than t%, the sintered body will not be densified and Y20a.

iowt%を越えると高温強度の低下が著しい。A1゜
Nポリタイプ量を2〜12wt%に限定するのは、2゜
wt%未満では、高温強度が著しく低下し、また121
0wt%を越えると、焼結体が低下し、強度が低下す・
るからである。また、Al2O3量を1〜Swt%・に
限定するのは、1wt%未満では焼結体が低下しく密度
の上昇が困難となり、5wt%を越えると高温・強度の
低下が著しいからである。       1゜ここで、
導電性材料としてTiNを用いるのは、伯のIVa族の
炭化物、窒化物等を添加することに。
If it exceeds iowt%, the high-temperature strength decreases significantly. The reason for limiting the amount of A1゜N polytype to 2 to 12 wt% is that if it is less than 2゜wt%, the high-temperature strength will decrease significantly, and 121
If it exceeds 0wt%, the sintered body will deteriorate and its strength will decrease.
This is because that. The reason why the amount of Al2O3 is limited to 1 to Swt% is that if it is less than 1wt%, the sintered body will deteriorate and it will be difficult to increase the density, and if it exceeds 5wt%, the high temperature and strength will be significantly lowered. 1゜Here,
The reason for using TiN as a conductive material is to add carbides, nitrides, etc. of the IVa group.

よっても導電性を得ることは可能だが、TiNが最も良
好な強度特性、耐酸化性を示すからである。
This is because TiN exhibits the best strength characteristics and oxidation resistance, although it is possible to obtain conductivity.

このTiN添加量を30vo 1%を越え70vo 1
%未満、  τ4− とするのは、30vo 1%以下では、電気抵抗率が1
Ω・cm以下にならず導電性が不十分であり、70vo
l%以上では、高温強度の低下が著しく、高温での信頼
性に劣るためである。    ′以上により、本発明に
にり得られたサイアロンとTiNの複合焼結体は、電気
抵抗率が1Ω・Cm。
This TiN addition amount exceeds 30vo 1% and 70vo 1
Less than %, τ4- means 30vo 1% or less, the electrical resistivity is 1
It is not less than Ω・cm and the conductivity is insufficient, 70vo
This is because if it exceeds 1%, the high-temperature strength decreases significantly and the reliability at high temperatures deteriorates. 'As described above, the composite sintered body of Sialon and TiN obtained according to the present invention has an electrical resistivity of 1Ω·Cm.

以下で、正の抵抗湿度係数を示し、かつ、高温で。Below, the resistance shows a positive humidity coefficient, and at high temperatures.

の耐久性を示す。Indicates durability.

[実施例] 本発明を実施例によりさらに説明する。    IO実
施例1 S+3N4粉末(粒度o、zμm 、 a化率93%)
 ・87wt%、Y2O3粉末(粒g 1μm )  
5wt%、  。
[Examples] The present invention will be further explained by examples. IO Example 1 S+3N4 powder (particle size o, zμm, a conversion rate 93%)
・87wt%, Y2O3 powder (particle g 1μm)
5wt%.

AlNポリタイプ粉末(結晶型21R1粒度2μm )
AlN polytype powder (crystal type 21R1 particle size 2μm)
.

3wt%、Al2O3粉末(粒度0.511m )  
swt%1゜の組成に調整した粉末に対し、TiN粉末
(粒度。
3wt%, Al2O3 powder (particle size 0.511m)
TiN powder (particle size.

2μm)を40vol%添イ(1した後、有機溶剤で2
日。
2 μm) was added at 40 vol% (1), then 2 μm with an organic solvent.
Day.

以上混合し、乾燥後、冷間静水圧プレスにより1.5t
 7cm2の圧力を−5つて成形する。その後、成形体
を1800℃3時間窒素ガス1気圧雰囲気中で焼結を行
った。このようにして得た(サイアロン−Ti N)の
複合焼結体は、相対密度99%、室温および1000℃
の曲げ強さ約70kg/mm2(J I S 3点曲げ
)熱膨張係数5. I X 1o−> ℃、室温時の抵
抗。
After mixing the above, drying, 1.5t by cold isostatic press.
Mold under a pressure of 7 cm2. Thereafter, the compact was sintered at 1800° C. for 3 hours in a nitrogen gas atmosphere of 1 atm. The composite sintered body of (Sialon-TiN) thus obtained had a relative density of 99% and was heated at room temperature and 1000°C.
Bending strength: approx. 70 kg/mm2 (JIS 3-point bending) Coefficient of thermal expansion: 5. I X 1o->C, resistance at room temperature.

率0,7x10−’Ω−am、抵抗温度係数(室温〜1
000”℃) (−0,3%/℃の特性を示している。
rate 0.7x10-'Ω-am, temperature coefficient of resistance (room temperature ~ 1
000''°C) (-0.3%/°C).

     。    .

実施例2 実施例1ど同様の方法により得たくサイアロン。Example 2 Sialon obtained by the same method as in Example 1.

−Ti N)複合焼結体により、第1図に示す形状を持
つグロープラグヒータを製作した。第1図に1・)示す
両端部1.2には、(サイアロン−Ti N)  ・複
合焼結体の熱膨張係数α′−,5,IX 10y℃と同
様の熱膨張係数を示すFe −N+−〇〇合金を高層・
波圧接により接合し、リード線を接続するための。
-TiN) A glow plug heater having the shape shown in FIG. 1 was manufactured using a composite sintered body. At both ends 1.2 shown in Fig. 1 1.), (Sialon-TiN) - Thermal expansion coefficient α'-, 5, IX of the composite sintered body Fe - exhibiting a thermal expansion coefficient similar to 10y°C High-rise N+-〇〇 alloy
For joining by wave pressure welding and connecting lead wires.

電極3.4を設けた。             1゜
第2図は、このヒータを直流電源回路に接続し、。
Electrodes 3.4 were provided. 1゜Figure 2 shows this heater connected to a DC power supply circuit.

11Vを加えて通電した結果を示したものである。。This figure shows the result of applying 11V to the battery. .

横軸は通電時間、縦軸は第1図に示す先端部5の表面温
度である。本発明によるセラミックヒータは900℃ま
で約2秒前後で急速加熱が可能であり、従来のシースヒ
ータ(900℃まで5〜10秒)に比べて速熱性が格段
に優れ−Cいる。また、ヒータ温度は、1000℃で飽
和して、13す、この月別が正の抵抗温度係数を右し、
グロープラグヒータとして好 。
The horizontal axis is the current application time, and the vertical axis is the surface temperature of the tip portion 5 shown in FIG. The ceramic heater according to the present invention can rapidly heat up to 900° C. in about 2 seconds, and has much better rapid heating performance than conventional sheath heaters (5 to 10 seconds up to 900° C.). In addition, the heater temperature is saturated at 1000°C, and this month has a positive temperature coefficient of resistance.
Good as a glow plug heater.

ましい特性を示している。It shows desirable characteristics.

実施例3 実施例2と全く同様な手v1により第1図に示ず。Example 3 It is not shown in FIG. 1 by a move v1 that is exactly the same as in Example 2.

グロープラグヒータを作製した。第3図は、このヒータ
を人気中で連続通電した結果を示すものである。通電初
期の温度1000℃から1000時間通電後11)でも
温度は全く変化けず、;した、2000時間通電後・に
おいても温度低下は約50℃であり、十分高温耐久性の
あることが判る。
A glow plug heater was created. FIG. 3 shows the results of continuous energization of this heater during popular use. The temperature did not change at all even after 1000 hours of current application (11) from the initial temperature of 1000°C; even after 2000 hours of current application, the temperature decreased by about 50°C, indicating sufficient high-temperature durability.

本発明による(サイアロン−Ti N)複合焼結。(Sialon-TiN) composite sintering according to the present invention.

体は、低抵抗率のため急速加熱性に優れ、かつ抵1.。Due to its low resistivity, the body has excellent rapid heating properties, and has 1. .

抗温度係数が正のため、゛電流暴走による溶断がな。Since the resistance temperature coefficient is positive, there will be no melting due to current runaway.

く、さらに高い融点と耐酸化性を右ザる等の特徴がある
ため、急速な品温速度並びに高温耐久性が要求される直
熱タイプのグ[]−プラグ用ヒータ祠に好適である。ざ
らに本発明によるヒータ材は1、  τ7− 高密度、高強度の特性を有するため、ヒータ形状は、前
記したU字形に限らず棒状、板状などの構造にすること
も可能である。
Since it has characteristics such as a high melting point and oxidation resistance, it is suitable for direct heating type plug heaters that require rapid temperature heating speed and high temperature durability. Roughly speaking, since the heater material according to the present invention has the following characteristics: 1, τ7- high density and high strength, the shape of the heater is not limited to the above-mentioned U-shape, but can also be a rod-like, plate-like structure, or the like.

さらに本発明によるヒータは直熱型であるため、゛従来
の金属シースヒータ、あるいはセラミック中 5に金属
抵抗線を埋設したヒータに比べて構造が簡 単で、しか
も小型軽量化ができる。
Furthermore, since the heater according to the present invention is a direct heating type, it has a simpler structure and can be made smaller and lighter than conventional metal sheath heaters or heaters in which metal resistance wires are embedded in ceramic.

なお、本発明の適用は、グロープラグヒータに 。Note that the present invention is applicable to glow plug heaters.

限定されるものでなく、各種の発熱体、各種燃料の点火
装置等にも適用することができる。    IO
The invention is not limited to this, and can be applied to various heating elements, ignition devices for various fuels, and the like. IO

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明になるヒータ材を用いたグロ −一プ
ラグ用ヒータの実施例を示す図、第2図は、。 本発明の実施例になるグロープラグヒータの昇温 。 特性を示す図、第3図は、本発明の実施例になる。5グ
ロープラグヒータの連続通電試験による高温耐久性を示
す図である。 、  τ8− 第 / 関 第2 図
FIG. 1 is a diagram showing an example of a heater for a glow plug using the heater material of the present invention, and FIG. Temperature increase of a glow plug heater according to an embodiment of the present invention. A diagram showing the characteristics, FIG. 3, is an example of the present invention. FIG. 5 is a diagram showing the high temperature durability of the No. 5 glow plug heater in a continuous energization test. , τ8-th/Seki 2nd figure

Claims (3)

【特許請求の範囲】[Claims] (1)Y_2O_35〜10wt%、AlNポリタイプ
サイアロン2〜12wt%、Al_2O_31〜5wt
%、および残部Si_3N_4の合計に対し30vol
%を越え70vol%未満のTiNを含有するサイアロ
ンとTiNの複合焼結体よりなることを特徴とするセラ
ミックヒータ。
(1) Y_2O_35-10 wt%, AlN polytype sialon 2-12 wt%, Al_2O_31-5 wt%
%, and 30 vol for the total of the remaining Si_3N_4
A ceramic heater comprising a composite sintered body of Sialon and TiN containing more than 70% by volume of TiN.
(2)特許請求の範囲第(1)項記載のものにおいて、
粒界層が、Y、Si、O、N、Alを含む非晶質相であ
ることを特徴とするセラミックヒータ。
(2) In what is stated in claim (1),
A ceramic heater characterized in that the grain boundary layer is an amorphous phase containing Y, Si, O, N, and Al.
(3)特許請求の範囲第(1)項または第(2)項記載
のものにおいて、室温時の電気抵抗率がΩ・cm以下で
、かつ抵抗温度係数が正であることを特徴とするセラミ
ックヒータ。
(3) The ceramic according to claim (1) or (2), which has an electrical resistivity of Ω·cm or less at room temperature and a positive temperature coefficient of resistance. heater.
JP60280279A 1985-12-13 1985-12-13 Ceramic heater Pending JPS62140386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280279A JPS62140386A (en) 1985-12-13 1985-12-13 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280279A JPS62140386A (en) 1985-12-13 1985-12-13 Ceramic heater

Publications (1)

Publication Number Publication Date
JPS62140386A true JPS62140386A (en) 1987-06-23

Family

ID=17622771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280279A Pending JPS62140386A (en) 1985-12-13 1985-12-13 Ceramic heater

Country Status (1)

Country Link
JP (1) JPS62140386A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202792U (en) * 1986-06-14 1987-12-24
JPS6469570A (en) * 1987-09-07 1989-03-15 Hitachi Metals Ltd Production of electroconductive sialon
US5066423A (en) * 1987-12-24 1991-11-19 Hitachi Metals, Ltd. Conductive ceramic sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202792U (en) * 1986-06-14 1987-12-24
JPH0515751Y2 (en) * 1986-06-14 1993-04-26
JPS6469570A (en) * 1987-09-07 1989-03-15 Hitachi Metals Ltd Production of electroconductive sialon
US5066423A (en) * 1987-12-24 1991-11-19 Hitachi Metals, Ltd. Conductive ceramic sintered body

Similar Documents

Publication Publication Date Title
US5304778A (en) Glow plug with improved composite sintered silicon nitride ceramic heater
KR910000069B1 (en) Electrically conductive sintered ceramics and ceramic heaters
JPS61107013A (en) Ceramic glow plug
JPH0155368B2 (en)
CN102934515B (en) Heater and glow plug provided with same
JP3658770B2 (en) Ceramic glow plug
JPH0782905B2 (en) Method for manufacturing ceramic heater and heating element for ceramic heater
JPS62140386A (en) Ceramic heater
JPS6014784A (en) Ceramic heater
JP3078418B2 (en) Ceramic heating element
JPH0546674B2 (en)
US6018142A (en) Glow plug ceramic heater
JP2004061041A (en) Ceramic glow plug
JPH01289089A (en) Ceramics heating body
JP2998999B2 (en) Ceramic heater
JP3740544B2 (en) Silicon carbide based heating element
JPH0286086A (en) Manufacture of ceramic heater
JPS598293A (en) Ceramic heater
JPS61235613A (en) Glow plug
JPH031014A (en) Self-controlled type ceramic glow plug
JP5944815B2 (en) Heater and glow plug equipped with the same
JP3439807B2 (en) Ceramic heating element
JP2547423B2 (en) Method for manufacturing conductive sialon
JPS59101702A (en) Ceramic conductive material and electric device using same
JPH01317170A (en) Electrically conductive ceramic material