JPH0298105A - Permanent magnet - Google Patents

Permanent magnet

Info

Publication number
JPH0298105A
JPH0298105A JP63250448A JP25044888A JPH0298105A JP H0298105 A JPH0298105 A JP H0298105A JP 63250448 A JP63250448 A JP 63250448A JP 25044888 A JP25044888 A JP 25044888A JP H0298105 A JPH0298105 A JP H0298105A
Authority
JP
Japan
Prior art keywords
permanent magnet
quadrant
coercive force
magnetic properties
squareness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63250448A
Other languages
Japanese (ja)
Inventor
Kimio Uchida
内田 公穂
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63250448A priority Critical patent/JPH0298105A/en
Publication of JPH0298105A publication Critical patent/JPH0298105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To stably manufacture a high-performance permanent magnet by mixing Co to specific principal constituent elements contained in specific weight percentages. CONSTITUTION:This permanent magnet contains 22-28wt.% R (R: rare earth elements), 10-25wt.% Fe, 1-10wt.% Cu, 0.2-5wt.% M1 (M1: one of Zr and Hf), and 0.05-5wt.% M2 (M2: at least one of W and Mo). When the adding quantity of W and Mo is more than 0.05wt.%, the break in the second quadrant disappears and the angularness is improved, but, when the quantity is more than 5wt.%, no merit can be expected from the addition, since the density of residual magnetic fluxes considerably drops and the coercive force also slightly decreases. By adding the high-melting point element of W or Mo by an appropriate quantity in such way, the angularness in the second quadrant of this R2Co17 permanent magnet is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はRzCo+を系永久磁石(ただしRは希土類元
素)の磁気特性の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to improving the magnetic properties of RzCo+ based permanent magnets (where R is a rare earth element).

〔従来の技術) 2相分離型R,Co、7系永久磁石(ただしRは希土類
元素)の保磁力発生機構は微細な強磁性の2つの相を共
存させることにより磁壁の移動が妨げられることに起因
している。この2つの相を共存させるためにはCuの存
在が不可欠であり、また残留磁束密度を高めるためには
Peの添加が有効であることから、−II的にはCoの
一部をCuとFeで置換したものが実用化されている。
[Prior art] The coercive force generation mechanism of a two-phase separated R, Co, 7-based permanent magnet (where R is a rare earth element) is that the movement of the domain wall is hindered by the coexistence of two fine ferromagnetic phases. This is caused by The presence of Cu is essential for the coexistence of these two phases, and addition of Pe is effective in increasing the residual magnetic flux density. The one replaced with is in practical use.

また近年、これにさらにZr (特開昭52−1150
00)あるいはIf (特開昭53−106326)な
どの遷移元素を微量添加することによって保磁力、Hc
と最大エネルギー積(BH)mを高めた磁石合金が提案
されている。
In addition, in recent years, Zr (Japanese Unexamined Patent Publication No. 52-1150
Coercive force, Hc can be improved by adding trace amounts of transition elements such as
Magnet alloys with increased maximum energy product (BH) m have been proposed.

この2相分離型のR2Co、7系永久磁石では、熱処理
である時効処理によってマトリクスに析出する微細な析
出相の状態がその保磁力の水準や第2象限の角型性を大
きく左右するため、この時効処理を最適な条件下で実施
することが製造上のポイントとなる。このためR2Co
+□系永久磁石の磁気特性の改良は時効処理を中心に行
なわれてきた。例えば特開昭50−133106には7
00〜900°Cの温度から400°C近傍まで多段時
効する方法が、特開昭53−106624には700〜
900°Cの温度から400°C近傍の温度まで徐冷す
る方法が示されている。また特開昭57−161044
には400〜750°Cの温度で等温処理し、次いで6
00〜1000°Cを開始温度として300〜600°
Cまで冷却する方法が、特開昭59−153873には
750〜950°Cの温度から700°C以下の温度ま
で冷却する熱処理を2回以上くり返す方法が示されてい
る。その結果今日では、合金組成に応じた適切な時効処
理を施すことによって、10kOe以上の高い保磁力、
Hcが得られるようになっている。
In this two-phase separation type R2Co, 7-series permanent magnet, the state of the fine precipitated phase precipitated in the matrix by aging treatment, which is heat treatment, greatly influences the level of coercive force and the squareness of the second quadrant. A key point in manufacturing is to carry out this aging treatment under optimal conditions. For this reason, R2Co
Improvements in the magnetic properties of +□-based permanent magnets have been carried out mainly through aging treatment. For example, in JP-A-50-133106, 7
A method of multi-stage aging from 00 to 900°C to around 400°C is disclosed in JP-A-53-106624.
A method of slowly cooling from a temperature of 900°C to a temperature around 400°C is shown. Also, JP-A-57-161044
isothermal treatment at a temperature of 400-750 °C, followed by 6
300-600° with a starting temperature of 00-1000°C
JP-A-59-153873 discloses a method of cooling to a temperature of 750 to 950°C to a temperature of 700°C or less by repeating heat treatment two or more times. As a result, today, by applying appropriate aging treatment according to the alloy composition, high coercivity of 10 kOe or more can be achieved.
Hc can be obtained.

(発明が解決しようとする問題点〕 ところがこのようなR2Co 、 7系永久磁石の磁化
曲線の第2象限にはクニックが存在し、このため残留磁
束密度の値から期待される水準に比較して得られる最大
エネルギー積(Bt()n+の水準がかなり低下すると
いう問題があった。このクニックは保磁力1Hcが大き
くなるほど顕著になる傾向がある。
(Problem to be solved by the invention) However, there is a knick in the second quadrant of the magnetization curve of such R2Co, 7 series permanent magnets, and as a result, the residual magnetic flux density is lower than the level expected from the value of the residual magnetic flux density. There has been a problem that the level of the maximum energy product (Bt()n+) that can be obtained is considerably lowered. This knick tends to become more pronounced as the coercive force 1Hc increases.

従ってこのクニックは時効条件を変更し保磁力IHcを
抑制することでその程度を緩和することは可能である。
Therefore, it is possible to reduce the extent of this knick by changing the aging conditions and suppressing the coercive force IHc.

しかし時効条件の変更のみでは完全に解消することはで
きない。
However, changing the statute of limitations alone cannot completely resolve the issue.

本発明の目的は、上記問題点を解消し、高い保磁力とエ
ネルギー積を有する磁化曲線の第2象限の角型性の良い
R2C017系永久磁石を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide an R2C017 permanent magnet having high coercive force and energy product and good squareness in the second quadrant of the magnetization curve.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等はR2C0I7系永久磁石に関し第2象限の
角型性を改良する方法について種々検討した結果、本系
合金に特定の高融点金属元素を特定量添加することによ
って前記目的を達成できることを見い出し、本発明を完
成させるに至ったものである。
As a result of various studies on methods for improving the squareness of the second quadrant of R2C0I7-based permanent magnets, the present inventors have found that the above objective can be achieved by adding a specific amount of a specific high-melting point metal element to the present alloy. This is the heading that led to the completion of the present invention.

即ちまず、本発明者等は研究の過程で本RZCoIt系
永久磁石の磁気特性が焼結温度のわづかな変化に対して
大きく変化することを見い出しこれに注目した。第1図
に、実験結果の1例として、5rr125.5ivt%
、Fe14.Owt%、Cu4.4wt%、Zr2.7
wt%、残部Coの永久磁石合金の焼結温度と第2象限
の磁化面vA(4πI−H曲線)の関係を示す。
That is, first, in the course of research, the inventors of the present invention discovered that the magnetic properties of the present RZCoIt-based permanent magnet change greatly in response to slight changes in the sintering temperature, and drew attention to this fact. In Figure 1, as an example of experimental results, 5rr125.5ivt%
, Fe14. Owt%, Cu4.4wt%, Zr2.7
The relationship between the sintering temperature of a permanent magnet alloy with wt% and balance Co and the magnetization surface vA (4πI-H curve) in the second quadrant is shown.

本発明のthcO+を系永久磁石合金の具体的な製造方
法については後で詳細な説明を加えるが、この第1図の
実験は同じ製造方法によっている。第1図から、磁気特
性のうち特に保磁力+)Icの水準と第2象限の角型性
が焼結温度の5 ’Cというわづかな変化に対して大き
く変化することがわかる。一方間時に、いづれの焼結温
度においても第2象限のクニックは完全には解消されて
いないことがわかる。光学顕微鏡による永久磁石焼結体
の組織観察によって、焼結体の結晶粒の大きさは焼結温
度の上昇に伴って大きくなり粗大化していることを確認
した。以上の実験結果は、R2C0,7系永久磁石の保
磁力、Hcの水準や第2象限の角型性が時効処理によっ
て一義的に決まるのではなく、焼結体の結晶粒の状況と
も密接な関係があることを示している。焼結条件の変化
によって粒界をも含めた結晶粒のミクロ的な状況がどの
様に変化しているのかは今のところ明確ではない。しか
しそれが時効処理過程で析出する析出物の生成状態に大
きく影響していることは先の実験結果からも容易に推定
できる。
A detailed explanation will be given later on the specific method for manufacturing the thcO+ based permanent magnet alloy of the present invention, but the experiment shown in FIG. 1 was conducted using the same manufacturing method. From FIG. 1, it can be seen that among the magnetic properties, in particular, the level of coercive force +)Ic and the squareness of the second quadrant change greatly in response to a slight change of 5'C in the sintering temperature. On the other hand, it can be seen that the knick in the second quadrant is not completely eliminated at any sintering temperature. By observing the structure of the permanent magnet sintered body using an optical microscope, it was confirmed that the crystal grain size of the sintered body increased and became coarser as the sintering temperature increased. The above experimental results show that the coercive force, Hc level, and squareness of the second quadrant of R2C0,7-based permanent magnets are not uniquely determined by the aging treatment, but are also closely related to the state of the crystal grains of the sintered body. It shows that there is a relationship. At present, it is not clear how the microscopic condition of crystal grains, including grain boundaries, changes due to changes in sintering conditions. However, it can be easily inferred from the previous experimental results that this greatly influences the state of formation of precipitates that precipitate during the aging treatment process.

本発明者等は以上の実験結果をふまえ、添加物の添加に
よって結晶粒のミクロ的な状況が変化しそれによってR
,Co、、系永久磁石の第2象限の角型性が変化すると
いう見通しのちとに種々の添加物に関して研究を行なっ
た。その結果、高融点金属元素のうちWとMoの添加が
第2象限の角型性の改善に有効であることが判明した。
Based on the above experimental results, the present inventors believe that the addition of additives changes the microscopic condition of crystal grains, which causes R
, Co, , based on the prospect that the squareness of the second quadrant of permanent magnets would change, research was conducted on various additives. As a result, it was found that addition of W and Mo among high melting point metal elements is effective in improving the squareness in the second quadrant.

即ち本発明におけるR2Co、7系永久磁石は、重量百
分比でR22〜28%(ただしRは希土類元素の1種も
しくは2種以上) 、 Fel O〜25%、 Cu1
〜10%、MIo、2〜5%(ただしMlはZ r +
 HfO内の少なくとも1種)l M20.05〜5%
(ただしM2はW、Moの内の少なくとも1種)、残部
が実質的にCoからなる組成である。第2図に、実験結
果の1例としてSm25.5wt%、 Fe 14.0
wt%、Cu4.4wt%、Zr2.7wt%、WO〜
I 0wt%、残部Coの永久磁石合金の第2象限の磁
化曲線を示す。また、第3図にSm25.5wt%、F
e14.0wt%、Cu4.4wt%、Zr2.7wt
%、 MoO〜10wt%、残部Coの永久磁石合金の
第2象限の磁化曲線を示す。第2図と第3図から、Wあ
るいはMoの添加によって第2象限のクニックが消滅し
角型性が改善されることがわかる。またその改善効果は
、WおよびMoとも0.05wL%以上の添加量で顕著
であることがわかる。一方、WおよびMoとも54%よ
り多い添加量では残留磁束密度の低下が大きくまた保磁
力も若干低下するため添加のメリットが得られない。従
って、Wおよび台0の添加量は0.05〜5wt%の範
囲に限定される。なおWとMoの同時複合添加でも第2
図あるいは第3図に示したのと同様の第2象限の角型性
の改善効果が得られる。この場合上記と同じ理由からW
とMoの添加量の合計は0.05〜5wt%の範囲に限
定される。第4図にSm25.5hL%、Fe14.O
wt%、Cu4.4wt%、Zr2.7wt%W1.0
wt%、残部Coの永久磁石合金の焼結温度と第2象限
の磁化曲線の関係を示す。また第5図にSm25.5w
t%、Fe14.Owt%+Cu4.4wt%+ Zr
2.7wt%、Mo1.0wt%、残部coの永久磁石
合金の焼結温度と第2象限の磁化曲線の関係を示す。第
4図あるいは第5図を第1図と比較することによって、
WあるいはMoの添加によって磁気特性の焼結温度依存
性が緩和されることがわかる。
That is, the R2Co, 7-based permanent magnet in the present invention has a weight percentage of R22 to 28% (R is one or more rare earth elements), FelO to 25%, Cu1
~10%, MIo, 2~5% (however, Ml is Z r +
At least one species in HfO) l M20.05-5%
(However, M2 is at least one of W and Mo), and the remainder is essentially Co. Figure 2 shows an example of the experimental results: Sm 25.5wt%, Fe 14.0
wt%, Cu4.4wt%, Zr2.7wt%, WO~
The magnetization curve in the second quadrant of a permanent magnet alloy with 0 wt% I and the balance Co is shown. In addition, Fig. 3 shows Sm25.5wt%, F
e14.0wt%, Cu4.4wt%, Zr2.7wt
%, MoO to 10 wt%, and the balance is Co. It can be seen from FIGS. 2 and 3 that the addition of W or Mo eliminates the knick in the second quadrant and improves the squareness. It is also seen that the improvement effect is remarkable when the amount of both W and Mo added is 0.05 wL% or more. On the other hand, if the amount of both W and Mo added is more than 54%, the residual magnetic flux density decreases greatly and the coercive force also slightly decreases, so that the merits of addition cannot be obtained. Therefore, the amount of W and base 0 added is limited to a range of 0.05 to 5 wt%. In addition, even when W and Mo are added simultaneously, the second
The same effect of improving the squareness of the second quadrant as shown in FIG. 3 or FIG. 3 can be obtained. In this case, for the same reason as above, W
The total amount of addition of Mo and Mo is limited to a range of 0.05 to 5 wt%. Figure 4 shows Sm25.5hL%, Fe14. O
wt%, Cu4.4wt%, Zr2.7wt%W1.0
The relationship between the sintering temperature and the magnetization curve in the second quadrant of a permanent magnet alloy with wt% and balance Co is shown. Also, in Figure 5, Sm25.5w
t%, Fe14. Owt%+Cu4.4wt%+Zr
The relationship between the sintering temperature and the magnetization curve in the second quadrant of a permanent magnet alloy of 2.7 wt %, Mo 1.0 wt %, and the balance co is shown. By comparing Figure 4 or Figure 5 with Figure 1,
It can be seen that the dependence of the magnetic properties on the sintering temperature is alleviated by adding W or Mo.

ここでWとMo以外の他の元素の組成限定理由を説明す
る。希土類元素Rは22〜28wt%とされる。希土類
元素の含有量が22−t%未満では十分な保磁力が得ら
れない。また希土類元素の含有量が28−t%より多い
場合には残留磁束密度が低下する。FeはIO〜25−
t%とされる。10−tχ未満では残留磁束密度が低下
する。25−t%より多い場合には保磁力および角型性
が低下する。Cuは1〜lowt%とされる。1−1%
未満では十分な保磁力が得られない。10−t%より多
い場合には残留磁束密度が低下する。M1元素(Zr、
Hfの内の少くとも1種)は0.2〜5wt%とされる
。0.2wt%未満では十分な保磁力が得られず、5w
t%より多い場合には残留磁束密度が低下する。
Here, the reason for limiting the composition of elements other than W and Mo will be explained. The rare earth element R is 22 to 28 wt%. If the rare earth element content is less than 22-t%, sufficient coercive force cannot be obtained. Moreover, when the content of rare earth elements is more than 28-t%, the residual magnetic flux density decreases. Fe is IO~25-
t%. If it is less than 10-tχ, the residual magnetic flux density decreases. When the amount is more than 25-t%, coercive force and squareness decrease. Cu is 1 to lowt%. 1-1%
If it is less than that, sufficient coercive force cannot be obtained. When the amount is more than 10-t%, the residual magnetic flux density decreases. M1 element (Zr,
At least one type of Hf) is 0.2 to 5 wt%. If it is less than 0.2wt%, sufficient coercive force cannot be obtained, and 5w
When the amount is more than t%, the residual magnetic flux density decreases.

最後に、本発明のR2Co、、系永久磁石の製造方法を
特徴する特許請求の範囲に示す組成を有する永久磁石合
金は、通常の溶解法あるいはいわゆる還元拡散法によっ
て作製することが可能である。
Finally, the permanent magnet alloy having the composition shown in the claims, which characterizes the method for producing an R2Co permanent magnet of the present invention, can be produced by a normal melting method or a so-called reduction diffusion method.

この合金をジェットミル、ボールミル等によって3〜7
μの粒度に粉砕し、粉砕粉を磁場中で成形して成形体と
する。成形体は真空中あるいは非酸化性の雰囲気中で1
100〜1250°Cの温度で焼結する。次に焼結体を
非酸化性の雰囲気中で焼結温度より10〜50°C低い
温度に保持し、次いで時効処理開始温度以下の温度まで
急冷して溶体化処理を行なう。最後に試料を650〜9
00°Cの温度で一定の時間保持した後400°C以下
の温度まで多段冷却または連続冷却して時効処理する。
This alloy is processed by jet mill, ball mill, etc.
The powder is pulverized to a particle size of μ, and the pulverized powder is molded in a magnetic field to form a compact. The molded body is heated in vacuum or in a non-oxidizing atmosphere.
Sinter at a temperature of 100-1250°C. Next, the sintered body is maintained at a temperature 10 to 50°C lower than the sintering temperature in a non-oxidizing atmosphere, and then rapidly cooled to a temperature below the aging treatment start temperature to perform solution treatment. Finally, add the sample to 650~9
After holding at a temperature of 00°C for a certain period of time, aging treatment is performed by cooling in multiple stages or continuously to a temperature of 400°C or less.

以下本発明の実施例と比較例を説明するがこれによって
本発明の範囲が制限されるものではない。
Examples and comparative examples of the present invention will be described below, but the scope of the present invention is not limited thereby.

〔実施例〕〔Example〕

(実施例1) 表1のNo、1−Nα5に示す組成(重量百分比)の合
金を高周波誘導溶解により作製した。これを各各ショー
クラッシャーで粗粉砕し、次いでジエ・ントミルで微粉
砕した。微粉の粒度は約4.0μ(F・S −S −S
)であった。微粉を配向磁界強度1QkOe、成形圧3
 Lonノciの条件下で成形して成形体とした。成形
体はII、ガス雰囲気中で1180°CX2Hの条件で
焼結した。次いで焼結体を1160°CX4Hの条件で
溶体化処理し水中に急冷した。最後に800°CX8H
の等温処理をおこなった後l″C/minの冷却速度で
常温まで徐冷するという時効処理を施した。以上の処理
によって永久磁石合金を永久磁石化しその磁気特性を測
定したところ表2に示すような結果を得た。ここでHK
はBrX0.9の点でのI−H曲線上のHの値である。
(Example 1) An alloy having the composition (weight percentage) shown in No. 1-Nα5 in Table 1 was produced by high-frequency induction melting. This was coarsely crushed using each show crusher, and then finely crushed using a die mill. The particle size of the fine powder is approximately 4.0 μ (F・S −S −S
)Met. Magnetic field strength for orienting fine powder is 1QkOe, molding pressure is 3
A molded article was obtained by molding under the following conditions. The molded body was sintered under conditions of 1180° CX2H in a II gas atmosphere. Next, the sintered body was solution-treated at 1160° CX4H and rapidly cooled in water. Finally 800°CX8H
After the isothermal treatment, an aging treatment was performed in which the alloy was slowly cooled to room temperature at a cooling rate of l''C/min.The permanent magnet alloy was made into a permanent magnet through the above treatment, and its magnetic properties were measured, as shown in Table 2. I got the result like this.Here, HK
is the value of H on the I-H curve at the point of BrX0.9.

また角型性の程度を表わす角型比はHK/ 1lcX 
100 (χ)で定義した。表2から、Wの添加によっ
て60%以上という良好な角型比が得られることがわか
る。
Also, the squareness ratio, which indicates the degree of squareness, is HK/1lcX
100 (χ). Table 2 shows that a good squareness ratio of 60% or more can be obtained by adding W.

(実施例2) 表3のNo、 6〜Nα10に示す組成(重量百分比)
の合金を高周波誘導溶解により作製した。これを実施例
1と同一の条件で処理して永久磁石化しその磁気特性を
測定したところ表4に示すような結果を得た。表4から
、MOの添加によって60%以上という良好な角型比が
得られることがわかる。
(Example 2) Compositions shown in No. 6 to Nα10 in Table 3 (weight percentage)
The alloy was prepared by high frequency induction melting. This was treated under the same conditions as in Example 1 to form a permanent magnet, and its magnetic properties were measured, and the results shown in Table 4 were obtained. Table 4 shows that a good squareness ratio of 60% or more can be obtained by adding MO.

(実施例3) 表5のNα11〜Nα13に示す組成(重量百分比)の
合金を高周波誘導溶解により作製した。これを実施例1
と同一の条件で処理して永久磁石化しその磁気特性を測
定したところ表6に示すような結果を得た。表6から、
WとMoの複合添加によって60%以上という良好な角
型比が得られることがわかる。
(Example 3) Alloys having the compositions (weight percentages) shown in Nα11 to Nα13 in Table 5 were produced by high-frequency induction melting. Example 1
When treated under the same conditions as above to form a permanent magnet and its magnetic properties were measured, the results shown in Table 6 were obtained. From Table 6,
It can be seen that a good squareness ratio of 60% or more can be obtained by adding W and Mo in combination.

(比較例1) 表7のNα14〜Nα18に示す組成(重量百分比)の
合金を高周波誘導溶解により作製した。これを実施例1
と同一の条件で処理して永久磁石化しその磁気特性を測
定したところ表8に示すような結果を得た。表8の磁気
特性と表21表45表6に記載の対応する組成の合金の
磁気特性とを比較することによって、WあるいはMoが
添加されていない合金ではそれらが添加されている合金
に比べて角型比が悪く最大エネルギー積(B)l)mが
小さいことがわかる。
(Comparative Example 1) Alloys having the compositions (weight percentages) shown in Nα14 to Nα18 in Table 7 were produced by high frequency induction melting. Example 1
When treated under the same conditions as above to form a permanent magnet and its magnetic properties were measured, the results shown in Table 8 were obtained. By comparing the magnetic properties in Table 8 with the magnetic properties of alloys with corresponding compositions listed in Tables 21, 45, and 6, it was found that alloys without W or Mo added have a higher It can be seen that the squareness ratio is poor and the maximum energy product (B)l)m is small.

表 表 H(KOe) 〔発明の効果〕 以上述べたように、WあるいはMoという高融点金属元
素を適当量添加することによってR,Co、、系永久磁
石の第2象限の角型性が改善され、かつ磁気特性の焼結
温度依存性が緩和される。これによって高性能のR,C
o、、系永久磁石を安定に製造することが可能となった
Table H (KOe) [Effect of the invention] As described above, by adding an appropriate amount of high-melting point metal elements such as W or Mo, the squareness of the second quadrant of R, Co, and permanent magnets can be improved. and the dependence of magnetic properties on sintering temperature is relaxed. This results in high performance R,C
It has now become possible to stably manufacture o, system permanent magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来組成における焼結温度と磁気特性の関係を
示す図。 第2図はW添加量と磁気特性の関係を示す図。 第3図はMo添加量と磁気特性の関係を示す図。 第4図は本発明の組成における焼結温度と磁気特性の関
係を示す図。 第5図は本発明の組成における焼結温度と磁気特性の関
係を示す図。 第 図 H(にOe) 第 図 第 図
FIG. 1 is a diagram showing the relationship between sintering temperature and magnetic properties in a conventional composition. FIG. 2 is a diagram showing the relationship between the amount of W added and magnetic properties. FIG. 3 is a diagram showing the relationship between the amount of Mo added and magnetic properties. FIG. 4 is a diagram showing the relationship between sintering temperature and magnetic properties in the composition of the present invention. FIG. 5 is a diagram showing the relationship between sintering temperature and magnetic properties in the composition of the present invention. Figure H (in Oe) Figure Figure

Claims (1)

【特許請求の範囲】[Claims]  重量百分比でR22〜28%(ただしRは希土類元素
),Fe10〜25%,Cu1〜10%,M_10.2
〜5%(ただしM_1はZr,Hfの内の少なくとも1
種),M_20.05〜5%(ただしM_2はW,Mo
の内の少なくとも1種),残部が実質的にCoからなる
希土類含有永久磁石。
Weight percentage: R22-28% (R is a rare earth element), Fe10-25%, Cu1-10%, M_10.2
~5% (However, M_1 is at least one of Zr and Hf
species), M_20.05-5% (however, M_2 is W, Mo
A rare earth-containing permanent magnet consisting of at least one of the following:
JP63250448A 1988-10-04 1988-10-04 Permanent magnet Pending JPH0298105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250448A JPH0298105A (en) 1988-10-04 1988-10-04 Permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250448A JPH0298105A (en) 1988-10-04 1988-10-04 Permanent magnet

Publications (1)

Publication Number Publication Date
JPH0298105A true JPH0298105A (en) 1990-04-10

Family

ID=17208027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250448A Pending JPH0298105A (en) 1988-10-04 1988-10-04 Permanent magnet

Country Status (1)

Country Link
JP (1) JPH0298105A (en)

Similar Documents

Publication Publication Date Title
JPH06212327A (en) Rare earth permanent magnet alloy
KR100204256B1 (en) Rare-earth-element-fe-b permanent magnet powder excellent in magnetic anisotropy and corrosion resistivity and bonded magnet therefrom
JPH01219143A (en) Sintered permanent magnet material and its production
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPH02102501A (en) Permanent magnet
JPH0146575B2 (en)
JPH0298105A (en) Permanent magnet
JPS6077959A (en) Permanent magnet material and its manufacture
JPH0146574B2 (en)
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH01225101A (en) Rare earth permanent magnet
JPH0298101A (en) Permanent magnet
JPS6052556A (en) Permanent magnet and its production
JP7325921B2 (en) Nd--Fe--B system magnetic material and its manufacturing method
JPS59163803A (en) Permanent magnet
JPH0298104A (en) Permanent magnet
JPS63241142A (en) Ferromagnetic alloy
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPH0298103A (en) Permanent magnet
JPH03198302A (en) Permanent magnet
JPS6119084B2 (en)
JPS6052555A (en) Permanent magnet material and its production
JPH02102503A (en) Permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPH02102502A (en) Permanent magnet