JPH0298049A - Zinc-manganese battery - Google Patents

Zinc-manganese battery

Info

Publication number
JPH0298049A
JPH0298049A JP63247503A JP24750388A JPH0298049A JP H0298049 A JPH0298049 A JP H0298049A JP 63247503 A JP63247503 A JP 63247503A JP 24750388 A JP24750388 A JP 24750388A JP H0298049 A JPH0298049 A JP H0298049A
Authority
JP
Japan
Prior art keywords
polymer compound
battery
zinc
discharge
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63247503A
Other languages
Japanese (ja)
Other versions
JPH07118319B2 (en
Inventor
Ryuichi Yamamoto
隆一 山本
Takayuki Shoji
孝之 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP63247503A priority Critical patent/JPH07118319B2/en
Publication of JPH0298049A publication Critical patent/JPH0298049A/en
Publication of JPH07118319B2 publication Critical patent/JPH07118319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To heighten electromotive force and energy density by using a polymer compound having carboxyl group or acid anhydride group in the side chain as a synthetic polymer compound. CONSTITUTION:A polymer compound having carboxyl group or acid anhydride group in the side chain is used as a synthetic polymer compound. By using the polymer compound which is easily available at low cost as a binder, voltage and energy density of a widely used zinc-manganese battery using a normal salt aqueous solution as electrolyte can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電池、特に亜鉛−マンガン電池に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to batteries, particularly zinc-manganese batteries.

(従来の技術) 従来、塩化亜鉛又は塩化アンモニウム等の正塩水溶液を
電解液とする亜鉛−マンガン電池は、正極合剤として二
酸化マンガン、炭素粉及び粘結剤を混合したものが用い
られている。市販のこの形式の電池は、粘結剤としてデ
ンプン等が用いられ、合成高分子化合物を用いたものも
報告されている(特開昭60−189874号、同60
−208051号、同61294768号、同61−2
48370号等)。
(Prior art) Conventionally, in zinc-manganese batteries that use a positive salt aqueous solution such as zinc chloride or ammonium chloride as an electrolyte, a mixture of manganese dioxide, carbon powder, and a binder is used as a positive electrode mixture. . Commercially available batteries of this type use starch or the like as a binder, and batteries using synthetic polymer compounds have also been reported (JP-A-60-189874, JP-A-60-189874).
-208051, 61294768, 61-2
No. 48370, etc.).

(発明が解決しようとする課題) 然し、何れの場合も、起電力は約1.55 Vで、二酸
化マンガン1 kg当りのエネルギー密度は約300W
/kg以下の値であり、より高い電圧とエネルギー密度
を有する電池が望まれていた。
(Problem to be solved by the invention) However, in both cases, the electromotive force is about 1.55 V, and the energy density per 1 kg of manganese dioxide is about 300 W.
/kg or less, and a battery with higher voltage and energy density was desired.

(課題を解決するための手段) 本発明の目的は、高い起電力とエネルギー密度を有する
電池を提供するにある。
(Means for Solving the Problems) An object of the present invention is to provide a battery having high electromotive force and energy density.

本発明は二酸化マンガン、炭素粉及び合成高分子化合物
を含有する正極と、亜鉛を含有する負極と、正塩を電解
質として含有する電解液とを有する亜鉛−マンガン電池
において、合成高分子化合物きして側鎖にカルボキシル
基又は酸無水物基を有する高分子化合物を用いたことを
特徴とする。
The present invention provides a zinc-manganese battery having a positive electrode containing manganese dioxide, carbon powder, and a synthetic polymer compound, a negative electrode containing zinc, and an electrolyte containing a positive salt as an electrolyte. It is characterized in that a polymer compound having a carboxyl group or an acid anhydride group in a side chain is used.

本発明の電池は、乾電池として特に有用である。The battery of the present invention is particularly useful as a dry battery.

(実施例) 以下、実施例につき、本発明をさらに詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 40mgのT−二酸化マンガン(三井金属鉱業(株)が
電解法により製造したTAM型のもの。以下同)に、1
0■の炭素粉(ライオン(株)が製造したケッチエンブ
ラックEC−DJ600 。以下同)と、60mgのポ
リアクリル酸(米国Po1ysciences社商品番
号6501)とを、メノウ乳鉢で粉砕混合して、正極合
剤を調製した。
Example 1 40 mg of T-manganese dioxide (TAM type manufactured by Mitsui Mining & Mining Co., Ltd. by an electrolytic method; hereinafter the same) was added with 1
0 ■ carbon powder (Ketchen Black EC-DJ600 manufactured by Lion Corporation, hereinafter the same) and 60 mg of polyacrylic acid (product number 6501, Polysciences, Inc., USA) were ground and mixed in an agate mortar to form a positive electrode. A mixture was prepared.

この正極合剤を用いて、第1図に示す試験用電池を製作
した。このとき、電解液として2M−ZnCl 2水溶
液を用いた。この電池の起電力(開路電圧)は1.85
 Vであり、市販品及び後述の比較例に示す電池に較べ
て、遥かに大きな値が得られた。次いで、この電池をボ
テンシオ/ガルバノスタット(北斗電工(株)製HA−
301型機)を用いて、2mAの定電流放電により放電
試験を行なった。
Using this positive electrode mixture, a test battery shown in FIG. 1 was manufactured. At this time, a 2M-ZnCl 2 aqueous solution was used as the electrolyte. The electromotive force (open circuit voltage) of this battery is 1.85
V, which was much larger than that of commercially available products and batteries shown in Comparative Examples described below. Next, this battery was placed in a botensio/galvanostat (HA-
A discharge test was conducted using a constant current discharge of 2 mA using a 301 model machine.

前述の2mA定電流放電において、放電終止電圧0.9
Vに至るまで放電を行なわせると、第2図の曲線1に示
す放電曲線を得、11.88 mAh即ち、42、77
 クーロンの放電が可能であった。この電池の電池反応
において、MnO□中の4価のマンガンが3価に還元さ
れるときの(−電子還元基準)理論的な放電容量は、 であるから、本例の電池は96.3%のMnO□利用率
(−電子還元基準。以下同)を示す。これを後述の比較
例で得られる第2図の放電曲線4の68%と比較すると
、ポリ (アクリル酸)を加えた効果が優れていること
が判る。
In the above-mentioned 2 mA constant current discharge, the discharge end voltage was 0.9
When the discharge is made to reach V, a discharge curve shown as curve 1 in FIG.
Coulomb discharge was possible. In the battery reaction of this battery, the theoretical discharge capacity when tetravalent manganese in MnO□ is reduced to trivalent (-electron reduction standard) is, therefore, the battery of this example has a 96.3% The utilization rate of MnO□ (-electron reduction standard; hereinafter the same) is shown. Comparing this with 68% of the discharge curve 4 in FIG. 2 obtained in the comparative example described later, it can be seen that the effect of adding poly(acrylic acid) is excellent.

また、第2図の曲線1で示した放電における放電平均電
圧は1.55 Vであり、この放電によって1.55X
11.88 =18.4 mWhのエネルギーが得られ
た。
In addition, the discharge average voltage in the discharge shown by curve 1 in Fig. 2 is 1.55 V, and this discharge causes a voltage of 1.55X.
An energy of 11.88 = 18.4 mWh was obtained.

即ち、この電池は2酸化マンガン当り18.4 Xl0
−’÷40X10−6=460 Wh/kgのエネルギ
ー密度(貯えられるエネルギー)を持つことが判った。
That is, this battery has 18.4 Xl0 per manganese dioxide.
It was found that it has an energy density (stored energy) of -'÷40X10-6=460 Wh/kg.

これらの値は後述の比較例で得られる第2図の放電曲線
4の平均放電電圧1.3V及びエネルギー密度272W
h/kgに比べ著しく大きい値であった。
These values are based on the average discharge voltage of 1.3V and energy density of 272W of discharge curve 4 in Fig. 2 obtained in the comparative example described later.
This value was significantly larger than h/kg.

次に、本例においてポリアクリル酸の添加量を変えて実
験を行ない、MnO2の利用率について、次の第1表に
示す結果を得た。
Next, in this example, an experiment was conducted by changing the amount of polyacrylic acid added, and the results shown in Table 1 below regarding the utilization rate of MnO2 were obtained.

第  1  表 第  2  表 さらに、ポリアクリル酸の添加量を60mgに一定し、
ZnCβ2水溶液の濃度を変えることにより、MnO2
利用率は次の第2表に示すように変化した。
Table 1 Table 2 Furthermore, the amount of polyacrylic acid added was kept constant at 60 mg,
By changing the concentration of ZnCβ2 aqueous solution, MnO2
The utilization rate changed as shown in Table 2 below.

実施例2 ポリアクリル酸の代りに50mgのポリメタクリル酸く
米国Po1ysciences社商品番号0578)を
用いた他は、実施例1と同様にして電池を製造し、放電
を行ない、第2図の放電曲線2を得た。この電池と放電
曲線より、0.9V終止電圧までに79.1%のMnO
2利用率、1’、45Vの平均放電電圧、354 Wh
/kgのエネルギー密度、1.78 Vの起電力を得た
Example 2 A battery was manufactured in the same manner as in Example 1, except that 50 mg of polymethacrylic acid (Polysciences product number 0578) was used instead of polyacrylic acid, and discharge was performed to obtain the discharge curve shown in Figure 2. I got 2. From this battery and discharge curve, 79.1% MnO
2 utilization factor, 1', average discharge voltage of 45V, 354 Wh
An energy density of /kg and an electromotive force of 1.78 V were obtained.

実施例3 ポリアクリル酸の代りに50mgのエチレン−無水マレ
イン酸共重合体く米国Po l ysc i ence
s社商品番号2308 )を用いた他は、実施例1と同
様にして電池を製造し、放電を行ない、第2図の放電曲
線3を得た。この電池と放電曲線より、0.9V終止電
圧までに、81.2%のMnO2利用率、1.52Vの
平均放電電圧、381 Wh/kgノエネルギー密度、
1.90 V (7)起電力を得た。
Example 3 50 mg of ethylene-maleic anhydride copolymer was used instead of polyacrylic acid.
A battery was manufactured in the same manner as in Example 1, except that a battery manufactured by Company S (Product No. 2308) was used, and the battery was discharged to obtain the discharge curve 3 shown in FIG. From this battery and discharge curve, up to the final voltage of 0.9V, the MnO2 utilization rate is 81.2%, the average discharge voltage is 1.52V, the energy density is 381 Wh/kg,
1.90 V (7) Electromotive force was obtained.

なお、一般に酸無水物は水中では、 のように、容易に加水分解することが知られている。事
実、前述の共重合体を2M−Zn(1’2水溶液中に加
えた後に全体を凍結乾燥して得られる白色粉末の赤外ス
ペクトルは、前述の共重合体の赤外スペクトルに見られ
ず、ポリアクリル酸をZnCR2水溶液に加えた後に凍
結乾燥して得られる白色固体の赤外スペクトルに特徴的
な1620cm−’の強い吸収を示した。このことから
、前述の共重合体は少くとも部分的には加水分解を受け
ていることが判る。
It is generally known that acid anhydrides are easily hydrolyzed in water, as shown in the following. In fact, the infrared spectrum of the white powder obtained by adding the above-mentioned copolymer to a 2M-Zn(1'2 aqueous solution and then freeze-drying the whole) is not seen in the infrared spectrum of the above-mentioned copolymer. , showed a strong absorption at 1620 cm-' which is characteristic of the infrared spectrum of a white solid obtained by adding polyacrylic acid to an aqueous solution of ZnCR2 and then freeze-drying it. It can be seen that it has undergone hydrolysis.

比較例1〜4 ポリアクリル酸を添加することなく、MnO2と炭素粉
のみを混合して得られる混合物を正極合剤とした他は、
実施例1と同様にして電池を製造し、放電を行ない、第
2図の放電曲線4を得た。この電池と放電曲線より、0
.9 V#止電電圧でに、68%のMnO7利用率、1
、3vの平均放電電圧、272 Wh/kgのエネルギ
ー密度、1.58 Vの起電力を得た。
Comparative Examples 1 to 4 A mixture obtained by mixing only MnO2 and carbon powder without adding polyacrylic acid was used as the positive electrode mixture.
A battery was manufactured and discharged in the same manner as in Example 1, and discharge curve 4 shown in FIG. 2 was obtained. From this battery and discharge curve, 0
.. At 9 V# cut-off voltage, MnO7 utilization rate of 68%, 1
, an average discharge voltage of 3 V, an energy density of 272 Wh/kg, and an electromotive force of 1.58 V were obtained.

また、ポリアクリル酸の代りに、ポリアクリル酸ナトリ
ウム塩(Polysciences社商品番号6567
) 。
In addition, instead of polyacrylic acid, polyacrylic acid sodium salt (Polysciences product number 6567
).

(比較例2)、ポリアクリルアミド(同2806)(比
較例3)、ナフィオン(同27,675−8) (比較
例4)などのカルボキシル基や酸無水物基を持たない高
分子化合物を添加した他は、実施例1と同様に電池を製
造し、放電を行なった。その結果得られた放電曲線は第
2図の放電曲線4とほぼ同一であるか、より低い性能を
示すものであった。ナフィオンを用いた例について、添
加量とM n O2の利用率の関係を次の第3表に示す
(Comparative Example 2), Polyacrylamide (Comparative Example 3), Nafion (Comparative Example 27,675-8) (Comparative Example 4), etc., were added. Otherwise, a battery was manufactured and discharged in the same manner as in Example 1. The resulting discharge curves were approximately the same as discharge curve 4 in FIG. 2, or exhibited lower performance. For an example using Nafion, the relationship between the amount added and the utilization rate of M n O2 is shown in Table 3 below.

第3表 比較例5〜12 電解液としてZnCβ2水溶液の代りに2 M−ZnS
Ov水溶液を用いた他は、実施例1と同様にして電池を
製造し、放電した。添加した合成高分子(何れも40 
mg )について、次の第4表に示す結果を得た。
Table 3 Comparative Examples 5 to 12 2M-ZnS instead of ZnCβ2 aqueous solution as electrolyte
A battery was manufactured and discharged in the same manner as in Example 1, except that the Ov aqueous solution was used. Added synthetic polymer (all 40
mg), the results shown in Table 4 below were obtained.

(発明の効果) かくて本発明により、安価で容易に人手可能な高分子化
合物を粘結剤として用い、現在広く用いられている正塩
水溶液を電解液とする亜鉛−マンガン電池について、−
だんと電圧が高く、−だんとエネルギー密度が高く、−
だんと多くのエネルギーを貯えている電池を得ることが
できた。
(Effects of the Invention) Thus, according to the present invention, a zinc-manganese battery using an inexpensive and easily available polymer compound as a binder and using a currently widely used positive salt aqueous solution as an electrolyte, -
The voltage gets higher and higher, the energy density gets higher and higher,
We were able to obtain batteries that store more and more energy.

本発明を特定の実施例及び数値につき説明したが、本発
明の広汎な精神と視野を逸脱することなく種々の変更と
修整が可能なこと勿論である。
Although the invention has been described with reference to specific embodiments and figures, it will be understood that various changes and modifications may be made without departing from the broader spirit and scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の一例を示す分解斜視図、第、2図
はその一部分の線図的平面図、第3図は本発明電池の放
電曲線の例を示す特性線図である。 A、、 A2・・・側板 B、、 B、・・・シリコーンゴム板 C・・・亜鉛負極板 D・・・電解液浸漬ガラス繊維製濾紙 E・・・正極合剤(φ−13mm) F・・・シリコーンゴム製スペーサー 〇・・・白金集電体
FIG. 1 is an exploded perspective view showing an example of the battery of the present invention, FIGS. 2 and 2 are diagrammatic plan views of a portion thereof, and FIG. 3 is a characteristic diagram showing an example of the discharge curve of the battery of the present invention. A,, A2...Side plate B, B,...Silicone rubber plate C...Zinc negative electrode plate D...Glass fiber filter paper soaked in electrolyte E...Positive electrode mixture (φ-13mm) F ...Silicone rubber spacer〇...Platinum current collector

Claims (1)

【特許請求の範囲】[Claims] 1、二酸化マンガン、炭素粉及び合成高分子化合物を含
有する正極と、亜鉛を含有する負極と、正塩を電解質と
して含有する電解液とを有する亜鉛−マンガン電池にお
いて、合成高分子化合物として側鎖にカルボキシル基又
は酸無水物基を有する高分子化合物を用いたことを特徴
とする亜鉛−マンガン電池。
1. In a zinc-manganese battery having a positive electrode containing manganese dioxide, carbon powder, and a synthetic polymer compound, a negative electrode containing zinc, and an electrolytic solution containing a positive salt as an electrolyte, side chains as a synthetic polymer compound are used. A zinc-manganese battery characterized in that a polymer compound having a carboxyl group or an acid anhydride group is used.
JP63247503A 1988-10-03 1988-10-03 Zinc-manganese battery Expired - Lifetime JPH07118319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63247503A JPH07118319B2 (en) 1988-10-03 1988-10-03 Zinc-manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247503A JPH07118319B2 (en) 1988-10-03 1988-10-03 Zinc-manganese battery

Publications (2)

Publication Number Publication Date
JPH0298049A true JPH0298049A (en) 1990-04-10
JPH07118319B2 JPH07118319B2 (en) 1995-12-18

Family

ID=17164441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247503A Expired - Lifetime JPH07118319B2 (en) 1988-10-03 1988-10-03 Zinc-manganese battery

Country Status (1)

Country Link
JP (1) JPH07118319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097518A (en) * 2021-03-18 2021-07-09 苏州柔能纳米科技有限公司 Electrolyte for flexible neutral zinc-manganese dioxide battery and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151769A (en) * 1979-05-15 1980-11-26 Toshiba Battery Co Ltd Flat type battery
JPS6196661A (en) * 1984-10-18 1986-05-15 Toppan Printing Co Ltd Thin battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151769A (en) * 1979-05-15 1980-11-26 Toshiba Battery Co Ltd Flat type battery
JPS6196661A (en) * 1984-10-18 1986-05-15 Toppan Printing Co Ltd Thin battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097518A (en) * 2021-03-18 2021-07-09 苏州柔能纳米科技有限公司 Electrolyte for flexible neutral zinc-manganese dioxide battery and preparation method thereof
CN113097518B (en) * 2021-03-18 2024-06-04 苏州柔能纳米科技有限公司 Electrolyte for flexible neutral zinc-manganese battery and preparation method thereof

Also Published As

Publication number Publication date
JPH07118319B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
CA1296766C (en) Secondary battery
JP2903469B1 (en) Method for producing anode material for lithium ion battery
CN1280932C (en) Positive electrode material and cell comprising same
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP2001506400A (en) Novel manganese dioxide electrode, its production method and its use
AU1778095A (en) Cathode material for nonaqueous electrochemical cells
EP0964467A3 (en) Manganese dioxide/zinc rechargeable cell with improved capacity and reversibility
JPH07107851B2 (en) Non-aqueous secondary battery
JP3015411B2 (en) Polyaniline battery
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
KR19980074069A (en) Method for producing LiMn₂O₄ cathode active material for lithium ion battery
JPH0298049A (en) Zinc-manganese battery
JPH04136195A (en) Novel composite material
JP2002524832A (en) Nickel hydroxide active substance for electrochemical cell
JPH1197062A (en) Organic electrolyte secondary battery
JP2638624B2 (en) Method for producing positive electrode mixture for manganese battery
JP2000327340A (en) Lithium manganese compound oxide particulate composition and its production and utilization for lithium ion secondary battery
JPH02226657A (en) Manganese dry battery
JP3115165B2 (en) Lithium secondary battery
JP2953024B2 (en) Non-aqueous electrolyte secondary battery
JP3384616B2 (en) Gel electrolyte battery
JP2923560B2 (en) Secondary battery and its negative electrode
US20030170541A1 (en) Positive electrode for lithium ion cells and rocking chair type lithium ion cell using the same
JPH05135800A (en) Lithium secondary battery
JP3384615B2 (en) Gel electrolyte battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term