JPH0298044A - Organic solvent battery - Google Patents

Organic solvent battery

Info

Publication number
JPH0298044A
JPH0298044A JP63249151A JP24915188A JPH0298044A JP H0298044 A JPH0298044 A JP H0298044A JP 63249151 A JP63249151 A JP 63249151A JP 24915188 A JP24915188 A JP 24915188A JP H0298044 A JPH0298044 A JP H0298044A
Authority
JP
Japan
Prior art keywords
powder
positive electrode
battery
current collector
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63249151A
Other languages
Japanese (ja)
Inventor
Masao Ide
井出 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63249151A priority Critical patent/JPH0298044A/en
Publication of JPH0298044A publication Critical patent/JPH0298044A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1243Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the internal coating on the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance storage performance and to stabilize performance by forming a layer comprising a mixture of at least one selected from metallic powder which is inactive against a positive mix and conductive ceramic powder, and SiO2 in the contact area of a positive current collector with a positive mix. CONSTITUTION:A layer 4a comprising a mixture of at least one selected from metallic powder which is inactive against a positive mix and conductive ceramic powder, and SiO2 is formed in the contact area of a positive current collector 4 with a positive mix 2. As the metallic powder, Ag powder, Ti powder, Au powder, or powder of stainless steel such as SUS 304, SUS 447JI, and SUS XMZ7 is used. As the conductive ceramic powder, TiN powder, TiC powder, or SiC powder is used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機溶媒電池に関し、更に詳しくは、貯蔵特性
に優れた有機溶媒電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an organic solvent battery, and more particularly to an organic solvent battery with excellent storage characteristics.

(従来の技術) 放電電圧が高くエネルギー密度が大きく、更に貯蔵時の
特性劣化が小さく作動温度範囲も広いという点で、有機
溶媒電池は注目を集めている。その電池の構造例を縦断
面図として第3図に示す。
(Prior Art) Organic solvent batteries are attracting attention because they have a high discharge voltage, a large energy density, little deterioration of characteristics during storage, and a wide operating temperature range. An example of the structure of the battery is shown in FIG. 3 as a longitudinal sectional view.

第3図において、1は負極活物質であり例えばLi、N
a、Mgのようなアルカリ金属、アルカリ土類金属など
の軽金属の箔体で構成されている。2は正極合剤で、正
極活物質である例えば焼成二酸化マンガン粉末と導電材
である例えば黒鉛粉末と結着材である例えばポリテトラ
フルオロエチレンとを所定量比で混合して成る混合物を
所定の形状(例えばペレット状)に成形したものである
。3は、負極活物質1と正極合剤2との間に介在せしめ
られた例えばポリプロピレン、ポリエチレンから成る不
織布のセパレータであって、ここには1例えば過塩素酸
リチウム、ホウフッ化リチウムのような電解質をプロピ
レンカーボネート、ジメトキシエタンのような非水溶媒
に所定の濃度となるように溶解せしめた非水電解液が含
浸・保持されている。これら3者は通常発電要素と呼ば
れている。
In FIG. 3, 1 is a negative electrode active material, such as Li, N
a. It is composed of a foil body of a light metal such as an alkali metal such as Mg or an alkaline earth metal. Reference numeral 2 is a positive electrode mixture, in which a mixture is prepared by mixing a positive electrode active material such as calcined manganese dioxide powder, a conductive material such as graphite powder, and a binder such as polytetrafluoroethylene in a predetermined ratio. It is molded into a shape (for example, pellet shape). 3 is a separator made of a nonwoven fabric made of polypropylene or polyethylene, which is interposed between the negative electrode active material 1 and the positive electrode mixture 2; It is impregnated and held in a non-aqueous electrolyte solution in which the electrolyte is dissolved in a non-aqueous solvent such as propylene carbonate or dimethoxyethane to a predetermined concentration. These three are usually called power generation elements.

4は正極容器で、そこには上記発電要素がその正極合剤
2を下にして収容される。したがって、正極合剤2と正
極容器4の底面とは直接接触し、この正極容器4それ自
体が正極集電体としても機能する。このような正極容器
は、AJ2、Ni、Fe、Cu、ステンレス鋼のような
材料で構成されているのが通例である。
Reference numeral 4 denotes a positive electrode container, in which the power generating element is housed with its positive electrode mixture 2 facing down. Therefore, the positive electrode mixture 2 and the bottom surface of the positive electrode container 4 are in direct contact, and the positive electrode container 4 itself also functions as a positive electrode current collector. Such cathode containers are typically constructed from materials such as AJ2, Ni, Fe, Cu, and stainless steel.

5は負極活物質1に冠着された負極容器でこれは負極集
電体の機能も兼ねている。負極容器5の周縁部は電気絶
縁性のバッキング6に圧入され、更に正極容器4の上方
開口端を内方へ屈曲せしめて発電要素全体が液・気密に
封入される。
A negative electrode container 5 is attached to the negative electrode active material 1 and also serves as a negative electrode current collector. The peripheral edge of the negative electrode container 5 is press-fitted into an electrically insulating backing 6, and the upper open end of the positive electrode container 4 is further bent inward to encapsulate the entire power generating element in a liquid-tight manner.

しかしながら、上記構造の有機溶媒電池にはその貯蔵過
程で次のような問題が生ずる。それは正極合剤が直接正
極容器と接触していることに起因する問題である。すな
わち、電池の貯蔵過程で。
However, the following problems occur in the organic solvent battery having the above structure during its storage process. This problem is caused by the fact that the positive electrode mixture is in direct contact with the positive electrode container. That is, in the battery storage process.

正極合剤中にも浸透している電解液の作用により正極容
器が徐々に溶解し、極端な場合には容器に穴があき、ま
た穴があかないまでも正極容器の表面に不導体層が生ず
るのである。
Due to the action of the electrolyte that has permeated into the positive electrode mixture, the positive electrode container gradually dissolves, and in extreme cases, a hole may form in the container, and even if there is no hole, a nonconducting layer may form on the surface of the positive electrode container. It occurs.

正極容器の表面に不導体層が形成されると、正極集電体
でもある正極容器と正極合剤との間の接触抵抗が増大し
、電池放電時における放電電圧の落込みは激しくなる。
When a nonconductor layer is formed on the surface of the positive electrode container, the contact resistance between the positive electrode container, which is also a positive electrode current collector, and the positive electrode mixture increases, and the drop in discharge voltage during battery discharge becomes severe.

また一方では、正極容器の溶解に伴って生成した金属イ
オンは、電解液中を負極にむかって移動し負極活物質の
溶解を促進すると同時に自らは負極活物質の表面に析出
して負極の不働態化を引き起こす、その結果、電池の機
能停止状態が発生する。
On the other hand, metal ions generated as the cathode container dissolves move toward the anode in the electrolyte to promote dissolution of the anode active material, and at the same time, they precipitate on the surface of the anode active material, resulting in the dissolution of the anode. This causes activation of the battery, resulting in a non-functional state of the battery.

このような問題を解決するために、各種の方法が提案さ
れている1例久ば、特開昭50−91719号公報には
、トルエンにクロロスルホン化ポリエチレンとカーボン
ブラックを混合し更にここに加硫剤として三塩基マレイ
ン酸鉛を添加し、得られた溶液をTiから成るエキスパ
ンデッドメタルに塗布したのち全体を加熱して上記樹脂
ポリマーの加硫硬化を進め、表面にカーボンブラックを
付着せしめた正極集電体を製造する方法、またはコロイ
ダルカーボンをエキスパンデッドメタルに噴霧したのち
50〜60℃で乾燥して正極集電体にする方法などが開
示されている。
In order to solve these problems, various methods have been proposed. For example, Japanese Patent Laid-Open No. 50-91719 discloses a method in which chlorosulfonated polyethylene and carbon black are mixed with toluene and then added thereto. Tribasic lead maleate was added as a sulfurizing agent, and the resulting solution was applied to an expanded metal made of Ti, and the whole was heated to promote vulcanization and hardening of the resin polymer, and carbon black was attached to the surface. A method of manufacturing a positive electrode current collector, or a method of spraying colloidal carbon onto an expanded metal and then drying the expanded metal at 50 to 60° C. to form a positive electrode current collector is disclosed.

また、特開昭50−138341号公報には、正極集電
体なコロイダルカーボンの20%水溶液に浸漬したのち
80℃で2時間乾燥し、表面をカーボンで被覆する方法
が開示されている。
Further, JP-A-50-138341 discloses a method in which a positive electrode current collector is immersed in a 20% aqueous solution of colloidal carbon and then dried at 80° C. for 2 hours to coat the surface with carbon.

(発明が解決しようとする課題) しかしながら、上記した方法で形成したカーボンの被覆
層には不可避的にピンホールが存在するので、やはり貯
蔵過程においては、このピンホールを介して正極容器が
徐々に溶解する不都合は解消し得ない、また、前者の方
法においては、結着材が有機化合物であるため、電池の
貯蔵中に有機非水電解液によってこの結着材が膨潤、溶
解して電池特性は不安定になるという問題を生ずる。
(Problem to be Solved by the Invention) However, since pinholes inevitably exist in the carbon coating layer formed by the above method, during the storage process, the positive electrode container gradually forms through these pinholes. In addition, in the former method, since the binder is an organic compound, the binder swells and dissolves in the organic non-aqueous electrolyte during storage of the battery, which deteriorates the battery characteristics. gives rise to the problem of instability.

本発明は上記したような問題を解決し、貯蔵過程におい
ても、電解液中に溶解せずそれゆえ自らの表面に不導体
層の形成されることがない正極集電体を具備しているた
め、貯蔵特性が優れ、電池特性も安定している有機溶媒
電池の提供を目的とする。
The present invention solves the above problems and includes a positive electrode current collector that does not dissolve in the electrolyte and therefore does not form a nonconducting layer on its surface even during the storage process. The purpose of the present invention is to provide an organic solvent battery that has excellent storage characteristics and stable battery characteristics.

[発明の構成] (課題を解決するための手段) 本発明者は、正極容器(正極集電体)の正極合剤との接
触面に被覆層を形成して正極集電体の溶解を防止すると
いう観点に立ち、それに有効な被覆層につき鋭意研究を
重ねた結果、後述する層はピンホールもなく、安定性に
も冨むという事実を見出し、それを組込んだ本発明の有
機溶媒電池を開発するに到った。
[Structure of the Invention] (Means for Solving the Problems) The present inventor has formed a coating layer on the surface of the positive electrode container (positive electrode current collector) that comes into contact with the positive electrode mixture to prevent the positive electrode current collector from dissolving. As a result of extensive research on effective coating layers, we discovered that the layer described below has no pinholes and is highly stable, and the organic solvent battery of the present invention incorporates this fact. We have come to develop this.

すなわち、本発明の有機溶媒電池は、 少なくとも正極合剤と接触する部分に、該正極合剤に対
し不活性な金属粉末若しくは導電性セラミックス粉末の
少なくとも1 flと二酸化ケイ素(Sin、)との混
合物から成る被覆層が形成されている正極集電体を具備
することを特徴とする。
That is, the organic solvent battery of the present invention includes a mixture of silicon dioxide (Sin, It is characterized by comprising a positive electrode current collector on which a coating layer consisting of is formed.

本発明の電池は、正極容器(正極集電体)の少なくとも
正極合剤と接触する部分に後述する被覆層が形成されて
いることを除いては、第3図に示した構造と変ることは
ない、その具体例を第1図に示す。
The structure of the battery of the present invention is different from that shown in FIG. 3, except that a coating layer, which will be described later, is formed on at least the portion of the positive electrode container (positive electrode current collector) that comes into contact with the positive electrode mixture. A specific example of this is shown in Figure 1.

図における数字は、第3図の場合と同じ要素を表わす、
4aが本発明電池の特徴をなす被覆層である。この被覆
層4aは正極容器(正極集電体)4が少なくとも正極合
剤2と接触する部分に形成されていることが必要である
が、例えばバッキング6と接触する部分にまで延在して
いても何ら不都合はない。
Numbers in the figures represent the same elements as in Figure 3.
4a is a coating layer that characterizes the battery of the present invention. This coating layer 4a is required to be formed on at least a portion of the positive electrode container (positive electrode current collector) 4 that contacts the positive electrode mixture 2, but for example, it may extend to a portion that contacts the backing 6. There is no inconvenience.

さて、この被覆層4aは、正極合剤に対し不活性な金属
粉末若しくは導電性セラミックスの1種または両者と、
S i Omとの2種類の混合物で構成されている。こ
こで金属粉末としては、Ag粉、Ti粉、Au粉、5U
S304.5US447J1.SUSXM2Tなどのス
テンレス銅粉をあげることができる。これら金属粉末は
それぞれ単独でも用いてもよいし適宜に組合わせた混合
粉として用いてもよい、また、導電性セラミックス粉末
としては、TiN粉、TiC粉、SiC粉をあげること
ができる。これら粉末はそれぞれ単独で用いてもよいし
適宜に組合わせた混合粉として用いてもよい。
Now, this coating layer 4a is made of one or both of metal powder and conductive ceramics that are inert to the positive electrode mixture.
It is composed of two types of mixtures with S i Om. Here, the metal powders include Ag powder, Ti powder, Au powder, 5U powder,
S304.5US447J1. Stainless steel copper powder such as SUSXM2T can be used. These metal powders may be used alone or in an appropriate combination as a mixed powder. Examples of the conductive ceramic powder include TiN powder, TiC powder, and SiC powder. Each of these powders may be used alone or may be used in an appropriate combination as a mixed powder.

5iO=は後述する方法で被覆層を形成するときに、被
覆層内に生成して混在することになる。
5iO= is generated and mixed in the coating layer when the coating layer is formed by the method described below.

形成された被覆層における上記粉末と5insとの混在
割合は、前者が40〜80重量%であることが好ましい
、より好ましくは50〜70重量%である。あまり少な
すぎると被覆層の導電性が低下して電池の放電特性が低
下し、またあまり多すぎるとSiO□量が減少し、塗布
層の剥離が生じて導電性が悪くなる不都合を招くからで
ある。また、被覆層の厚みは、正極合剤の体積を減少さ
せないこと、および正極容器の溶解を防止させるという
点からして7〜30Pであることが好ましい、より好ま
しくは、10〜25Fである。
The mixing ratio of the powder and 5ins in the formed coating layer is preferably 40 to 80% by weight, more preferably 50 to 70% by weight. If it is too small, the conductivity of the coating layer will decrease and the discharge characteristics of the battery will deteriorate, and if it is too large, the amount of SiO□ will decrease, causing the problem of peeling of the coating layer and poor conductivity. be. Further, the thickness of the coating layer is preferably 7 to 30 F, more preferably 10 to 25 F, from the viewpoint of not reducing the volume of the positive electrode mixture and preventing dissolution of the positive electrode container.

このような被覆層は次のようにして形成することができ
る。すなわちまず、後述する条件下で加熱すると熱分解
してS i O*に添加する化合物を溶媒に溶解せしめ
る。このときに用いる化合物としては、例えば、テトラ
エトキシシラン(St(QCs Ha ) 4) 、エ
チルトリエトキシシラン(C* Hs S i (OC
i Hs ) s ) 、ジエチルジェトキシシラン(
(CzHs)sSi(OC−Hs )* ) 、テトラ
メチルシリケート(Si  (OCR,)−)、テトラ
フェニルシリケート((Ca Hs O) −S i 
)のような有機ケイ素化合物をあげることができる。ま
た、溶媒としては、上記化合物を溶解せしめるものであ
ればよく、例えばイソプロピルアルコール、エチルアル
コール、メチルアルコール、ブチールアルコールをあげ
ることができる。
Such a covering layer can be formed as follows. That is, first, when heated under the conditions described later, the compound to be thermally decomposed and added to S i O* is dissolved in a solvent. Compounds used at this time include, for example, tetraethoxysilane (St(QCs Ha ) 4), ethyltriethoxysilane (C* Hs Si (OC
i Hs) s), diethyljethoxysilane (
(CzHs)sSi(OC-Hs)*), tetramethylsilicate (Si(OCR,)-), tetraphenylsilicate ((CaHsO)-Si
) can be mentioned. Further, the solvent may be any solvent as long as it can dissolve the above compound, and examples thereof include isopropyl alcohol, ethyl alcohol, methyl alcohol, and butyl alcohol.

ついで、ここに、前述した金属粉末または/および導電
性セラミックス粉を所定量添加し全体を充分に混合して
所定粘度のスラリーを調製する。
Next, a predetermined amount of the metal powder and/or conductive ceramic powder described above is added thereto, and the whole is sufficiently mixed to prepare a slurry having a predetermined viscosity.

このときそれぞれの使用量は、被覆層を形成したとき前
述したような混合割合となるように選定する。
At this time, the amount of each used is selected so as to achieve the mixing ratio as described above when forming the coating layer.

具体的には、熱分解して5insに転化する化合物10
0重量部に対し、溶媒は50〜400重量部、導電性の
粉末は20〜400重量部であることが好ましい。
Specifically, compound 10, which is thermally decomposed and converted to 5ins
It is preferable that the amount of the solvent is 50 to 400 parts by weight and the amount of the conductive powder is 20 to 400 parts by weight relative to 0 parts by weight.

調製された上記スラリーを正極容器(正極集電体)4の
所定部分、例えば容器の底面に所定の厚みに塗布する。
The prepared slurry is applied to a predetermined portion of the positive electrode container (positive electrode current collector) 4, such as the bottom surface of the container, to a predetermined thickness.

塗布法としては、例えばスタンピング塗布法、スプレー
塗布法を適用することができる。
As the coating method, for example, a stamping coating method or a spray coating method can be applied.

最後に、正極容器(正極集電体)に加熱処理を施す、加
熱処理は、塗布層中の前記化合物が完全に熱分解してS
iO□として残留するような条件で行なわれることが必
要で、具体的には温度110〜200℃、処理時間15
〜30分であることが好ましい。
Finally, the positive electrode container (positive electrode current collector) is subjected to heat treatment.
It is necessary to carry out the process under conditions such that it remains as iO
It is preferable that it is 30 minutes.

かくして、所定部分に本発明にかかる被覆層が形成され
ている正極容器(正極集電体)が製造され、ここに発電
要素等を収納すれば本発明の有機溶媒電池が得られる。
In this way, a positive electrode container (positive electrode current collector) having a coating layer according to the present invention formed in a predetermined portion is manufactured, and by storing a power generating element and the like therein, an organic solvent battery of the present invention can be obtained.

(発明の実施例) 実施例1 テトラエトキシシラン20重量部にイソプロピルアルコ
ール80重量部を添加し、更にここに、平均粒径10F
の5US304粉5重量部を添加して全体を充分に混合
した。
(Examples of the Invention) Example 1 80 parts by weight of isopropyl alcohol was added to 20 parts by weight of tetraethoxysilane, and further, an average particle size of 10F was added to 20 parts by weight of tetraethoxysilane.
5 parts by weight of 5US304 powder was added and the whole was thoroughly mixed.

得られたスラリーを第1図に示した5US304製の正
極容器2の底面に塗布したのち、約120℃の温度で約
30分間加熱した。厚み15戸の被覆層4aが形成され
た。この被覆層において、5US304粉とS i O
*との混合割合は、重量比で46 : 52であった。
The obtained slurry was applied to the bottom surface of the positive electrode container 2 made of 5US304 shown in FIG. 1, and then heated at a temperature of about 120° C. for about 30 minutes. A coating layer 4a having a thickness of 15 units was formed. In this coating layer, 5US304 powder and SiO
The mixing ratio with * was 46:52 by weight.

その後、ここに発電要素を収納した。正極合剤は、焼成
二酸化マンガン90重量部、黒鉛粉末10重量部、ポリ
テトラフルオロエチレン3重量部との混合物0.4gを
直径15mm厚み0.7mmのベレットに成形して成り
、負極活物質はLi箔である。また、電解液は、プロピ
レンカーボネートとジメトキシエタンとの混合溶媒(容
積比、1 : l)に過塩素酸リチウムを濃度1モル/
I2となるように溶解せしめたものである。セパレータ
はポリプロピレン製の不織布であった。
Afterwards, the power generation elements were housed here. The positive electrode mixture was formed by molding 0.4 g of a mixture of 90 parts by weight of calcined manganese dioxide, 10 parts by weight of graphite powder, and 3 parts by weight of polytetrafluoroethylene into a pellet with a diameter of 15 mm and a thickness of 0.7 mm. It is Li foil. The electrolyte was a mixed solvent of propylene carbonate and dimethoxyethane (volume ratio, 1:1) containing lithium perchlorate at a concentration of 1 mol/l.
It was dissolved to give I2. The separator was a nonwoven fabric made of polypropylene.

5US304製の負極容器5を冠着し、ポリプロピレン
製バッキング6を介して正極容器4の上方開口線を内方
に屈曲して全体を密封し本発明の電池とした。
A negative electrode container 5 made of 5US304 was capped, and the upper opening line of the positive electrode container 4 was bent inward through a polypropylene backing 6 to seal the whole to obtain a battery of the present invention.

実施例2 SUS304粉に代えて同一平均粒径のTiN粉5粉量
重量部いたことを除いては、実施例1と同様にして厚み
20戸の被覆層4aを形成し、実施例1の場合と同様に
して本発明の電池を組立でた。被覆層中のTiNと5i
nsとの割合は、重量比で46 : 52である。
Example 2 A coating layer 4a having a thickness of 20 layers was formed in the same manner as in Example 1, except that 5 parts by weight of TiN powder with the same average particle size was used instead of SUS304 powder. The battery of the present invention was assembled in the same manner. TiN and 5i in the coating layer
The ratio with ns is 46:52 by weight.

実施例3 平均粒径10戸の5US304粉5重量部に代えて、平
均粒径10戸の5US304粉3重量部と平均粒径10
FのTiC扮2重量部との混合粉を用いたことを除いて
は、実施例1と同様にして厚み10μの被覆層4aを形
成した。被覆層4a内の5US304粉とTiC扮とS
iO□との混合割合は、重量比で28:18:52であ
った。実施例1と同様にして本発明の電池を組立てた。
Example 3 Instead of 5 parts by weight of 5US304 powder with an average particle size of 10, 3 parts by weight of 5US304 powder with an average particle size of 10 and an average particle size of 10
A coating layer 4a having a thickness of 10 μm was formed in the same manner as in Example 1, except that a mixed powder of F and 2 parts by weight of TiC was used. 5US304 powder, TiC and S in the coating layer 4a
The mixing ratio with iO□ was 28:18:52 by weight. A battery of the present invention was assembled in the same manner as in Example 1.

比較例 正極容器の底面にコロイダルカーボン(商品名:ヒタゾ
ールGA−37D、日立金属治産■製)を塗布し、厚み
3Fの被覆層を形成した。実施例1と同様にして電池を
組立てた。
Comparative Example Colloidal carbon (trade name: Hitazol GA-37D, manufactured by Hitachi Metals Jisan Co., Ltd.) was applied to the bottom of a positive electrode container to form a 3F thick coating layer. A battery was assembled in the same manner as in Example 1.

以上4種類の電池につき、その組立て直後における放電
特性を測定した。このときの放電条件は、温度20℃、
15にΩ定抵抗である。
The discharge characteristics of the above four types of batteries immediately after assembly were measured. The discharge conditions at this time were a temperature of 20°C,
15 is a constant resistance of Ω.

ついで、これら電池を温度60℃、相対湿度50%の恒
温槽中で100日間貯蔵したのち、上記と同じ放電条件
下で放電特性を測定した0以上の結果を第2図に示した
6図中、実線は製造直後の特性カーブであり、破線は貯
蔵後の特性カーブである。
Next, after storing these batteries for 100 days in a constant temperature bath at a temperature of 60°C and a relative humidity of 50%, the discharge characteristics were measured under the same discharge conditions as above.The results of 0 or more were shown in Figure 6 in Figure 2. , the solid line is the characteristic curve immediately after production, and the broken line is the characteristic curve after storage.

[発明の効果] 以上の説明で明らかなように、本発明の電池は比較例電
池に比べ、長期の貯蔵後にあってもその特性は低下しな
い。
[Effects of the Invention] As is clear from the above description, the characteristics of the battery of the present invention do not deteriorate even after long-term storage compared to the comparative battery.

それは、本発明の電池がその正極容器(正極集電体)の
正極合剤と接触する部分に前述したような被覆層が形成
されているからである。すなわち、本発明にかかる被覆
層は、電解液に対し安定な5i0本が正極容器(正極集
電体)へ金属粉末若しくは導電性セラミックス粉末を結
着せしめる結着材として機能し、そのため、電解液と接
触しても結着材が電解液に溶解して被覆層にピンホール
等の欠陥を生ずることがなく、その結果、正極容器(正
極集電体)の溶解または不導体層の形成を防止するから
である。
This is because the battery of the present invention has the above-mentioned coating layer formed on the portion of the positive electrode container (positive electrode current collector) that comes into contact with the positive electrode mixture. That is, in the coating layer according to the present invention, the 5i0 particles, which are stable to the electrolyte, function as a binder that binds the metal powder or conductive ceramic powder to the positive electrode container (positive electrode current collector), and therefore, the electrolyte Even if the binder comes into contact with the electrolyte, the binding material will not dissolve in the electrolyte and cause defects such as pinholes in the coating layer, and as a result, the dissolution of the positive electrode container (positive electrode current collector) or the formation of a non-conducting layer will be prevented. Because it does.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の縦断面図である。第2図は、実施
例電池、比較例電池の貯蔵前後における放電特性を示す
図である。第3図は従来構造の電池の縦断面図である。 1−負極活物質 2−正極合剤 3−セパレータ 4−正極容器 4a−被覆層 5−負極容器 6−パッキング 第 工 図 第 図 第 図
FIG. 1 is a longitudinal sectional view of the battery of the present invention. FIG. 2 is a diagram showing the discharge characteristics of the example battery and the comparative example battery before and after storage. FIG. 3 is a longitudinal sectional view of a battery with a conventional structure. 1 - Negative electrode active material 2 - Positive electrode mixture 3 - Separator 4 - Positive electrode container 4a - Covering layer 5 - Negative electrode container 6 - Packing diagram

Claims (1)

【特許請求の範囲】[Claims]  少なくとも正極合剤と接触する部分に、該正極合剤に
対し不活性な金属粉末若しくは導電性セラミックス粉末
の少なくとも1種と二酸化ケイ素との混合物から成る被
覆層が形成されている正極集電体を具備することを特徴
とする有機溶媒電池。
A positive electrode current collector is provided with a coating layer made of a mixture of silicon dioxide and at least one kind of metal powder or conductive ceramic powder that is inert to the positive electrode mixture, at least in a portion that contacts the positive electrode mixture. An organic solvent battery comprising:
JP63249151A 1988-10-04 1988-10-04 Organic solvent battery Pending JPH0298044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63249151A JPH0298044A (en) 1988-10-04 1988-10-04 Organic solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63249151A JPH0298044A (en) 1988-10-04 1988-10-04 Organic solvent battery

Publications (1)

Publication Number Publication Date
JPH0298044A true JPH0298044A (en) 1990-04-10

Family

ID=17188666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63249151A Pending JPH0298044A (en) 1988-10-04 1988-10-04 Organic solvent battery

Country Status (1)

Country Link
JP (1) JPH0298044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022986A2 (en) * 1996-11-13 1998-05-28 Mitsubishi Chemical Corporation Lithium ion electrolytic cell and method for fabricating same
WO1998022986A3 (en) * 1996-11-13 1998-10-08 Mitsubishi Chem Corp Lithium ion electrolytic cell and method for fabricating same

Similar Documents

Publication Publication Date Title
JPH08124568A (en) Secondary battery, its negative electrode material forming method and the negative electrode metarial handling method
JP2002203562A (en) Non-aqueous electrolyte secondary battery
JP2008177173A (en) Composite cathode, chemical cell containing novel composite cathode, and process of manufacturing them
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
KR100467454B1 (en) Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder
JPS5848361A (en) Alkaline dry cell
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JPH0298044A (en) Organic solvent battery
JPS63121272A (en) Chargeable electrochemical device
JPS63136462A (en) Closed non-water battery having positive pole terminal pin and perchlorate electrolyte
JP2002298862A (en) Aluminum battery
JPS61257491A (en) Non-aqueous electrolytic cell having alkali metal anode and its production
JPS6130383B2 (en)
JP2003017081A (en) Alkaline dry battery
JP3625008B2 (en) Alkaline battery
JPH0530021B2 (en)
JPH0250585B2 (en)
JP3678109B2 (en) Nickel-hydrogen storage battery and method for producing hydrogen storage alloy negative electrode used therefor
JPH0410177B2 (en)
JPH02148654A (en) Nonaqueous electrolytic battery
JP2002313342A (en) Alkaline storage battery
JPS612265A (en) Alkaline battery
JPS59224054A (en) Manufacture of alkaline battery
JPS5851472A (en) Manufacture of positive electrode for solid electrolyte battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery